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Are You Sure About That? 
Introducing Uncertainty in Undergraduate Engineering Education 

Abstract 
George Box famously stated “all models are wrong, but some are useful” in a 1978 workshop on 
Robustness in Statistics. Building on that notion, we explore how undergraduate engineering 
students may begin to learn to differentiate the "useful" models and the limits of their usefulness. 
In the last forty years, the field of engineering has become increasingly reliant on computer-
based modeling. Usage of numerical modeling and simulation in the undergraduate engineering 
curriculum has also expanded. The increase in usage of this powerful tool is not without 
consequences. Engineers often neglect the potential impact of the simplifications that go into 
creating a model and thus neglect the uncertainties inherent in simulation results. This high faith 
in models can lead to incorrect conclusions and potentially catastrophic consequences.  

In this paper, the authors discuss the necessity and utility of learning about uncertainty in 
conjunction with modeling and simulation at the undergraduate level. They provide content to 
scaffold a student’s intuition about uncertainty while also enhancing the student’s understanding 
of modeling in multiple disciplines. The authors use a case study that compares a finite element 
analysis (FEA) simulation to data from physical experiments as a foundation for learning about 
modeling and simulation. Comparing physical experiments and results of numerical simulations, 
the students will investigate how the results were affected by assumptions. Quantifying the 
impact of their assumptions through analysis of uncertainty will accompany the validation of 
their simulations.  

Based on the literature reviewed, the current treatment of uncertainty in numerical modeling 
follows the general form of the quantification of uncertainty in physical modeling. Therefore, the 
lesson content on quantification of uncertainty reviews what is commonly covered when 
discussing physical experiments, and demonstrates how that can be extended into the numerical 
modeling realm. Both Type A and Type B evaluations of uncertainty are covered. Incorporated 
throughout the educational tools presented in this paper is a vocabulary necessary to discuss 
computer-based numerical simulations.  

Introduction 

Engineers are constantly incorporating new technologies in their work. While this may seem 
obvious given that engineers are responsible for the creation of a significant portion of the 
technologies used in the world, the practicing professional engineering community is sometimes 
conservative in their embrace of new technologies. This was the case with finite element analysis 
[1], [2], but with vastly improved user interfaces and local availability of significant computing 
power the use of high-fidelity numerical simulations is seeing significant growth both in practice 
and in the classroom.   

In Froyd, Wankat and Smith’s paper “Five Major Shifts in 100 Years of Engineering Education” 
[3] they include “Simulations” as part of the “Fifth Major Shift” and note that “Simulation…has 
become ubiquitous in engineering education.” More recently, Magana [4] presents research done 
with a panel of 18 experts from academia and 19 from industry, on what modeling and 
simulation (M&S) practices should be integrated into engineering education. There was 



significant consensus on the need for skills related to validation, acknowledging uncertainty in 
the interpretation of simulation predictions, and developing intuition and being critical of results. 
Developing a healthy doubt of computer-generated results in students is an issue that others have 
addressed [5], [6]. Both the increasing use of M&S, and the need for the credibility of M&S 
results to be questioned, is addressed in the ASME Guide for Verification and Validation in 
Computational Solid Mechanics [7]. 

While a lack of understanding of, and emphasis on, uncertainty in numerical simulations may not 
present immediate problems in undergraduate education, in professional practice the potential for 
catastrophic consequences is clear. This was the case in the early morning hours of January 18, 
1978 when the roof of the then Hartford Civic Center collapsed. An image of the failed structure 
is shown in Figure 1. Fortunately, no one was injured. This outcome would likely have been 

 

Figure 1. View of the Hartford Civic Center roof, January 1978 – Connecticut Historical Society 
(from [8]) 

very different had the roof collapsed hours earlier when nearly five thousand fans were watching 
a collegiate basketball game. Investigations of the failure [9], [10] report that deflections during 
construction were measured to be twice those predicted by the computer analysis, and that some 
compression members in the completed structure had unbraced lengths of 9.14m (30ft) rather 
than the 4.57m (15ft) used in the computer model.  

