
Paper ID #32801

Common Logic Errors for Programming Learners: A Three-decade Litera-
ture
Survey

Nabeel Alzahrani, University of California, Riverside

Nabeel Alzahrani is a Computer Science Ph.D. student in the Department of Computer Science and En-
gineering at the University of California, Riverside. Nabeel’s research interests include causes of student
struggle, and debugging methodologies, in introductory computer programming courses.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California, Riverside.
His research interests include embedded systems design, and engineering education. He is a co-founder
of zyBooks.com.

c©American Society for Engineering Education, 2021

Common Logic Errors for Programming Learners: A Three-
Decade Literature Survey

Nabeel Alzahrani, Frank Vahid*

Computer Science and Engineering

 University of California, Riverside

{nalza001, vahid}@ucr.edu

*Also with zyBooks

Abstract
We surveyed common logic errors made by students learning programming in introductory (CS1)
programming classes, as reported in 47 publications from 1985 to 2018. A logic error causes incorrect
program execution, in contrast to a syntax error, which prevents execution. Logic errors tend to be
harder to detect and fix and are more likely to cause students to struggle. The publications described 166
common logic errors, which we classified into 11 error categories: input (2 errors), output (1 error),
variable (7 errors), computation (21 errors), condition (18 errors), branch (14 errors), loop (27 errors),
array (5 errors), function (24 errors), conceptual (43 errors), and miscellaneous (4 errors). Among those
errors, we highlighted 43 that seemed to be the most common and/or troublesome. As interest in
computer science education continues to grow, with college majors tripling in the past decade, this
survey can help instructors, authors, and tool developers focus on helping learners detect or avoid these
common errors in CS1.

Introduction
Interest in computer science continues to grow, with college computer science majors tripling between
2006 and 2015 [1, 2]. However, failure rates in introductory programming courses ("CS1") have been at
a rather high 25-30% for several decades [3].

One contributor to poor CS1 performance is students struggling with programming errors. Thus,
numerous researchers over the past decades have published errors made by students learning
programming, hoping to aid instructors, authors, and tool developers in helping students detect or avoid
such errors. Publications report different subsets of errors, due to variations in the language used, in the
assignments students worked on, in the tools and instructional materials used, and in the help provided
to students. We thus reviewed the publications to develop a more comprehensive summary of the
common errors made by novice programmers. We focus on logic errors rather than syntax errors.

A syntax error is a program error that violates language rules and thus prevents execution. For compiled
languages, a syntax error results in a compiler message, typically pointing to the erroneous program line.
An example message is "Line 23: Missing semicolon". Syntax errors may annoy students and cause
some struggle, but our experience is that logic errors cause more struggle. Syntax errors are covered by
other works, such as Hristova [4] or Denny [5]. The latter lists top syntax errors as: cannot resolve
identifier, type mismatch, and missing semicolon.

In contrast, a logic error appears in a syntactically-correct program that compiles and runs, but
incorrectly attempts to solve the assignment given to the student programmer. An example is a loop that
should iterate through an array but incorrectly stops one short of the array's last element. In our teaching
experience, logic errors can be harder to detect and find than (most) syntax errors, and are a more
common cause of substantial student struggle.

During our review, we found two publications, [7, 8], to be of particular interest due to not just reporting
common errors, but also indicating the time required by students to find and fix the errors. Time is
important, because some common logic errors are straightforward to find and fix, such as dividing by 0,
as in sumItems / numItems where numItems is 0. That error may result in a runtime message that guides
students directly to the offending program line and helps students immediately realize the problem, and
whose fix may be a relatively straightforward check for 0 before dividing. On the other hand, some
common logic errors are much harder to find and fix, such as performing integer division when
intending for floating-point division, as in f = (9/5)*c + 32 (in Java, C, C++, etc.). That error may cause
incorrect output, but the student doesn't know that the 9/5 (should be 9.0/5.0) or even that code line is
the problem, and thus may try many different things, spending a lot of time and leading to struggle.

Altadmri [7] automatically analyzed 37 million compilations from 250,000 students learning Java using
BlueJ to find runtime errors, considering frequency and time-to-fix, yielding a list of time-consuming
errors like confusing &&/|| and &/|, using == instead of .equals for strings, ignoring a method's return
value, putting a semicolon after if, and dozens more. Median time-to-fix for the above was 17 min to 7
min. Ettles [8] analyzed 51,000 submissions from 809 students solving 10 problems in C using
CodeWrite, yielding time-consuming errors of: accessing an invalid array element, off-by-one errors,
boundary errors, and more, with median times ranging from 20 min to 8 min. As will be seen, we give
special weight to the time-consuming errors found by these two publications.

