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Abstract  

Artificial intelligence (AI) techniques such as Generative Neural Networks (GNNs) have 

resulted in remarkable breakthroughs such as the generation of hyper-realistic images, 3D 

geometries, and textual data. This work investigates the vulnerability of science, technology, 

engineering, and mathematics (STEM) learners to AI-generated misinformation in order to 

safeguard the public-availability of high-quality online STEM learning content. The COVID-19 

pandemic has increased STEM learners’ reliance on online learning content. Consequently, 

safeguarding the veracity of STEM learning content is critical to ensuring the safety and trust 

that both STEM educators and learners have in publicly-available STEM learning content. In this 

study, state-of-the-art AI algorithms are trained on a specific STEM context (i.e., climate 

change) using publicly-available data. STEM learners are then randomly presented with 

authentic and AI-manipulated STEM learning content and asked to judge the authenticity of the 

content. The authors introduce an approach that STEM educators can employ to understand 

correlations between STEM learning topics such as climate change, and students’ susceptibility 

to AI-driven misinformation. The proposed approach has the potential to guide STEM educators 

as to the STEM topics that may be more difficult to teach (e.g., climate change), given students’ 

susceptibility to AI-driven misinformation that promotes controversial viewpoints. In addition, 

the proposed approach may inform students themselves as to their susceptibility to AI-driven 

STEM misinformation so that they are more aware of AI’s capabilities and how they could be 

utilized to alter their viewpoints on a STEM topic.  

1. Introduction  

The rapid expansion and adoption of communication technologies has led to the dissemination of 

information at ever increasing scales and speeds [1]. From a science, technology, engineering, 

and mathematics (STEM) education perspective, this unprecedented level of access to 

information has the potential to transform the manner in which students learn and engage with 

one another. This is particularly evident during the COVID-19 pandemic, as digital 

communication continues to serve as the primary medium for STEM educational knowledge 

exchange among both educators and learners [2]. In a brick-and-mortar classroom learning 

environment, an instructor may be able to guide students’ access to information by limiting 

certain technological resources (e.g., a no cell phone during classroom instruction policy). In 

online instruction however, guiding students towards certain information sources may be more 

challenging due to the asynchronous nature of online instruction, coupled with the challenges of 

enforcing rules and policies in a remote setting [3]. These challenges are compounded by the fact 

that students regularly engage with technology outside of the classroom and can consume large 

amounts of information from various sources [4].  Furthermore, K-12 students are digital natives 

who use YouTube indiscriminately to assist themselves outside of the classroom in completing 

assignments, with varying degrees of judgement for the reliability of the sources [5]. The 



 

emergence of ubiquitous computing has created, among many things, the ability for every-day 

individuals to disseminate digital content at scale. For example, there are over one billion videos 

existing on YouTube [6] with content ranging from Einstein’s theory of relativity [7] to how to 

train a new dog [8]. However, an abundance of data does not automatically translate into an 

abundance of knowledge. Formally, knowledge is defined as: “facts, information, and skills 

acquired by a person through experience or education; the theoretical or practical 

understanding of a subject” [9]. Therefore, data becomes knowledge when it is acquired by a 

learner and demonstrated via practice. 

Advancements in Artificial intelligence (AI) methods such as Generative Neural Networks 

(GNNs), have resulted in the ability to generate hyper-realistic data including images, videos and 

text, data types that are commonly used to teach in both brick-and-mortar and virtual learning 

environments [10]. GNNs have resulted in remarkable breakthroughs such as the creation of 

artwork [11], generation of 3D engineering designs [12], and the generation of educational game 

levels [13]. These breakthroughs present both an opportunity and a challenge to online STEM 

learning. On one hand, the ability of GNNs to generate hyper realistic data has the potential to 

personalize the delivery of STEM educational content by diversifying the contexts that are 

presented to learners beyond what a single instructor may be able to achieve due to scalability 

constraints. On the other hand, GNNs used for nefarious purposes, may inject misinformation 

within publicly-available STEM educational platforms and other common methods of online 

communication. As a result, there is a potential increased risk that students are exposed to, and 

believe inaccurate STEM information, reducing user trust in both the platforms and the STEM 

educational content.  

