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 A LOW-COST, EASY-TO-USE EEG HEADSET FOR EDUCATION RESEARCH 

 

Abstract – Electroencephalography signals are used widely in medical and pedagogical 

research because they quantitatively and non-invasively reflect brain activity. However, 

commercially available EEG devices are often either prohibitively expensive, or do not offer 

the correct capabilities such as enough electrodes. This work-in-progress study aims to 

address this gap through the design of a low-cost, easy-to-use, and effective EEG headset for 

engineering educational research studies. 

 

The current study includes a relatively small sample size (N=6); however, it does 

identify some preliminary trends. For example, although most participants found the authors’ 

current design to be more comfortable than commercially available designs, the design also 

had a much larger range of reported comfort levels. Additionally, no distinct conclusion could 

be drawn from the signal quality comparison between the current design and the commercial 

device due to limited sample size and large variation among collected data. This exploratory 

study provides a framework for future studies when more data could be collected. There is 

potential for such a device to provide insight into learner behavior in the remote learning 

environment due to its lower cost, light weight, and small size.   

 

I. INTRODUCTION 

 

Electroencephalograms (EEGs) present a non-invasive way of collecting data with high 

temporal resolution that provides meaningful real-time data on student brain activity during 

learning activities. Building on this work, this paper provides a potential candidate currently in 

development that could be used not only in EEG studies, but also for demonstrations in courses 

or other educational purposes. 

 

One of the ways that EEGs have been used in educational studies is in the assessment of 

students’ attention. The results of these experiments could be used to provide feedback to 

instructors during remote learning activities, or to test the efficacy of new teaching methods. 

EEG signals can be divided into 5 frequency domains: delta (0.5 – 4Hz), theta (4 – 8Hz), alpha 

(8 – 14Hz), beta (14 – 30Hz), and gamma waves (> 30Hz). Ko et al. [1], Talalay et al. [2] and 

Rihs et al. [3] were able to demonstrate that measurable changes in brain wave patterns occur 

during periods of attention. Ko showed that during sustained attention tasks, participants 

experienced changes in the power of multiple brain wave frequencies in various areas of the 

brain, including delta, theta, and beta waves in the occipital and temporal regions [1]. Talalay 

found that functional links across the brain in the alpha band were present in both voluntary and 

involuntary anticipatory attention [2], while Rihs demonstrated that increased alpha wave 

activity may be involved in inhibition during selective attention processes [3]. All three studies 

show that attention results in brain-wide changes in brainwave activities. 



Additionally, Chen et al. developed an attention aware system using machine learning to 

categorize EEG signals as ‘high-attention’ or ‘low-attention’ [4]. Their algorithm was able to 

identify attention levels with an accuracy of up to 89.52% using a NeuroSky MindWave headset 

[4], which has one electrode in the Fp1 position [5]. As acknowledged in their paper, the limited 

number of electrodes used may have lowered the accuracy of their algorithm [4]. Due to the 

findings of Ko, Talalay, and Rihs, as well as relative success of Chen’s attention aware system, it 

is possible that an algorithm that uses data from more positions in the 10-20 system  [6] could 

categorize attention even more accurately, and thus be deployed in many educational contexts. 

 

Another way EEGs have been used is to track brain synchrony in classroom settings, 

which has been linked to engagement and social dynamics [7], [8]. Dikker et al. used EEGs to 

measure brain-to-brain synchrony, correlating it to a variety of factors such as teaching styles, 

individual differences, and social dynamics, all of which could mediate attention in students [7]. 

Poulsen et al. further demonstrated that synchrony measurements could be done with commercial 

grade equipment, specifically one based on the 14-channel Emotiv EPOC headset [8]. This gives 

more motivation to the development and use of low-cost, commercial grade EEG headsets for 

scientific studies in education. 

 

Other educational studies using EEGs include correlations between EEG signals and the 

flow state [9], and understanding how mobile learning applications change brain activity [10]. 

Drawing some conclusions from the literature review, a low-cost, easy-to-use, commercial grade 

EEG with more electrodes could be beneficial to education research studies to assess student 

physiological signals related to attention, classroom engagement, and other markers of successful 

teaching. The EEG headset presented in this paper seeks to fill this gap. 

 

The EEG was designed as a mixture of custom designed 3D printed parts as well as off-

the-shelf components. The performance of this headset was measured through four general 

criteria: manufacturability, usability, versatility, and data quality. Each prototype was tested, first 

on a part-by-part basis, then holistically, using measurement processes associated with each 

criterion, such as Likert scale questionnaires for comfort, and time elapsed for assembly. 