Our goal is to assist instructors, authors, and tool developers who wish to adapt their teaching
techniques, learning content, languages, tools, and automated help systems to assist students in detecting
or avoiding common logic errors.

Literature review method
To find publications relating to common errors, we carried out two tasks. (1) We searched on Google
Scholar from 1985 to 2018 for a reasonable combination of these relevant (i.e., related to common
novice-programmer logic errors) keywords: program, programmer, CS1, error, mistake, bug, fix,
problem, novice, difficult, misconception, and manually examined titles of the search results to find
relevant publications. (2) We manually examined titles of every paper published from 2008 to 2018 in
the following 8 conferences and journals, which include a focus on CS education topics: the American
Society for Engineering Education annual Conference (ASEE), the ASEE Computers in Education
Journal (CoED), the ACM Global Computing Education Conference (CompEd), the Frontiers in
Education Conference (FIE), the International Computing Education Research Conference (ICER), the
Innovation and Technology in Computer Science Education Conference (ITiCSE), the Special Interest
Group on Computer Science Education Conference (SIGCSE), and the ACM Transactions on
Computing Education journal (TOCE). For both tasks, if a title seemed relevant (i.e., related to common
novice-programmer logic errors), we manually examined the publication to see if the publication
reported on common novice-programmer logic errors, and ultimately found 47 relevant publications.

For these 47 publications, we logged the errors described in each publication. The result was a raw list
of 400 errors, but after processing these errors (remove duplication, remove non-CS1 related such as
OOP, pointers, etc., and not counting generic errors such as "branching errors", "selection errors", etc.),
we reduced the list to 166 errors. We classified the remaining specific 166 errors into 11 error categories
based on commonality: input (2 errors), output (1 error), variable (7 errors), computation (21 errors),
condition (18 errors), branching (14 errors), loop (27 errors), array (5 errors), function (24 errors),
conceptual (43 errors), and Miscellaneous (4 errors), as shown in Table 1. Of the 166, we highlighted (in
bold) 43 that appear in more than one paper. Of those 43, we further highlighted (with an asterisk) 11
that were reported to be time-consuming by either Altadmri et al. [7] or Ettles et al. [8]. Section
“Common Errors” shows the errors within each category in a tabular format in Table 2 to Table 12.

For the categorization, we did not use any algorithm or formal process to develop the categories. We
used our own judgments based on our own experiences to group together related errors based on
commonality in 11 categories. The classification was done by the first author and was reviewed as
needed by the second author. For verification and correctness, the first author redid the categorization
multiple times. Different categorizations are possible of course; no one categorization is exclusively
"correct".

Our study focuses on logic errors typically found in CS1 courses; therefore, we exclude errors
commonly found in later courses (or late in some CS1 courses) like object oriented programming
(classes, objects, interfaces, inheritance, overriding, constructors, accessors/modifiers, etc.), recursion,
pointers/references, exception handling, data structures beyond arrays and strings such as linked lists,
trees, and graphs, GUI and event-driven programming, etc.

No. Category # errors Most common errors

1 Input 2 Erroneous prompting

2 Output 1 Order of output statements

3 Variable 7 Uninitialized variables

4 Computation 21 Integer division

5 Condition 18 && and || operators

6 Branching 14 Multiple If vs If-else

7 Loop 27 Loop counter

8 Array/String 5 Indexing

9 Function 24 Return value

10 Conceptual 43 Lack of plan

11 Miscellaneous 4 Typos

Total no. of errors 166
Table 1: 11 error categories for the 166 errors in the 47 publications from 1985 to 2018 with an example

of the most common error in each category.

Obviously, we cannot provide explanations and examples for all 166 logic errors. Instead, we
highlighted in bold errors reported in multiple publications, and highlighted with an asterisk errors that
[7, 8] found to be the most time-consuming, yielding 43 highlighted errors. References are included for
all 211 errors, however, so that a reader can find details in previous publications of any error of interest.

Common errors
Table 1 lists the 11 error categories we defined for the 166 errors, with a column showing the number of
errors in each category and another column for the most common error in each category. The sections
below provide further details on those 166 errors. For each error category, we use a tabular format
(Table 2 to Table 12) to decompose generic and specific errors that we defined, each with a bulleted list
of errors. Generic and specific errors include citations (in the form of the first author last name and the
last two digits of the year of publication) of several publications (but not necessarily all) that discussed
the item. Note that some publications only discussed errors generically (like "Input errors") while others
described specific errors (like "Waiting for input without prompting"). For each table, we highlighted
common errors in bold and with an asterisk (as we discussed at the end of previous section “Literature
review method”).