This paper seeks to investigate the susceptibility of learners to AI-generated STEM educational 

learning content. The authors introduce an approach that STEM educators can employ to 

understand correlations between STEM learning topics such as climate change, and students’ 

susceptibility to AI-driven misinformation. In addition, the proposed approach may inform 

students themselves as to their susceptibility to AI-driven STEM misinformation so that they are 

more aware of AI capabilities and how they could be utilized to alter their viewpoints on a 

STEM topic. The contributions of this paper are summarized below: 

• A survey tool is designed that utilizes a GNN to synthesize fake videos of celebrities 

making statements opposite to their real beliefs on a specific STEM topic (e.g., climate 

change). To the best of our knowledge, this is the first time such a survey design is 

introduced in the context of STEM education and varying student populations (K-12 and 

undergraduate students).  

• A data feedback loop enabling STEM educators and AI-researchers to quantify the 

differences between how humans determine what aspects make information real/fake 

(e.g., AI-generated movement of eyes in a STEM video), and how AI algorithms 

determine what aspects make information real/fake (e.g., changing certain pixels on a 

video to minimize a mathematical loss function).  



 

• Preliminary survey results that provide insights as to the differences that may exist in 

how different STEM learner populations respond to AI-generated STEM content 

pertaining to STEM topics such as climate change. 

 

2. Literature Review 

2.1. Generative Neural Networks 

Generative neural networks, a neural network implementation of generative models [14]  are a 

class of deep neural networks used for generating user-specified data. In general, deep neural 

networks are a type of nonlinear computational model which are developed to accomplish the 

tasks of data classification or data generation. As shown in Figure 1, a deep neural network 

model consists of many elementary computation units named nodes or neurons. Each node or 

neuron is a mathematical function that often contains parameters referred to as weights. In a 

neural network model, the nodes are grouped into multiple layers, and the layers of nodes are 

connected in a sequential manner to implement the computational procedure of the model. The 

word “deep” in deep neural network or deep learning refers to the model having a large number 

of sequentially connected layers, which is a typical design in the state-of-the-art neural networks. 

Given an 𝑚-dimensional input 𝑥, a neural network model, denoted as 𝑓𝑊 where 𝑊 represents the 

set of weights in the model, defines a mathematical function that maps 𝑥 to an 𝑛-dimensional 

output 𝑦̂, e.g., 𝑦̂ = 𝑓𝑊(𝑥). For example, in the case of video transformation using neural 

networks, 𝑥 represents the values of all pixels used to construct the image frames in an input 

video, and 𝑦̂ represents the values of all pixels used to construct the image frames in the output 

video. The developer of a neural network model specifies a target model output, denoted as 𝑦, 

and uses numerical algorithms to search for the value of the weights 𝑊 which makes 𝑦̂ 

approximate to 𝑦 as closely as possible. The process of searching for 𝑊 is referred to as the 

training of the neural network model, and the difference between 𝑦 and 𝑦̂ is quantified by a 

mathematical function called the loss function. More information regarding the architecture and 

the application of deep neural networks can be found in [15]. 

 



 

 

Figure 1: An Example Architecture of a Neural Network Model 

To exploit the GNN’s ability to generate user-specified data, researchers have proposed various 

GNN models for generating image and video content that seem authentic from a human 

observer’s perspective [16]. Such content is often referred to as “deepfakes”, since they are 

synthesized by deep neural networks rather than by recording devices that capture optical 

information from the real world. One common form of deepfake content is manipulated human 

imagery. Methods to generate manipulated imagery can be divided into three groups [17]: i) 

Editing and Synthesis, where a GNN is trained to encode different features of a human (e.g., 

race, gender and hairstyle) and a user can control the combination of these encoded features to 

create a new image (e.g., a new human face with user-customized race, gender and hairstyle) 

[18]; ii) Replacement, where a GNN is trained to identify different components of an image and 

replace a selected component in one image with the counterpart component in another image 

(e.g., replacing a person’s dress in one image with another person’s dress from a different image) 

[19]; and iii), Reenactment, where a GNN is trained to match the related components in a video 

(named the driving video) and an image (named the source image), such that a new video is 

generated as the animation of the source image by the driving video [20]. The Reenactment 

method is often used to swap people’s faces in an input video. In this case, the related 

components to be matched are various features of a face including the eyes, the nose, the mouth, 

the hair, etc. The animation is done by making the face features in the source image track the 

motion of the face features in the driving video. Among the Reenactment GNN models, the First 

Order Motion Model proposed in [20], has been chosen in this paper to produce AI-generated 

videos to investigate learners’ susceptibility to AI-generated contents. Compared with other 

GNN models, the First Order Motion Model has a stable performance in video manipulation and 

has multiple selections of pre-trained checkpoints on different training datasets. The overall 

process of generating the fake videos in the survey has been illustrated by Figure 2.  