Having too much faith in the results of computer-based analyses was also found to be a major 
contributor to the failure of the pedestrian bridge at the Florida International University on 
March 15, 2018, shown in Figure 2. This failure was thoroughly investigated by the National 
Transportation Safety Board (NTSB) [11]. The NTSB notes that the engineers’ “modeling for the 
bridge design resulted in a significant underestimation of demand at critical and highly loaded 
nodal regions.” [11, p.100]. They also noted in their report that “beginning with the cracking 
identified on February 24, 2018, the distress in the main span structure was active, continued to  



 

Figure 2. View of the collapsed FIU pedestrian bridge on March 15, 2018 (from [11]) 

grow, and was well documented by all parties involved in the design, construction, and oversight 
of the bridge.” and that “the rate of premature concrete distress was clear evidence that the 
structure was progressing toward failure…” [11, pps. 101-102]. Unfortunately a construction 
worker and five occupants in vehicles under the bridge when it collapsed, died. 

These are but two examples of undue faith being placed on results of simulations, even in the 
face of the real-world systems exhibiting behavior contrary to the simulation results on which 
their design was based. The goal in writing this paper is to highlight the need for inculcating an 
appropriate skepticism in engineering undergraduates regarding modeling and simulation results. 

This is a work in progress. We are still trying to better assess how many engineering 
undergraduates are introduced to uncertainty quantification (UQ) as regards physical 
experimentation and computational simulations. We are also seeking best practices for 
incorporating UQ into undergraduate engineering programs. 

Background 

The latest edition of the ABET criteria [12] includes as a student outcome for all engineering 
programs “an ability to develop and conduct appropriate experimentation, analyze and interpret 
data, and use engineering judgment to draw conclusions.” We believe that ABET is referring to 
physical experimentation, but we see no reason that this student outcome should not be 
interpreted to include computational experiments. Others are also taking this view of 
experimentation [13], [14]. ABET also includes as a curriculum criteria for all engineering 
programs “a culminating major engineering design experience that 1) incorporates appropriate 
engineering standards and multiple constraints, and 2) is based on the knowledge and skills 
acquired in earlier course work.” The literature indicates that many of these design experiences 
are being completed with limited attention being paid to uncertainty. 

We will use the terms model, modeling and simulation as applying to both physical experiments 
and computational experiments. The common definitions of verification and validation can also 
be applied to activities in both the physical and computation realms, but these terms have taken 
on somewhat specialized meanings in regard to computational simulations. In the computational 
realm [7], [15], [16], [17] verification is considered as having two components. The first has to 



do with ascertaining the accuracy of the numerical algorithm representing the mathematical 
model, and the second with ascertaining the solution accuracy, which is often influenced by the 
level of discretization in the finite element model. To help put these terms in context we will use 
the case study that is outlined in Figure 3. 

 

Figure 3. Steps in the computational and physical modeling and simulation processes 

1 https://fineartamerica.com/featured/cow-looking-over-split-rail-fence-on-the-blue-ridge-parkway-john-harmon.html 



Our case study comes from an undergraduate research project that was not part of a formal 
course. A local manufacturer wanted to investigate the possible application of a product in a new 
market. They had the capability to manufacture 8ft long 4in diameter solid rods from a blend of 
recycled polyethylene (PE) and polypropylene (PP), and wanted to explore the use of these rods 
as fence rails in agricultural applications. Developing a polymer blend was motivated by PP 
having higher inherent stiffness but somewhat limited availability, whereas PE is much more 
readily available as a recycled feedstock. 

Figure 3 shows the real-world situation (RWS), along with the steps taken to develop a 
laboratory experiment to determine the flexural stiffness of the rods in a fence application. As is 
the case in most laboratory investigations, several assumptions and approximations are made in 
the process of working towards an experiment that can be practically accomplished, while 
retaining what are believed to be key features to obtain a useful result. We also show the steps 
involved in analyzing the RWS using finite element analysis. In addition to emphasizing the 
uncertainty associated with both physical and computational experiments, we hope to show the 
synergy between the two approaches 

The definition of validation used in the computational literature [7], [15], [16], [17] is in line 
with the common definition, but specifically refers to the comparison of the two end steps in 
Figure 3. Validation experiments are physical experiments designed and conducted for the 
specific purpose of validating computational models and simulations. 