Generic errors Specific errors

• Erroneous input
[Grandell05]

• Erroneous prompting [Efopoulos05, Simon07]
• Putting input statements in the wrong order
[Alzahrani18]

Table 2: The 2 input specific errors.

Generic errors Specific errors

• Output fragment
[Spohrer85]

• Putting output statements in the wrong order
[Alzahrani18, Lee99, Spohrer85]

Table 3: The 1 output specific error.

Generic errors Specific errors

• Variables
[Caceffo16, Hanks08,
Qian17, Robins06]

• Incorrect initialization [Garner05, Hall12, Fitzgerald08,
Murphy08]
• Incorrect or redundant variables [Grandell05]

• Subscripting variables incorrectly [Hall12]
• Uninitialized variables* [Ahmadzadeh05, Ettles18 (2min, 13%),
Garner05, Raana15, Robins06, Truong04]
• Unset flags [Hall12]

• Use of variables for input and output operations [Qian17]
• Using the wrong variable type [Hall12]

Table 4: The 7 variable specific errors.

Generic errors Specific errors

• Array / string errors [Bryce10, Efopoulos05,
Garner05, Hanks08, Robins06, Wiegand16]
• Array initialization [Garner05, Hanks09,
Robins06]

• String functions [Garner05, Robins06]
Indexing / iterating arrays [Alzahrani18,
Bryce10, Garner05, Kurvinen16, Ettles18 (20
min. 33%), Robins06]

• Array declared with incomplete initialization
[Garner05, Wiegand16, Robins06]

• Buffer overflow [Alqadi17, Vipindeep05]
• Indexing into empty [Cherenkova14]
• Referencing data out of bounds * [Alqadi17,
Efopoulos05, Ettles18, Hall12, Izu16, Mow02,
Simon07, Teorey01]
• String comparison [Hanks09]

Table 9: The 5 array specific errors.

Generic errors Specific errors

• Computational
problems
[Garner05, Hall12
(8%)]
• Expression
[Souza17,
Robins06]
• Possible loss of
precision [Mow02]
• Referencing data
[Hall12]

• Accumulate boolean
[Rosbach13]
• Arithmetic
[Garner05, Wiegand16,
Robins06]
• Arithmetic errors
[Murphy08,
Rosbach13]
• Assignment
[Caceffo16,
Ebrahimi94, Garner05,
Raana15, Robins06,
Sirkia12, Souza17,
Wiegand16]

• Casting* [Ettles18,
Garner05,
Hristova03, Simon07,
Robins06]
• Chained relational
[Wiegand16]

• Incorrect operands or
operators [Hall12]
• Integer division*
[Alqadi17,
Cherenkova14,
Ettles18 (6 min. 72%),
Fitzgerald08,
Wiegand16]
• Inverted assignment
[Sirkia12]
• Logical / boolean
[Alzahrani18,
Caceffo16,
Ebrahimi94, Garner05,
Wiegand16, Robins06]
• Incorrect calculations
to support logical
algorithm correctness
[Fitzgerald08]
• Missing computations
[Hall12]

• Pre and post fix
assignments [Wiegand16]
• Random range
[Alzahrani18]
• Relational [Wiegand16]
• Remainder operator with
real operands [Wiegand16]
• Rounding or truncation
mistakes [Hall12]
• Type mismatch
[Ahmadzadeh05, Garner05,
Pritchard15, Seo14 (25%),
Robins06]

• Misunderstanding of
operator precedence
[Spohrer86, Teorey01,
Robins06]
• Parenthesis used
incorrectly [Hall12]
• Wrong formula
[Simon07, Spohrer85]

Table 5: The 21 computation specific errors.

Generic errors Specific errors

• Boundary case
condition [Spohrer86,
Robins10, Rosbach13,
Spohrer85]
• Conditionals
[Cherenkova14,
Garner05, Qian17,
Robins06]
• Relational operator
[Spohrer85]

• = vs == [Alqadi17,
Ebrahimi94,
Hanks08, Kiran15,
Raana15, Simon07,
Sirkia12]
• Accidentally
including sentinel
values in a
computation
[Simon07]
• Checking the wrong
variable [Hall12]
• Comparison
[Kurvinen16]
• Condition on rule
wrong [Winikoff14]
• Condition variable
has not been
updated [Alqadi17,
Rosbach13]

• Missing && and ||
operator * [Alqadi17,
Altadmri15, Alzahrani18,
Fitzgerald08, Simon07,
Spohrer86]
• Missing condition tests
[Hall12]
• Not checked border
value [Cherenkova14]
• Numerical values are
used as boolean operands
[Wiegand16]
• Perform unnecessary
checking with Boolean
expression [Truong04]
• Reversed comparison
operator [Cherenkova14]

• Truth tables
[Caceffo16, Garner05,
Robins06]
• Unexpected cases
problem. Boundary
cases may not be
considered [Robins10]
• Using == instead of
equals() to compare
strings * [Altadmri15
(17 min.), Brown14,
Murphy08, Simon07]
• Wrong condition
[Rosbach13]
• Wrong False
[Sirkia12]
• Zero is excluded
[Spohrer85]

Table 6: The 18 condition specific errors.