 



 

 

Figure 2: Example Process of Generating Fake Videos in the Survey 

2.2 Misinformation in the Digital Age.  

Exposure to misinformation, defined as information that is incorrect (by accident or 

deliberately), is of increasing concern in the United States [21]. Exposure to and belief in the 

authenticity of misinformation, have been shown to implant false memories of previous events 

[22], foster doubts about scientific consensus [23], and convince individuals of the veracity of 

conspiracy theories [24]. Unfortunately, both youths and adults tend to struggle to identify digital 

misinformation in a variety of contexts. For example, one small study found that high school 

students were readily convinced by a blog post containing misinformation about vaccine safety 

[25], often relying on flawed science-based reasoning. Further work examining readers’ 

vulnerability to misinformation in news articles determined that their propensity to correctly 

identify authentic content was modulated by their individual view on the topic of discussion [26]. 

Several additional studies have found that images, including scenery and facial images, are 

particularly difficult for adults to distinguish as misinformation from authentic media [27]. 

Further, inoculating individuals against misinformation is a complex target. Recent studies have 

indicated that relatively simple techniques such as explicitly identifying the false information or 

providing warnings regarding the potential presence of false information tend to decrease 

individuals’ ability to correctly identify misinformation. However, preliminary results indicate 

that training adults to identify manipulated images could improve their ability to correctly 

identify inauthentic facial images [28]. 

GNN-produced deepfakes threaten to lower barriers to achieving the mass synthesis of 

manipulated digital content, democratizing the production of misinformation [29]. To date, 

studies investigating vulnerabilities to deepfakes have largely been limited to adult populations 

and sociopolitical contexts [30], [31]. For example, one study tested Danish citizens’ ability to 

correctly identify a deepfake video of a politician [32]. Here, the researchers found that viewers 



 

often relied on the veracity of the politician’s speech content to identify inauthentic videos; 

characteristics of the video itself did not influence the viewers. A second study found that ~16% 

of adults were tricked into believing that a deepfake video of President Barack Obama 

disparaging then-candidate Donald Trump was authentic and ~30% expressed uncertainty [31]. 

Ongoing research efforts have yet to study the vulnerabilities of K-12 or undergraduate students 

to deepfakes or of adults within educational contexts.  

2.3 Cybersecurity in the Educational Context 

According to the National Center for Education Statistics, more than 56 million students are 

currently enrolled in K-12 public and private schools in the United States. In addition, there are 

over 16 million students enrolled in undergraduate programs at degree-granting postsecondary 

institutions [33], [34], as well as approximately three million students enrolled in 

postbaccalaureate degree programs. Most of these students have access to the internet in school 

and at home [34]. As of 2019, 99.2% of K-12 schools have the internet access needed to make 

digital learning available in their classrooms [35] and 73% of U.S. adults have high-speed 

broadband internet service at home [36]. Further, many of these students are using the internet to 

complete schoolwork. In 2015, a Pearson survey of 2,300 K-12 students showed that 53% of 

fourth and fifth grade students, 66% of middle school students, and 82% of high school students 

regularly used a smartphone, and 41% said they used a smartphone twice a week to complete 

schoolwork. Further, a 2017 survey found that over 71% of K-12 teachers allowed students to 

research subjects using the internet, and 58% used educational apps [37]. Technology use in 

education was projected to increase at that time and was known to have dramatically increased 

when schools closed during the COVID-19 pandemic [38]. 