 

II. DESIGN REQUIREMENTS 

 

The EEG headset in this paper was developed as an alternative to the off-the-shelf EEG 

used in a study run by one of the authors [11]. As such, it was designed to address the study’s 

specific needs: an affordable EEG headset that not only provided reliable data to better 

understand factors affecting student performance, but also facilitated easy transport, did not 

interfere with students’ learning, and could be used remotely to continue data collection during 

the COVID-19 pandemic. Final design requirements included cost, comfort, manufacturability, 

usability, versatility, and signal quality. 



Cost was defined by the cost of production per EEG headset, which should be less than 

the average price of a similar commercial model, while manufacturability was mostly centered 

around design for 3D printing, procurement of materials, and the difficulty of production. To 

collect as much data as possible, it would be ideal to use multiple EEGs at the same time. Thus, 

in order to produce a large number of EEG headsets while staying under budget, low costs and 

easy manufacturability were required. Additionally, the design had to be comfortable so that 

participants were not disturbed by the headset during data collection; therefore, comfort data was 

collected using participant responses on a ten-point Likert scale. 

 

Usability consisted of how easy a headset was to transport, store, and operate, while 

versatility was evaluated by the variety of people and configurations a single design could fit. 

These requirements address specific concerns that came up during the previous study, including 

transportation, adjusting the electrodes used, and remote data collection. For example, the off-

the-shelf headset used before was a rigid, helmet-like device that came in three sizes. It was 

difficult transporting the devices around due to their volume, weight, and sizing constraints. 

However, it offered a large variety of potential electrode configurations, something that the EEG 

headset developed seeks to preserve. Additionally, due to the difficulties of remote data 

collection, the headset must be simple enough for an inexperienced participant to operate with 

remote guidance. 

 

Signal quality was another key metric for evaluating the effectiveness of an EEG headset. 

EEG signals are noise-prone due to physiological and non-physiological artifacts. A good 

headset design should minimize these artifacts. Metrics for signal quality assessment evaluated 

the data in both the time domain and frequency domain. EEG signals are divided into 5 

frequency domains: delta wave (0.5 – 4Hz), theta wave (4 – 8Hz), alpha wave (8 – 14Hz), beta 

wave (14 – 30Hz), and gamma wave (> 30Hz) [1]. Among these frequencies, the power for 

alpha, beta, and theta waves are often used to analyze cognitive activities in a classroom setting 

[1], [12], and they will be used to differentiate signal qualities between designs.  

 

 The method used in Radüntz’s study was employed to evaluate the signal quality of each 

EEG device [13]. The five metrics were proportion of noise, signal to noise ratio, parietal alpha 

power difference between easy and demanding tasks, frontal theta power difference between 

easy and demanding tasks, and parietal alpha power difference between eyes open and eyes 

closed baseline activities. Easy and demanding tasks were classified by the relative cognitive 

difficulties. The 0-back test has been selected for as the ‘easier’ task because it involves less 

cognitive power. The test is a simple procedure where the participant is prompted to press the 

keyboard within a short reaction time when a specific stimulus appears on the computer screen. 

On the other hand, the stop-signal task is used as the ‘harder’ task as it requires more cognitive 

demand with multiple stimuli and inhibition. The stop-signal task requires the participant press 

different keys on the keyboard for different stimuli. In addition, the participant should avoid 



pressing any keys when a stop-signal occurs. Therefore, the stop-signal task is used as a more 

cognitively demanding task than the 0-back task. Similar experimental setup had been employed 

in Radüntz’s study [13]. 

 

No extra safety requirements were considered due to the usage of commercial electronics 

components in the prototype and the focus of the study on mechanical design. See Appendix A 

for a full, product design request-for-proposal-style list of metrics, constraints, and criteria. 

  

III. CURRENT DESIGN 

 

  
Fig. 1. Left: CAD model of EEG Prototype. Right: EEG Prototype resting on a green holder. 

The current electroencephalogram prototype (EP) is a set of modular electrode holders 

clipped to a main band that rests along the circumference of the head, while other electrodes 

resting on top of the head are attached using smaller elastics with snap hooks. This is shown in 

the color-coded CAD model above. The circuit board (PCB), which is not shown, is attached to 

the user’s upper arm by a Velcro strap and connected to the rest of the headset via jumper wires. 

Dry electrodes were used instead of wet electrodes since they provided more convenience in set-

up and clean up without much loss in performance [14]. 

 

The main feature of this design are the elastics, which are affordable, off-the-shelf, and 

very lightweight. Due to their flexibility, the EP takes up much less space in storage compared 

with many commercially available devices by folding in upon itself, and molds itself to a variety 

of head shapes and sizes. The elastics also allow much more accurate electrode placement, as the 

relative positions of the electrodes do not change when the elastics stretch and contract. A 

combination of small, round elastics and larger, flat ones were chosen due to the utility of their 

differing spring constants: the large elastics are tight enough to secure the headset to the head 

without sacrificing too much comfort, while the small round elastics stretch much more easily to 

aid in the versatility of the design. 