Generic errors Specific errors

• Typo
[Garner05]

• Duplicate tail digit problems involve dropping the final digit from a constant
with duplicated tail digits [Spohrer85, Spohrer86]
• Empty statement blocks introduced with a misplaced semicolon [Simon07,
Raana15]
• Trivial typos - mistakes of typing (e.g. - for +) not caught by the compiler
[Winikoff14]

• Wrong constant [Spohrer85]

Table 12: The 4 miscellaneous specific errors.

Generic errors Specific errors

• If statements [Ebrahimi94,
Garner05, Robins06]

• Jump [Souza17]
• Selection [Garner05,
Souza17, Wiegand16,
Robins06]
• Switch statements
[Alqadi17, Bryce10,
Garner05, Wiegand16,
Souza17, Robins06]

• Break [Souza17]
• Continue [Souza17]

• Dangling else [Teorey01]
• Failing to jump upon selection
[Sirkia12]
• Forgetting cases or steps
[Hall12]
• Identifying the output of an
“if-else” statement with
condition and nested “if”
statements [Wiegand16]
• Missing “break” keywords
in “switch” statement
[Alqadi17, Raana15, Truong04,
Wiegand16]

• Wrong branch [Sirkia12]
• Missing implication of if/else
placing code outside the begin/end
block [Spohrer85]
• Omitted “default” case in a
“switch” statement [Bryce10,
Truong04]
• Return [Souza17]
• Swapping conditional block bodies
in an “if” statements [Fitzgerald08]
• Too many conditional statements
[Truong04]
• Using multiple “if” flow
structure instead of “if-else”*
[Alzahrani18, Ettle18 (5 min. 11%),
Souza17, Rosbach13]

Table 7: The 14 branching specific errors.

Generic errors Specific errors

• Loop contents [Garner05,
Lee99, Robins06]
• Loop errors [Alzahrani18,
Bryce10, Caceffo16,
Cherenkova14, Ebrahimi94,
Garner05, Hanks08, Izu16,
Qian17, Robins06,
Rosbach13, Simon07,
Souza17, Wiegand16]
• Loop with conditionals
[Cherenkova14, Garner05]

• Classic logic errors
in searches
[Simon07]
• Code inside a loop
that does not belong
there [Teorey01]
• Code that appears
and is executed after
the loop exits
[Wiegand16]
• Conditional into
loop control variable
[Sirkia12]
• Empty loop
[Izu16]
• Erroneous
incrementing of a
loop counter
variable (i.e., outside
the loop)
[Efopoulos05]
• For loop is not
inclusive* [Ettles18
(2 min. 13%)]
• How and when to
terminate loops
[Ebrahimi94]
• Improper /
malformed loop
[Caceffo16, Hall12,
Lee99, Murphy08,

Teorey01,
Wiegand16]
• Incorrect
(including none)
initialization of
loop control
variable [Lee99]
• Incorrect update
of the control
variable [Lee99]
• Indices in loops
[Kurvinen16]
• Infinite loop
[Bryce10, Izu16]
•Initialization of
loop control
variable is
incorrectly placed
[Lee99]
• Loop containing
“continue”
statement
[Wiegand16]
• Loop has no
body, extra
semicolon
[Alqadi17]
• Loop headers
[Alzahrani18,
Garner05,
Robins06]
• Loop whose
condition is

an assignment statement
or a conjunctive logical
expression [Wiegand16
• Missing input statement
inside the loop, resulting
in only one set of data
read [Lee99]
• Nested loop
initialization, expression
[Alzahrani18]
• Off by 1 * [Alqadi17,
Bryce10, Cherenkova14,
Ettles18 (8 min. 19%),
Fitzgerald08, Izu16,
Spohrer85, Teorey01,
Vipindeep05]
• Stop incrementing sum
[Cherenkova14]
• Too many loop and
conditional statements
[Truong04]
• Unedited loop [Izu16]
• Unnecessary output
statement within the loop
[Lee99]
• Wrong semantics of
nested loops [Izu16]

Table 8: The 27 loop specific errors.