Similar to corporations, schools can control the applications and websites their users access on 

school devices and networks. However, this approach becomes more challenging when learners 

are off-campus and not utilizing school networks/devices. Per the K-12 Cybersecurity 2019 Year 

in Review, there were 348 publicly-disclosed incidents involving 336 educational agencies 

across 44 states in 2019 – three times as many as there were in 2018. Key issues include the lack 

of qualified cybersecurity professionals working in schools, the absence of a common standard 

of practice or risk management framework to which most school districts adhere, and few 

cybersecurity tools designed to specifically meet the needs of the K-12 context [39]. 

Further, many students use personal devices on non-school networks (e.g., mobile phone 

networks, home networks) to conduct schoolwork both inside and outside of schools and use the 

internet and various digital media platforms for personal use [40]. Schools have little control 

over the content accessed from those devices or on non-school networks.  

3. Methods 

3.1 Study Population 

Participants were recruited from Carnegie Mellon University and K-12 schools to complete the 

survey. In addition to the Carnegie Mellon University and K-12 student populations, the RAND 

Corporation team solicited feedback pertaining to the survey design and instrumentation from 



 

internal experts. The study team at Carnegie Mellon University recruited undergraduate students 

from the College of Engineering, the Cybersecurity Institute, and the Institute for Politics and 

Strategy. A total of 13 students from Carnegie Mellon University responded to the survey. 
 

Challenger Center for Space Science Education (Challenger Center) recruited two groups of 

middle school students from K-12 schools, one in Missouri and one in Illinois, to participate in 

the pilot study. The students were attending school virtually, so they completed the survey at 

home using school and personal computing devices. A total of 37 students completed the survey. 

 

3.2 Experimental Setup and Survey 

The survey was approved by the Institutional Review Boards (IRBs) for Carnegie Mellon 

University, RAND Corporation, and Challenger Center, and consent was obtained for each 

survey participant. Adults and students enrolled in higher education were presented with a 

consent form that they were asked to carefully review and sign prior to their participation in the 

survey. Parental consent was obtained for all survey participants from K-12 schools. 

Table 1 lists the questions that were included in the survey instrument. Additional questions 

collected background demographic information (e.g., age, gender, etc.). The surveys fielded to 

Carnegie Mellon University and middle school students were identical except that middle school 

students were not asked about their political orientation.  

Table 1. Questions that were included in this survey instrument and the source they were 

adapted from. 

Survey Question Source the Question was Adapted From 
How confident are you that the video was fake or 

real? 
[32] 

Which aspects of the video below helped you 

decide if the video was real or fake? 
[41] 

What is your view of scientists’ understanding of 

global warming? 
[42] 

What is your personal view of global warming? [42] 
What does the “greenhouse effect” refer to? [42] 
Which gases in the atmosphere are good at 

trapping heat from the Earth’s surface? 
[42] 

What causes ocean acidification? [42] 
What best describes your political orientation? [43] 
On average, which sources do you use to learn 

about climate change and how often do you use 

them? 

[44] 

How much do you trust the news and information 

about climate change that you learn from those 

sources? 

[44] 

Outside of school or work, which device do you 

primarily use to access the internet? 
[45] 

Which social media platforms do you use and how 

often do you use them? 
[46] 



 

What device are you using to respond to this 

survey? 
[Developed for this survey] 

How often do you think fake science, technology, 

or math information is seen on the Internet? 
[Developed for this survey] 

How much do you think that fake science, 

technology, or math information on the Internet 

poses a risk to successfully completing your 

professional or schoolwork? 

[Developed for this survey] 

How well do you think you are able to detect fake 

science, technology, or math content? 
[Developed for this survey] 

How much does fake digital science, technology, 

or math content pose a risk to the overall 

functioning of society? 

[Developed for this survey] 

 

Carnegie Mellon University used current AI and Machine Learning (ML) techniques to create a 

bank of eight videos. The bank contained two videos for each of the four people: Timothy 

Gallaudet, current Assistant Secretary of Commerce for Oceans and Atmosphere and former 

Acting Administrator of the National Oceanic and Atmospheric Administration; Richard 

Lindzen, Professor Emeritus of Meteorology at the Massachusetts Institute of Technology; Greta 

Thunberg, climate change activist; and Naomi Seibt, climate change skeptic. Timothy Gallaudet 

and Greta Thunberg believe the scientific consensus that climate change is occurring, while 

Richard Lindzen and Naomi Seibt do not. For each person, the video bank contained an authentic 

clip where each espoused their views on climate change, and a manipulated clip where each are 

made to espouse the opposing view. Each survey recipient received one video clip from each 

person but was randomly assigned either the authentic or the manipulated version. 