For our purposes here we adopt the NASA definition of uncertainty: “The estimated amount or 
percentage by which an observed or calculated value may differ from the true value.” [16, p.15] 
The first instance of a discussion of the propagation of uncertainty in experiments we found was 
in Testing and Inspection of Engineering Materials by Davis, Troxell and Wiskocil (1941) [18]. 
More complete discussions are presented by Baird [19] and Taylor [20], these being texts that 
engineering undergraduates may have been introduced to in conjunction with a physics 
laboratory course. 

In the latest version of the FE Reference Handbook (FERH) [21], the Kline-McClintock (K-M) 
equation is presented for use in determining an estimate of the uncertainty in a calculated result 
R, and has the form of equations presented by other authors [19], [20]. Unfortunately, the K-M 
equation is not presented in the majority of undergraduate engineering text books we have 
reviewed, which may indicate that the propagation, and quantification, of uncertainty is not being 
generally addressed. 

In their 1953 paper, Kline and McClintock [22] note the need for the development of standards 
for description and analysis of uncertainty in single-sample experiments. The international 
standards that Kline and McClintock promoted now exist, to a degree. Standard language related 
to uncertainty in measurements is addressed in the International vocabulary metrology - Basic 
and general concepts and associated terms (VIM) [23]. There is a companion standard produced 
by the Joint Committee for Guides in Metrology, entitled Evaluation of measurement data -  
Guide to the expression of uncertainty in measurement [24], that is commonly referred to as the 
“GUM” in which the propagation of uncertainty is thoroughly covered. 



The latest edition of the FERH is now referring to the VIM for definition of terms, and the 
version of the K-M equation presented in the “Engineering Probability and Statistics” section of 
the FERH [21, p.69] is essentially the same equation presented in the GUM [24, p. 19]. But that 
form does not address single-sample experiments. The GUM presents two types of evaluation of 
standard uncertainty, Type A where the components of the result(s) are evaluated from repeated 
observations; and Type B where components are evaluated by other means, including judgment 
[24, sect. 4.3]. The second form of the K-M equation in the FERH [21, p.226] is not written in 
terms of standard uncertainty as noted in the GUM, but we feel this form of the K-M equation is 
an expedient way to address uncertainty in many if not most applications in undergraduate 
engineering education, where single-sample experiments, both physical and computational, 
predominate. Further, it can be readily used with students who have covered the calculus, but 
may not have taken a course in probability and statistics. 

Returning to our case study, it was quickly realized that physically applying a non-uniformly 
distributed load in the lab was not practical and the concept of the loading of the assumed to be 
leaning cow had to be simplified. As shown in the simplified conceptual model in Figure 3, it 
was decided to model the cow as a point load in the center of the rail. The physical model shown 
in Fig. 3 was then constructed. The cradle supports on the ends of the beam were built to 
simulate roller supports, and the center load was applied by a universal testing machine (UTM) 
through a custom-built loading saddle. The UTM measured cross-head displacement and load 
simultaneously. A strain gage was applied to the bottom of three of the beams at their center. 

Given the goal was to characterize the stiffness of the three polymer blends, a data reduction 
equation (DRE), or “derived quantity” [23], was required. The intent of the design of the 
experiment was a simply-supported beam with a point load at its center. The standard deflection 
equation for this type of beam support and loading [21], based on Bernoulli-Euler beam theory, 
was rearranged to solve for the elastic modulus, with the result shown in Equation 1.  

                                                            𝐸𝐸 = 𝑃𝑃𝐿𝐿3

48𝛿𝛿𝛿𝛿
                                                          (1) 

Load is represented by P, the span of the beam by L, the centerline displacement by δ, and the 
area moment of inertia by I. In order to use this equation in our estimation of uncertainty, the 
area moment of inertia must be put in terms of the measurable diameter, D: 
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Uncertainty Estimation in Physical/Material Experimentation 

Figure 4 outlines what we see as the major sources of uncertainty in our experimental outcomes. 
There are several sources of uncertainty in moving from the RWS to the simplified conceptual 
model. While those are likely significant in addressing the suitability of the polymer rods as rails 
in an agricultural fence, they are outside the realm of this study, provided the client agrees that 



the research question is which polymer blend, of the three being addressed, has superior stiffness 
when acting as a simply supported beam with a point load at its center.  
 