Generic errors Specific errors

• Definition, data
flow and header
mechanics
[Garner05,
Hanks08, Robins06]
• Function errors
[Qian17,
Wiegand16]

• Always return -1*
[Ettles18 (17 min.
12.8%)]
• Call by reference vs
call by value semantics
[Caceffo16, Wiegand16]
• Data type of the value
in the return statement is
incompatible with the
return type of the
function [Wiegand16]
• Flow reaches end of
non-void method
[Altadmri15, Hristova03]
• Function name and
scope [Caceffo16]
• Incompatible types
between method return
and type of variable that
the value is assigned to
[Altadmri15]

• Incorrect /
redundant
variables or
subroutines
[Grandell05]
• Initialization of
formal parameters
[Caceffo16]
• Inverse nesting
[Sirkia12]
• Mismatch return
type with its
invocation
[Hristova03]
• Misplacing main
method [Simon07]
• Misplacing return
value [Sirkia12]
• Missing method
call [Rosbach13]
• Multiplying with
a function call
[Sirkia12]
• Parameter values
return value
[Qian17]

• Parameters as local
variables [Caceffo16]
• Re-calling a function
[Sirkia12]
• Return ignored*
[Altadmri15 (15 min.),
Brown14, Hristova03,
Simon07, Sirkia12]
• Return statement is missing
in the definition of a non-
void function [Wiegand16]
• Returning 0 instead of -1*
[Ettles18 (5 min. 22%)]
• Unnecessary / not enough
/ too large method [Hall12,
Truong04]
• Wrong arguments (out of
order / type mismatches)
[Ahmadzadeh05, Altadmri15,
Caceffo16, Hristova03,
Simon07]

Table 10: The 24 function specific errors.

Generic errors Specific errors

• Conceptual errors
[Hall12 (58%)]
• Misunderstanding /
misinterpretation
[Spohrer86, Robins10]
• Problem solving
[Bryce10, Pillay06]

• Action definition
wrong [Winikoff14]
• Action(s) of rule
wrong (but legal)
[Winikoff14]
• Additional (wrong)
rule [Winikoff14]
• Cognitive load
problem [Spohrer86]
• Composition problem
[Spohrer86]
• Duplicating logic
[Hall12]
• Expectation and
interpretation
problem [Bryce10,
Spohrer85, Spohrer86]
• Fault in domain
knowledge
[Winikoff14]
• Fault in initial beliefs
/ goals [Winikoff14]
• Improper location of
the assignment
expression
[Ebrahimi94]
• Incorrect / missing
algorithm [Grandell05]
• Incorrect grouping
[Rosbach13]
• Incorrect
identification of the
control structure
needed [Pillay06]

• Incorrect transfer of
knowledge [Pillay06]
• Inefficient problem
solving approach
[Pillay06]
• Interpretation problem
[Robins10]
• Lack of
conceptualization of
the execution of the
problem [Kurvinen16,
Qian17, Pillay06]
• Lack of knowledge or
understanding of the
programming language
[Pillay06]
• Lack of understanding
of control structure
[Pillay06]
• Lack of understanding
of the application
domain [Pillay06]
• Malformed right place
(incorrect, but in the
right place) [Cunniff86]
• Misplaced (necessary
but in wrong place)
[Cunniff86]
• Missing (required but
not omitted)
[Cunniff86]
• Missing action in a
rule [Winikoff14]
• Missing rule
[Winikokk14]

• Mixed up of constructs
(if and while)
[Grandell05]
• Natural-language
problem [Robins10]
• Not supported
[Spohrer86]
• Not using a compound
statement when one is
required [Teorey01]
• Optimization
problem [Spohrer86,
Robins10]
• Plan dependency
problems [Spohrer85,
Spohrer86]
• Previous experience
[Spohrer86, Robins10]
• Related knowledge
interference
[Spohrer86]
• Specialization problem
[Robins10]
• Spurious (not needed)
[Cunniff86]
• Summarisation
problem [Robins10,
Spohrer86]
• Swap two variables
without using a helper
variable [Kurvinen16]
• Unnecessarily
complicated
[Rosbach13]

Table 11: The 40 conceptual specific errors.

Discussion
Table 1 summarizes the most common logical errors in each category. Instructors, authors, and tool
developers could adapt their teaching techniques, learning content, languages, tools, and automated help
systems to assist students in detecting or avoiding these common logic errors. For example, instructors
could teach students to always initialize variables before students use them. Similarly, tool developers
may adapt their programming tools to give warnings if variables are declared without proper
initializations.