Randomization occurred within person, meaning the same respondent can receive an authentic 

clip of one person, but a manipulated clip of another. 

Randomization means that, in expectation, background characteristics of survey respondents 

should be uncorrelated with the receipt of authentic or manipulated videos, thus providing an 

unbiased estimate of the ability to detect deepfake videos. In this paper we explore three 

outcomes of interest, i) the probability that respondents correctly identified the authenticity of a 

video, ii) the probability that they incorrectly identified the authenticity of the video, and iii) the 

probability of responding “I cannot tell.” We use the last outcome as a measure of “uncertainty.” 

That is, we interpret an increase in the proportion of respondents who cannot tell the authenticity 

of the videos as a sign that the fake videos cause uncertainty in the population of respondents. To 

understand the effect of receiving a manipulated video on the above outcomes, we stack the 

responses from each video such that observations are at the respondent-video level.  We then 

employ the following Ordinary Least Squares models: 

                                             𝑌𝑖𝑝 = 𝛽0 + 𝛽1𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑝 + 𝛼𝑖 + 𝜀𝑖𝑝                                       (1) 

Where Yip represents the outcome of interest for respondent, i, on video of person, p; 

Manipulateip is an indicator for getting the manipulated version of a person’s video; i’s are 

respondent fixed effects that control for all stable person level characteristics; and ip is a person-



 

video level idiosyncratic error term. We cluster our standard errors at the respondent level to 

account for the fact that there is more than one observation per individual, which causes 

responses within individuals to be correlated. The coefficient of interest is 1 which is the effect 

of receiving the manipulated video on the probability of responding as indicated by the outcome. 

Due to the small sample sizes, we cannot make firm inferences, as all results are statistically 

insignificant. We therefore present stacked bar charts of responses by authentic and manipulated 

video so that differences in responses can be compared. However, we see these analyses as 

exploratory and suggestive. Firmer conclusions will be made after the full survey effort is 

completed. A contribution of this paper is the design of the experimental survey that enables 

STEM educators to repeat/reproduce the results as well as to explore research questions and AI-

generated STEM content beyond what is presented in this work. 

We are also interested in how individuals’ views, as measured by responses to the contextual 

questions, moderate their ability to detect deepfake content. In this paper we explore this 

relationship among two views: (1) whether or not the person believes that deepfakes are 

“common” or “everywhere” as opposed to “doesn’t exist,” “very rare,” or “fairly common”; and 

(2) whether a respondent believes they can identify deepfake videos “most” or “all” of the time 

as opposed to “not at all” or “sometimes.” We choose these views because of past research 

which has shown that they can moderate the ability to detect misinformation. We see these 

analyses as illustrative due to our lack of power to detect statistically significant effects and 

hence, refrain from exploring a larger set of moderating variables. 

We explore how these beliefs moderate effects in two ways. First, we estimate the effect of 

receiving manipulated videos on each subgroup separately. In these instances, we use models in 

the form of Equation 1 above on the relevant subgroup of interest. We formally test the 

difference in effects between subgroups with the following model: 

     𝑌𝑖𝑝 = 𝛽0 + 𝛽1𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑝 + 𝛽2𝐵𝑒𝑙𝑖𝑒𝑓𝑖 + 𝛽3𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑒𝑑𝑖𝑝 ∗ 𝐵𝑒𝑙𝑖𝑒𝑓𝑖 + 𝛼𝑖 + 𝜀𝑖𝑝       (2) 

Equation 2 is identical to Equation 1, except we add a main effect for the person’s response to 

the contextual question of interest and an interaction term between the indicator for receiving a 

manipulated video and the relevant belief. The coefficient interest is now 3 which is an estimate 

of the difference in effects of the manipulated video on the subgroup that holds a specific belief. 

For example, the coefficient will indicate the differential effect of receiving a manipulated video 

on the subgroup of respondents who believe deepfakes are more prevalent (as opposed to less 

prevalent).  

3.3 Research Questions 

In this paper, we explore two general research question: 

1. What is the effect of receiving a manipulated video on a person’s ability to correctly 

identify a video as authentic? 