 
 

Figure 4. Sources of uncertainty in the experimental outcomes 
 

In Figure 4 we have grouped sources of uncertainty into the three components: umodel, umeasure and 
upost-process. The general intent of the categorization is to promote contemplation and discussion of 
sources of uncertainty. These categories also facilitate an equation for the uncertainty of an 
experimental outcome as being the sum of the uncertainties from all sources, as in Equation 3. 

𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                      (3) 
 



The literature often relates uncertainty to error, and categorizes errors as being random or 
systemic. Further, uncertainty is often categorized as being either aleatoric or epistemic. The art 
and science of uncertainty quantification continues to evolve. While being introduced to these 
concepts fits in well with getting students to contemplate and discuss uncertainty, we are striving 
for a simple introductory approach to uncertainty quantification (UQ) that we feel Eqn. 3 
represents. 
 
For our case study, much of the uncertainty categorized into umeasure is reflected in the use of our 
data reduction equation (Eqn. 2). We will use the DRE to quantify the uncertainty in our 
measurements and thus estimate umeasure.  
 
Our estimates of the uncertainty associated with each of our measurements to be used as input to 
the DRE is noted in Table 1. To come up with these values we reviewed the calibration data for 
the load and displacement sensors, and critically reviewed how the diameter and length of each 
specimen was measured 
 

Table 1: The experimentally measured values and their associated uncertainties 

Measurement Value Uncertainty 
P = load = x1 500.0 lbf ± 2.5 lbf = 𝑤𝑤𝑥𝑥1  

L = beam span = x2 84.0 in ± 0.5 in = 𝑤𝑤𝑥𝑥2  

δ = beam ℄ displacement = x3 2.64 in ± 0.25 in = 𝑤𝑤𝑥𝑥3  

D = beam diameter = x4 4.00 in ± 0.25 in = 𝑤𝑤𝑥𝑥4  

Substituting the data in Table 1 into Equation 2, E is determined to be 186103 psi. Following the 
general rule for significant figures in calculations involving multiplication and division as 
presented in the FERH [21, p.2], this result is reported as: E = 186  ±1 ksi.  References [20] and 
[25] provide more information on significant figures for those interested.                                              

The Kline-McClintock equation as presented in the “Instrumentation, Measurement, and 
Control” section of the FERH [21] is: “Suppose that a calculated result R depends on 
measurements whose values are x1 ± w1, x2 ± w2, x3 ± w3, etc., where R = f(x1, x2, x3, …xn), xi is 
the measured value, and wi is the uncertainty in that value. The uncertainty in R, wR, can be 
estimated using the Kline-McClintock equation:” 
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                                    (4) 

Table 1 identifies the variables in Eqn. 4. The uncertainty in our measurement, umeasure, is 
represented by wR. 

Using the Kline-McClintock equation (Eqn. 4) with the data produces the following: 
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                                                        𝑤𝑤𝑅𝑅 = 49871 𝑝𝑝𝑝𝑝𝑝𝑝 = 49.9𝑘𝑘𝑘𝑘𝑘𝑘                                                            (6) 

In this case, the experimental outcome would be reported as:  E = 186 ± 50 ksi                        

Comparing the two approaches, the uncertainty using general significant figure rules is roughly 
1%, (rounded to the nearest whole percent) whereas using the K-M equation the uncertainty is 
roughly 27%. This seems large, and presents a segue into how UQ benefits experimental design. 

What if a set of calipers had been used to measure the diameters of the beams, and what if the 
outer surface of the beams was not so irregular? Going back into the K-M calculation, with the 
uncertainty in the diameter measurement, 𝑤𝑤𝑥𝑥4, set to 0.0625 inches, the measurement 
uncertainty, umeasure (wR) becomes 21396 psi, and now represents an 11% error. The utility of UQ 
in experimental design is of course well documented in the literature [20], [26]. 

Given an estimate for umeasure we still require estimates for umodel and upost-process. Addressing the 
easy one first, two people performed the calculations to determine E independently. All other 
calculations were also checked in a similar fashion. While this does not totally eliminate all 
uncertainty, we judge the uncertainty in our post-processing of data (upost-process) is negligibly 
small relative to the other two terms and can be ignored. Addressing umodel presents a much 
greater challenge. 