The data of the survey (in Table 2 to Table 12) helped us to identify the most difficult errors that could
lead to student struggle in each of the 11 categories. The data shows that errors are more related to
advanced general programming concepts such as algorithms, loops, functions, etc. The data also did not
show that more errors are related to the syntax and semantics of a programming language (specific-
language programming errors). Therefore, instructors might wish to focus on generic programming
errors over specific programming errors when providing interventions to help students.

This survey has several limitations. One of the main limitations we faced while conducting this survey is
the common lack of the study setup and research methodology in the surveyed publications. For
example, many publications did not mention the year when the data were collected, the course setting
(e.g., number of instructors, number of TAs, and type of learning material, type of university, CS1 or
CS2, etc.), the activity setting (e.g., programming language, number/nature of activities, at-home or in-
class, with or without instructor/TA help, etc.), the population setting (e.g., number of students, age,
gender, ethnicity, etc.), and/or the outcome measured (e.g., struggle-causing errors using time-to-fix
average, etc.). The lack of such data made it difficult to compare between the publications. Also, such a
lack of details made it difficult to assess the confidence in the publications’ results such as how the
authors decide something is an error and when it counts as fixed.

Another limitation is the definition of CS1. We defined, early in section “Literature review method”, the
CS1 topics that we covered in this study, but some researchers might not agree with our definition of
CS1, and thus might not agree with the coverage of the errors in this study based on that definition. For
example, if there is a publication about OOP challenges in CS1, we just picked up the non-OOP related
errors from that publication. Also, our error categorization did not use a systematic approach based on
clearly defined guidelines, but was subjective and based on the authors’ own judgments. Some
researchers might not agree with such a classification. Also, the errors mentioned in this study might not
apply to all programming languages and might be language-dependent or/and language-specific.
Furthermore, the time-to-fix parameter, which we used in this study to highlight errors that might cause
struggle, might not be accurate due to multiple factors such as students stepping out rather than working
on solving the bug.

Moreover, we did a Google Scholar search for publication in the period from 1985 to 2018 (3 decades)
since the search was easy to do using Google search. However, the manual database search covered only

2008 to 2018 because it was difficult to do the search manually in 8 different databases for the last 3
decades. Another limitation is the keywords that we used in the search for related publications as
explained in Section “Literature review method”. We used a limited number of 11 keywords that might
not be inclusive for all related publications in the last 3 decades. Also, some researchers might disagree
with the keywords that we used. Lastly, we manually searched only 8 databases for related publications,
so omissions of some other relevant databases might be a limitation and some researchers might
disagree with having such limited database search. Even with the above limitations, we believe this
survey is still helpful and more efficient than reading 47 publications.

Conclusion
We highlighted various errors that were indeed problematic and thus instructors, developers, and authors
can focus on reducing those as well as the others too. As the data showed, the literature focused mainly
on frequent errors but not on errors that caused struggle. For example, out of 47 literature materials, only
2 (4%) papers focused on errors that are difficult to fix. A frequent error is not necessarily problematic if
easily detected and fixed by students, and in fact some would argue that such detecting/fixing is an
important part of the learning process. In contrast, an error that causes struggle may lead to frustration
and de-motivation without justifiable learning benefit. Detecting struggle was harder in the past due to a
lack of online logging of student activity, but is more possible today with newer tools being used in CS1
classes. Thus, we encourage future work that increases focus on errors that cause struggle, and remedies
to reduce such struggle.

Acknowledgements

This work was supported in part by the National Science Foundation (grant number 1563652).

References

[1] Stuart Zweben and Betsy Bizot. 2018. “2017 CRA Taulbee survey,” Computing Research News 30,
5 (2018), 1–47.

[2] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall, Susanne Hambrusch,
Ellen Walker, and Stuart Zweben. 2017. “Generation CS: the growth of computer science,” ACM
Inroads 8, 2 (2017), 44–50.

[3] Christopher Watson and Frederick WB Li. 2014. “Failure rates in introductory programming
revisited,” In Proceedings of the 2014 conference on Innovation & technology in computer science
education, 39–44.

[4] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. 2003. “Identifying and
correcting Java programming errors for introductory computer science students,” ACM SIGCSE
Bulletin 35, 1 (2003), 153–156.

[5] Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2012. “All syntax errors are not equal” In
Proceedings of the 17th ACM annual conference on Innovation and technology in computer science
education, 75–80.

[6] Andrew J. Ko and Brad A. Myers. 2005. “A framework and methodology for studying the causes of
software errors in programming systems,” Journal of Visual Languages & Computing 16, 1–2
(2005), 41–84.