2. How does that effect vary by a person’s beliefs regarding the prevalence of deepfake 

videos and their own ability to detect deepfakes? 

 



 

4. Results and Discussion 

4.1 Main Results 

We begin with Research Question 1, which explores the effect of receiving a manipulated video 

on a respondent’s ability to correctly identify the authenticity of a video. Figure 3 below presents 

the percentage of each type of response among those who received the manipulated videos and 

among those who received the authentic videos separately for the Challenger Center and 

Carnegie Mellon University samples. Challenger Center respondents were able to correctly 

identify the authentic video 52.2 % of the time, while respondents were able to correctly identify 

the manipulated videos 46.8 % of the time. Previous studies have also found that survey 

respondents correctly identify authentic and deepfake media with approximately 50% success 

rates [31]. Meanwhile respondents reported not being able to tell the authenticity of the video 

15.9 % of the time when receiving the authentic version and 25.3 % of the time when receiving 

the manipulated version. Thus, respondents incorrectly identified the authentic videos 31.9 % of 

the time (calculated as 100% - 52.2% - 15.9% = 31.9%, which corresponds to the grey area of 

the third column from left to right in Figure 3) and the manipulated videos 27.9 % of the time 

(calculated as 100% - 46.8% - 25.3% = 29.9%, which corresponds to the grey area of the first 

column from left to right in Figure 3). In aggregate, the results suggest that the fake videos may 

have caused more uncertainty which reduced the instances in which respondents correctly 

identified the authenticity of the video but also decreased the instances in which the respondents 

incorrectly identified the video.  

Results on the Carnegie Mellon University sample differ. Compared with the Challenger 

Center’s result, Carnegie Mellon University’s result shows a higher success rate in identifying 

both the authentic videos (63.0 % vs 52.2 %) and the manipulated videos (84.0 % vs 46.8 %). 

When receiving the authentic videos, 11.1 % of the time the Carnegie Mellon University 

participants reported not being able to tell the authenticity of the video, while this rate of 

uncertainty is 16.0 % when the participants were shown a manipulated video. This result 

suggests that, among the Carnegie Mellon University participants, the manipulated videos lead to 

increased instances of correctly identifying either type of videos (authentic or manipulated), 

despite causing more uncertainty in identification. Note that this is different from what the 

Challenger Center’s results indicate, and such difference is likely caused by the difference of 

sampled populations (college students with engineering background vs middle school students). 

It is important to note that in Carnegie Mellon University’s survey results, there are no instances 

of a respondent incorrectly identifying a manipulated video. The authors postulate that this result 

may be due to student respondents from Carnegie Mellon University being engineering-majored 

students who already have background knowledge in programming and are aware that the state-

of-the-art AI technology is able to generate realistic-looking imagery data. 

These findings align with previous studies that have found large amounts of uncertainty among 

individuals asked to discern between deepfake and authentic digital media, although these 

literature results are mixed regarding which content – deepfake or authentic – results in greater 

uncertainty [31], [47]. This uncertainty has cascading effects on consumers’ news consumption, 

often increasing distrust in news content viewed on social media [31].  



 

 

Notes: Results are derived from 37 middle school students recruited by the Challenger Center and 13 undergraduate 

students at Carnegie Mellon University judging the authenticity of 4 videos each. No differences in the probability 

of correctly or incorrectly identifying a video’s authenticity or in responding “I can’t tell” are statistically 

significant. 

Figure 3: Judgements of Video Authenticity 

4.2 Moderation Results 

These overall results could be moderated by different beliefs held by the respondent. We only 

explore moderation analyses in the Challenger Center sample, as the Carnegie Mellon University 

sample is too small to look at differences in effects by subgroups. Figure 4 below shows how 

effects vary by perceived ability to detect deepfakes. We create two subgroups of respondents, 

those [26], [32], [48] where respondents indicated that they believe that they can detect 

deepfakes “most” or “all” of the time, and those who believe they can detect deepfakes 

“sometimes” or “none of the time.” Figure 4 shows that those who believe they can identify 

deepfakes may be more likely to correctly identify the authenticity of the video when receiving a 

manipulated one. This increase in correct identification may be accompanied with a decrease in 

incorrect identification and no effect on not being able to tell. Meanwhile those with less 

confidence may be less likely to correctly identify manipulated videos. This decrease in correctly 

identifying manipulated video may be mostly explained by a corresponding increase in not being 

able to tell. Thus, it seems that respondents may be accurately able to judge their ability to detect 

deepfakes, a finding that agrees with prior survey results which found that individuals with 

greater self-perceived skills were more likely to correctly identify authentic and fake digital 

content [49]. However, this question was asked after presenting the videos so participant 

responses are likely informed by their experiences judging the authenticity of the videos. 