Our physical model was built with the intent of using the data reduction equation, Eqn. 1, which 
is based on Bernoulli-Euler beam theory. The assumptions implicit in using Eqn. 1 include: the 
beam being composed of a homogenous and linear-elastic material, the beam being prismatic and 
symmetric about the axis of loading, the beam’s displacement being small enough to ignore 
geometric nonlinear effects, that plane cross sections remain plane and normal to the neutral 
surface, that shear deformations can be ignored, and that the beam is simply-supported. 

The experimental data clearly demonstrates the polymer beams were behaving in a nonlinear 
fashion. The beams appeared to be homogenous and prismatic, and being circular, their cross 
sections should be symmetric about the axis of loading. Given our data, we cannot address 
geometric-nonlinear behavior, nor shear deformations, as being insignificant. Finally, we cannot 
address how well a pin-and-roller condition was achieved, nor how well a point load was 
modeled. In short, we can’t quantify umodel based on the data collected. 

In reflection, some of the uncertainty in our physical model could have been quantified by testing 
a beam of a “known” material, such as an aluminum pipe, that could more confidently be 
considered as homogenous and prismatic, and linear-elastic for the load range of interest, with a 
“known” E. If such a beam had been tested in our setup, and the results matched beam theory, 
we could estimate uncertainty associated with the cradle supports and the saddle loading. 
Additional instrumentation would be needed to address the significance of shear deformations.  

To summarize: umodel is greater than zero, but currently unknown; umeaure = 50 ksi (but could have 
been reduced with better measurement data); and upost-process is negligible. Therefore: uoutcome = 
umodel + umeasure + upost-process > 50 ksi. 

 



Uncertainty Estimation in Computational Solid Mechanics 

Figure 5 outlines our proposed characterization of the major sources of uncertainty in 
computational simulation outcomes. As was done for the experimental process tree, the 
uncertainty in progressing from the RWS to the simplified conceptual model is not addressed. 
The uncertainty in our simulation outcome begins to accumulate as we move from the simplified 
conceptual model to the mathematical model, and continues to accumulate as we work towards 
the outcome(s).This summary does not reflect the extensive and ongoing research and 
developments in uncertainty quantification for computational simulations over the past several 
decades, but we are striving for an approach to UQ that a typical engineering undergraduate 
could understand, appreciate and potentially utilize. 

 

Figure 5. Sources of uncertainty in simulation outcomes 



The only mainstream textbook we have found that addresses quantification of uncertainty in 
numerical modeling and simulation is Experimentation, Validation, and Uncertainty Analysis for 
Engineers [26]. It is worth noting that the first edition of this text published in 1989 did not have 
“Validation” in its title. Validation was added to the third edition in 2009 and the coverage 
continues to evolve as can be seen in the fourth edition (2017). The text provides a development 
of uncertainty analysis for physical experiments that is in line with the GUM, and applies similar 
concepts to computational simulations. In addition to this text, we found the material in [27], 
[28] and [29] helpful in furthering our understanding of VV&UQ in computational simulations. 
We were unable to find a standard for computational simulations published by an authoritative 
source comparable to those that exist for physical simulations. 
 
As in the case of physical experimentation, we propose grouping sources of uncertainty into 
three components: umodel, uinput and upost-process. Again, the general intent of the categorization is to 
promote contemplation and discussion of sources of uncertainty and to facilitate an equation for 
the quantification of the uncertainty in a computational outcome as being the sum of the 
uncertainties from all sources, as in Equation 7. 
 

𝑢𝑢𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑢𝑢𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝                                           (7) 

While in some respects umodel is akin to the term representing modeling uncertainty in a physical 
experiment, umodel in computational simulations also includes uncertainty in the creation and 
coding of algorithms representing the mathematical model, and uncertainty in the results of the 
calculations due to discretization error in the numerical solution of the equations. Uncertainty 
associated with the coding and calculations is typically addressed as part of the verification 
process. We see the UQ involved in the verification process as being beyond what can be 
accomplished by typical undergraduate engineering students and are looking for reasonable 
estimates that could be adopted and integrated into the uncertainty quantification process.  

The uncertainty associated with input in Eqn. 7 is similar to umeasure in Eqn. 3. In our case study, 
the beam span, cross-sectional diameter, and load represent input to the computational model, 
and carry associated uncertainty into the outcome. Additionally, material properties will have to 
be input, and will have uncertainty associated with them. In some simulations, input values may 
also be needed to characterize initial and boundary conditions, and their uncertainty would have 
to be accounted for. 