[7] Amjad Altadmri and Neil CC Brown. 2015. “37 million compilations: Investigating novice
programming mistakes in large-scale student data,” In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, 522–527.

[8] Andrew Ettles, Andrew Luxton-Reilly, and Paul Denny. 2018. “Common logic errors made by
novice programmers,” In Proceedings of the 20th Australasian Computing Education Conference,
83–89.

[9] Linda Grandell, Mia Peltomäki, and Tapio Salakoski. 2005. “High school programming—a beyond-
syntax analysis of novice programmers’ difficulties,” In Proceedings of the Koli Calling 2005
Conference on Computer Science Education, 17–24.

[10] Greg C. Lee and Jackie C. Wu. 1999. “Debug It: A debugging practicing system,” Computers &
Education 32, 2 (1999), 165–179.

[11] Vassilios Efopoulos, Vassilios Dagdilelis, Georgios Evangelidis, and Maya Satratzemi. 2005.
“WIPE: a programming environment for novices,” In Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education, 113–117.

[12] Nabeel Alzahrani, Frank Vahid, A. Edgcomb, R. Lysecky, and Susan Lysecky. 2018. “An
Analysis of Common Errors Leading to Excessive Student Struggle on Homework Problems in an
Introductory Programming Course,” In Proceedings of ASEE Annual Conference.

[13] Beth Simon, Sue Fitzgerald, Renée McCauley, Susan Haller, John Hamer, Brian Hanks, Michael
T. Helmick, Jan Erik Moström, Judy Sheard, and Lynda Thomas. 2007. “Debugging assistance for
novices: a video repository,” ACM SIGCSE Bulletin 39, 4 (2007), 137–151.

[14] Renée C. Bryce, Alison Cooley, Amy Hansen, and Nare Hayrapetyan. 2010. “A one year
empirical study of student programming bugs,” In 2010 IEEE Frontiers in Education Conference
(FIE), IEEE, F1G-1-F1G-7.

[15] Sandy Garner, Patricia Haden, and Anthony Robins. 2005. “My program is correct but it doesn’t
run: a preliminary investigation of novice programmers’ problems,” In Proceedings of the 7th
Australasian conference on Computing education-Volume 42, 173–180.

[16] J. C. Spohrer, E. Pope, M. Lipman, W. Sack, S. Freiman, D. Littman, W. L. Johnson, and E.
Soloway. 1985. “Bug Catalogue: II, III, IV,” Yale University, Department of Computer Science.

[17] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. 2016. “Developing a
computer science concept inventory for introductory programming,” In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education, 364–369.

[18] Brian Hanks. 2008. “Problems encountered by novice pair programmers,” Journal on
Educational Resources in Computing (JERIC) 7, 4 (2008), 1–13.

[19] Yizhou Qian and James Lehman. 2017. “Students’ misconceptions and other difficulties in
introductory programming: A literature review,” ACM Transactions on Computing Education
(TOCE) 18, 1 (2017), 1–24.

[20] Anthony Robins, Patricia Haden, and Sandy Garner. 2006. “Problem distributions in a CS1
course,” In Proceedings of the 8th Australasian Conference on Computing Education-Volume 52,
165–173.

[21] Morgan Hall, Keri Laughter, Jessica Brown, Chelynn Day, Christopher Thatcher, and Renee
Bryce. 2012. “An empirical study of programming bugs in CS1, CS2, and CS3 homework
submissions,” Journal of Computing Sciences in Colleges 28, 2 (2012), 87–94.

[22] Sue Fitzgerald, Gary Lewandowski, Renee McCauley, Laurie Murphy, Beth Simon, Lynda
Thomas, and Carol Zander. 2008. “Debugging: finding, fixing and flailing, a multi-institutional
study of novice debuggers,” Computer Science Education 18, 2 (2008), 93–116.

[23] Laurie Murphy, Gary Lewandowski, Renée McCauley, Beth Simon, Lynda Thomas, and Carol
Zander. 2008. “Debugging: the good, the bad, and the quirky--a qualitative analysis of novices’
strategies,” ACM SIGCSE Bulletin 40, 1 (2008), 163–167.

[24] Marzieh Ahmadzadeh, Dave Elliman, and Colin Higgins. 2005. “An analysis of patterns of
debugging among novice computer science students,” In Proceedings of the 10th annual SIGCSE
conference on Innovation and technology in computer science education, 84–88.

[25] A. Raana, M. A. Azam, M. A. Ghazanfar, A. Javed, Y. Amin, and U. Naeem. 2016. “C++ BUG
CUB: Logical Bug Detection for C++ Code,” Nucleus 53, 1 (2016), 56–63.