 

 

Figure 4: Differences in Effect of Receiving Manipulated Videos by Perceived Ability to 

Detect Deepfake Videos 

Notes: Results are derived from 37 middle school students judging the authenticity of 4 videos each. Vertical bars 

indicate the effect of receiving a manipulated video on the probability of choosing the relevant option regarding the 

video’s authenticity in the subgroup of interest. “Able to Detect Deepfakes” indicates the respondents believe they 

can detect a manipulated video most or all of the time. “Not Able to Detect Deepfakes” indicates the respondents 

believe that they can detect deepfake videos sometimes or not at all.  No differences in effects are statistically 

significant. 

Figure 5 shows that among those who believe deepfakes are common or everywhere, receiving 

the manipulated video has small effects on their responses. In contrast, those who believe they 

are less common may be less able to correctly and incorrectly identify manipulated videos and 

more likely to be unable to tell. Thus, the uncertainty caused by deepfakes may be concentrated 

on those who believe deepfakes are less common. This result differs from previous works, which 

in one study found that prior knowledge of deepfakes did not impact participants’ ability to 

correctly identify authentic and deepfake videos [32], contrasting with a latter study which found 

that greater awareness of deepfakes tended to increase the likelihood that individuals believed 

the videos they were watching were fake, regardless of the videos’ authenticity [47]. Indeed, this 

variance across studies indicates that additional work is needed to better understand how prior 

knowledge and experience affects vulnerabilities to deepfake digital content. 



 

 

Figure 5: Differences in Effect of Receiving Manipulated Videos by Perceived Prevalence of 

Deepfakes 

Notes: Results are derived from 37 middle school students judging the authenticity of 4 videos each. Vertical bars 

indicate the effect of receiving a manipulated video on the probability of choosing the relevant option regarding the 

video’s authenticity in the subgroup of interest. No differences in effects are statistically significant. 

 

5. Conclusion 

In an era where learners are surrounded by abundant digital information and open-source AI 

models, the risk of STEM education being jeopardized by AI-generated misinformation has 

never been higher. In response to such risk, we launched this study to investigate the 

susceptibility of learners to AI-generated STEM content. A set of videos about climate change, 

including both authentic videos and videos manipulated by a state-of-the-art GNN model, were 

created and fielded to K-12 students and Carnegie Mellon University undergraduate students to 

test their ability to identify the authenticity of those videos. According to our survey results, the 

Carnegie Mellon University group has a higher success rate in identifying the video authenticity 

than the K-12 student group.  Among both population groups, the manipulated videos are 

observed to increase the uncertainty of judgement. The survey results partially support previous 

finding that the (mis)alignment between a participants’ beliefs and video content influences the 

ability to accurately discern between fake and authentic videos, but in some other aspects, our 

survey results also differ from previous works. Due to small sample size, we see the results as 

suggesting relationships which may or may not be confirmed after fielding a larger study. 

Nevertheless, a major contribution of this work is the design and development of a survey 

instrument that enables STEM researchers and educators to employ AI-generated technology to 

study the vulnerability of their learner populations to STEM misinformation. Furthermore, the 



 

data acquired from the survey can help educators quantify the correlations that exist between 

student learners and STEM topics that are of great interest (e.g., climate change), but may be at 

risk of being controversial and hence manipulated. Finally, the proposed approach has the 

potential to assist STEM educators and AI-researchers to quantify the differences between how 

humans perceive fake/real information and how machines perceive real/fake information. Our 

future work will focus on creating and fielding a full survey containing more realistic 

manipulated videos to a much larger pool of middle school students and Carnegie Mellon 

University students, in addition to nationally representative samples of educators, principles, and 

US adults. 
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