As in the case of physical experiments, the results from a computational simulation may require 
post-processing to get the desired outcome(s). In this study for instance, the algorithms may not 
include the displacement specifically at the bottom of the cross section at midspan, but this value 
could be interpolated using displacements at nearby nodes. In this and similar cases, uncertainty 
in post-processing could be addressed as part of the code verification process and not contribute 
to the uncertainty in the outcome as a separate term. On the other hand, given the variety of 
output that most general purpose codes offer, there is often some significant uncertainty 
regarding whether or not students will correctly utilize the output when drawing conclusions. 

With no standard to follow, we will quantify uinput using the analytical expression that was used 
in developing the DRE for the physical experiment, but in this case, written in terms of the 
unknown displacement at mid-span as shown in Equation 8. All of the terms on the right side of 



the equation represent input to the computational model, with the outcome of interest being the 
beam’s centerline displacement. All of the assumptions mentioned previously in regard to Eqn. 2 
apply. 

𝛿𝛿 = 4𝑃𝑃𝐿𝐿3

3𝐷𝐷4𝜋𝜋𝜋𝜋
                                                               (8) 

Choosing displacement as the outcome seems reasonable given that nodal displacement is a 
common basic output in finite element analysis. We again assume a Type B evaluation, and use 
our judgment to assign uncertainties to the parameters in Eqn. 8. In this case, we don’t know, and 
can’t directly measure E. Published data does not exist for a PE-PP blend so we used the rule of 
mixtures to estimate the elastic modulus.  It turns out there is a large range of published values 
for the elastic modulus for polypropylene (PP). The assigned uncertainties are presented in Table 
2. 

Table 2: Input parameters and their associated uncertainties 

Input variable Value Uncertainty 
P = load = x1 500.0 lbf ± 2.5 lbf = 𝑤𝑤𝑥𝑥1  

L = beam span = x2 84.0 in ± 0.5 in = 𝑤𝑤𝑥𝑥2  

D = beam diameter = x3 4.00 in ± 0.25 in = 𝑤𝑤𝑥𝑥3  

E = elastic modulus = x4 186000 psi ± 24000 psi = 𝑤𝑤𝑥𝑥4 
 
The result from Eqn. 8, and the uncertainty in that result determined with Eqn. 4, are 2.64 ± 0.74 
in, representing a 28% uncertainty. While this large uncertainty was expected, the result is 
nonetheless informative. The level of uncertainty in a hand calculation for beam displacement 
often goes unaddressed in a mechanics of materials or structural analysis course.  

In Figures 1 and 4 in the ASME V&V-10-2006 guide [7], parallel mathematical and physical 
modeling processes are laid out, starting with the same “reality of interest” and progress towards 
the stage at which corresponding experimental and computational results can be compared. 
Figure 4 in V&V-10 [7, p.6] was in fact the inspiration for our Figures 3, 4 and 5. Our physical 
experiment wasn’t intended to be a validation experiment, and given the lack of agreement 
between the displacement and strain data in the physical experiment, it would not qualify as a 
validation experiment. Instead our simulation work is currently more along the lines of a forensic 
investigation: What is the uncertainty associated with using simple beam theory to interpret our 
experimental results? 

Our initial simulation efforts involved a model using Bernoulli-Euler beam elements in a code 
that was primarily built for simulating framed structures [30]. The results of these simulations 
verified that we were accurately using our DRE, and also gave some indication that our end 
supports were providing little restraint to rotation. We were also able to show that in addition to 
the material nonlinearity indicated by our test data, there could be some significant geometric 
nonlinear behavior in the beams if the end supports were constraining axial movement, which 
could well be the case if the beams were significantly distorting around the support cradles.  



A 3-dimensional (3D) high fidelity model was subsequently created, and some preliminary 
simulations have been run using a general purpose code [31]. The model incorporated the 
experimentally found value of the elastic modulus (E), an assumed value of Poisson’s ratio (ν) as 
well as the loading saddle and support cradles with assumed material properties for each. The 
computational model is shown in Figure 6. Tetrahedral elements are employed in the 
simulations, and a mesh sensitivity study will be conducted, but we will first need to decide on 
the appropriate parameters for the contact interfaces included in the model between the support 
cradles and the beam, and the loading saddle and the beam. 