[26] Nghi Truong, Paul Roe, and Peter Bancroft. 2004. “Static analysis of students’ Java programs,”
In Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30, Citeseer,
317–325.

[27] V. Vipindeep and Pankaj Jalote. 2005. “List of common bugs and programming practices to
avoid them,” Electronic, March (2005).

[28] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, Edward Aftandilian, and Robert Bowdidge.
2014. “Programmers’ build errors: a case study (at google),” In Proceedings of the 36th International
Conference on Software Engineering, 724–734.

[29] Alexander Hoem Rosbach. 2013. “Novice difficulties with language constructs,” The University
of Bergen.

[30] Ioana Tuugalei Chan Mow. 2012. “Analyses of student programming errors in Java
programming courses,” Journal of Emerging Trends in Computing and Information Sciences 3, 5
(2012), 739–749.

[31] Basma S. Alqadi and Jonathan I. Maletic. 2017. “An empirical study of debugging patterns
among novices programmers,” In Proceedings of the 2017 ACM SIGCSE technical symposium on
computer science education, 15–20.

[32] Yuliya Cherenkova, Daniel Zingaro, and Andrew Petersen. 2014. “Identifying challenging CS1
concepts in a large problem dataset,” In Proceedings of the 45th ACM technical symposium on
Computer science education, 695–700.

[33] David Pritchard. 2015. “Frequency distribution of error messages,” In Proceedings of the 6th
Workshop on Evaluation and Usability of Programming Languages and Tools, 1–8.

[34] Toby J. Teorey and Ann R. Ford. 2001. “Practical DeBugging C++,” Prentice Hall Professional
Technical Reference.

[35] Draylson Micael de Souza, Michael Kölling, and Ellen Francine Barbosa. 2017. “Most common
fixes students use to improve the correctness of their programs,” In 2017 IEEE Frontiers in
Education Conference (FIE), IEEE, 1–9.

[36] R. Paul Wiegand, Anthony Bucci, Amruth N. Kumar, Jennifer L. Albert, and Alessio Gaspar.
2016. “A data-driven analysis of informatively hard concepts in introductory programming,” In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education, 370–375.

[37] Alireza Ebrahimi. 1994. “Novice programmer errors: Language constructs and plan
composition,” International Journal of Human-Computer Studies 41, 4 (1994), 457–480.

[38] Teemu Sirkiä and Juha Sorva. 2012. “Exploring programming misconceptions: an analysis of
student mistakes in visual program simulation exercises,” In Proceedings of the 12th Koli Calling
International Conference on Computing Education Research, 19–28.

[39] James C. Spohrer and Elliot Soloway. 1986. “Novice mistakes: Are the folk wisdoms correct?,”
Communications of the ACM 29, 7 (1986), 624–632.

[40] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. “Learning and teaching
programming: A review and discussion,” Computer science education 13, 2 (2003), 137–172.

[41] Einari Kurvinen, Niko Hellgren, Erkki Kaila, Mikko-Jussi Laakso, and Tapio Salakoski. 2016.
“Programming misconceptions in an introductory level programming course exam,” In Proceedings
of the 2016 ACM Conference on Innovation and Technology in Computer Science Education, 308–
313.

[42] Michael Winikoff. 2014. “Novice programmers’ faults & failures in GOAL programs,” In
Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems,
301–308.

[43] Eranki LN Kiran and Kannan M. Moudgalya. 2015. “Evaluation of programming competency
using student error patterns,” In 2015 International Conference on Learning and Teaching in
Computing and Engineering, IEEE, 34–41.

[44] Neil CC Brown and Amjad Altadmri. 2014. “Investigating novice programming mistakes:
Educator beliefs vs. student data,” In Proceedings of the tenth annual conference on International
computing education research, 43–50.

[45] Cruz Izu, Amali Weerasinghe, and Cheryl Pope. 2016. “A study of code design skills in novice
programmers using the SOLO taxonomy,” In Proceedings of the 2016 ACM Conference on
International Computing Education Research, 251–259.

[46] Brian Hanks and Matt Brandt. 2009. “Successful and unsuccessful problem solving approaches
of novice programmers,” ACM SIGCSE Bulletin 41, 1 (2009), 24–28.

[47] Nelishia Pillay and Vikash R. Jugoo. 2006. “An analysis of the errors made by novice
programmers in a first course in procedural programming in Java,” Preface of the Editors 84, (2006).

[48] Nancy Cunniff, Robert P. Taylor, and John B. Black. 1986. “Does programming language affect
the type of conceptual bugs in beginners’ programs? A comparison of FPL and Pascal,” ACM
SIGCHI Bulletin 17, 4.