 

Figure 6. High fidelity FEA model 

We anticipate being able to estimate the uncertainty in the parameters for the contact interfaces 
through a sensitivity study. We will add that estimate to our current estimate for uinput. In our 
judgment, upost-process for this study can be deemed relatively insignificant. Developing an 
estimate for umodel is a work in progress. 

As previously noted, there is relatively little guidance in the literature regarding UQ for 
simulations that represent interpolations between, or extrapolations beyond validation points. 
This is an area of active and needed research [26], [27], [28], [29]. An especially interesting 
discussion of this issue, with a proposed approach to UQ when validation is not possible or 
practical, is presented in [32] where the authors address a broad spectrum of modeling activities 
where uncertainty quantification is needed to inform decision making. 

 



Uncertainty Estimation for Analytical Models 

Analytical models are likely more often encountered by undergraduate engineering students than 
physical models or computational models. An apt description of the FERM [21] is a collection of 
analytical models and associated input data. We used an analytical model as a data reduction 
equation in our UQ calculation for our physical modeling, and strongly suspect that a majority of 
physical experiments conducted in undergraduate engineering courses also use such equations 
presented in the FERM to derive quantities from experimental data to support student learning 
objectives. 

Uncertainty quantification in association with the use of analytical models is easily accomplished 
with the K-M equation. Exercising the K-M equation in undergraduate engineering courses could 
obviously serve to improve students’ designs of physical experiments, but could also serve to get 
students to think more critically when doing any calculation with an analytical model for the 
purpose of design. 

Conclusions:  

Our research indicates that relatively few engineering undergraduates are being exposed to 
uncertainty quantification beyond using standard rules for appropriate numbers of significant 
figures in a reported result. While students are quite often required to address “does the answer 
make sense” as a final step in a calculation, they are not generally required to include UQ in this 
discussion. Reporting a result for E for a polymer blend as being 186 ksi sounds authoritative, 
but when reported with its associated uncertainty as 186 ± 50 ksi, subsequent design decisions 
would likely be different. 
 
Very few texts that we examined cover UQ, and this may be part of the reason for the lack of 
coverage of UQ in many engineering courses. Regardless, we suspect that some sophomores, and 
most juniors and seniors have the background to quickly pick up and use the versions of the K-M 
equations presented in the FERM [21]. Given the single-sample nature of the application of 
many physical and analytical models in undergraduate studies, the K-M equation in the 
“Instrumentation, Measurement, and Control” section of [21] may be the more useful option. 
 
The equations we have proposed for use in UQ in physical (Eqn. 3) and computational (Eqn. 7) 
simulations are a work-in-progress. We believe that maximizing commonality in UQ in physical 
and computational situations will enhance student learning. More thought, and input from other 
educators, is needed. Of special interest is promoting use of the terms verification and validation 
in physical experimentation studies that will prepare students to understand those terms in the 
computational realm.  
 
UQ can and should play a significant role in the development and conduct of physical 
experiments by students, but can also be used to help students develop their engineering 
judgment. When analyzing and interpreting experimental data, and drawing conclusions from 
that data, students should be reflecting on the level of uncertainty inherent in the data. Similarly, 
when analyzing and interpreting output from computational simulations, students should be 
cognizant of the inherent uncertainty in computer-generated results, and their “informed 
judgments” [12, p. 5] should be conditioned by that uncertainty. 



 
Physical experiments and computational simulations are being embedded more and more into the 
undergraduate engineering curriculum. We see UQ as an urgent need for the engineering 
community and particularly engineering students. Our hope is to design curriculum 
enhancements that piggyback on already existing content in the form of short exercises that 
complement homework and lab activities by bringing in the layer of uncertainty quantification. 
We see use of UQ in conjunction with the use of analytical models throughout engineering 
curriculum as a convenient way to build facility with UQ. 
 
In addition to students who are more effective users of engineering models and simulations, we 
expect engineers trained in uncertainty quantification will be more critical consumers of results 
from modeling in other fields. They will routinely approach simulation results with the question 
“Are you sure about that?” 
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