 

 



The clips and the modular electrode holders also offer utility at low costs. The clips are 

used to attach modules that are not located on the main band, while also preventing the wires 

from tangling. The electrode holders perform a variety of functions in addition to holding 

electrodes, such as redistributing the pressure of the elastic and providing grooves for the clips to 

attach to. These parts were all 3D printed in PLA using a Prusa i3 MK3S.  

 

Overall, the entire prototype costs approximately $569.49 USD including all electronic 

components, with a goal of future development work to bring the price down to less than $250 

USD. For a full list of off-the-shelf parts used in the construction of this prototype, see Appendix 

B. 

 

IV. TESTING PROCEDURE 

 

The engineering design approach was employed for the design and verification of the EP. 

This study has been approved by the Human Research Ethics Board at the University of Toronto. 

Participants have reviewed and signed consent form which outlined the procedure, conditions, 

and confidentiality of the study. All participation is voluntary, and participants could withdraw 

from the experiment at any point.  

 

First, participants were asked to follow typed instructions to set up the headset by 

themselves, without any prior exposure. Their set-up time was recorded, and their comfort level 

was measured using a Likert scale from 1 to 10, where 1 was defined as “absolutely unbearable, 

I cannot wear the headset for any longer” and 10 was defined as “I could wear this all day”. 

 

Participants were then asked to complete eight tasks: two eyes open baselines, two eyes 

closed baselines, two 0-back tasks, and two stop-signal tasks. The 0-back tasks consisted of 

letters that would flash across the screen. If the letter was an ‘M’, participants pressed the 

corresponding character on their keyboard; otherwise, they were to do nothing. The stop-signal 

tasks were much more challenging tasks that required participants to discern between left and 

right arrows. If the arrow pointed left, the participant was to press ‘B’, and if the arrow pointed 

right, the participant was to press ‘N’. However, there was a ‘stop signal’: when a red circle 

flashed, the participant was to do nothing. The 0-back and stop-signal tasks were coded and 

compiled using PsyToolkit [15], [16]. The default tests were modified to suit the needs of the 

current study, with changes made to delay time and number of trials. After each task, comfort 

was measured again. 

 

 

 

 



The same procedure was completed on the EP and a commercially available EEG, the 

OpenBCI Mark IV. This commercial EEG was selected since it was similar to the proposed EP: 

it uses dry electrodes, is easy to set up, and has a low price range in comparison to other devices 

with a similar number of channels. The EEG time series data was collected using the OpenBCI 

GUI interface [17] and analyzed using a MATLAB add-on, EEGLAB [18]. 

 

Data preprocessing, band-power extraction, artifact identification and removal are 

implemented by the EEGLAB toolbox [18]. The data is band-pass filtered from 1 to 40 Hz, with 

the first and last 30 seconds of data removed.  

 

V. TESTING RESULTS 

 

Due to the restrictions of COVID-19, only limited sets of data have been currently 

obtained (N=6). The two EEG designs are evaluated against the design requirements.  

 

For comfort, most participants (n=5) reported a preference for the EP over the 

commercial headset, while one participant reported the opposite. This creates an interesting 

trend, where with the exception of that participant’s data, the comfort level of the EP starts at a 

relatively higher comfort value and decays more slowly. However, more participants are required 

to determine whether the extent to which the comfort is polarized. 

 
Fig. 2. Comfort level of the OpenBCI headset vs. Prototype. Each individual data point is one 

instance of when a participant was asked to rate their comfort. 

 

The average set-up time for the prototype was 5 minutes and 10 seconds, while the 

average set-up time for the OpenBCI headset was 4 minutes. However, there were large 

variations for both, causing their standard deviations to be over 2 minutes. Further data is needed 

to find trends, although currently, it appears that set-up time is heavily dependent on the 

individuals. 
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Data is average ± one standard deviation (N=6). Raw data with individual participants is 

presented in Appendix C.  

  

The results in Table 1 illustrate the proportion of noise, signal to noise ratio, parietal 

alpha power, and frontal theta power across 6 participant datasets. Due to the limited sample size 

of 6, it is difficult to identify any trends or significant difference between the data collected using 

two devices. The proportion of noise and signal to noise ratio (SNR) between the commercial 

and EP headsets display similar ranges: the commercial headset has a proportion of noise of 

44.1% ± 19.7% and a corresponding SNR of 2.6 dB whereas the EP has a proportion of noise of 

43.1% ± 11.8% and a corresponding SNR of 2.7 dB. In terms of parietal alpha power difference 

between the easy (0 back test) and demanding (stop signal test) tasks, the data obtained by the EP 

shows a larger difference of 4.1 uV2 compared with 0.8 uV2 from the commercial headset. On 

the other hand, the data obtained from the commercial headset shows a larger frontal theta power 

difference than the EP. A larger difference in frontal theta power means a clear distinction 

between the easy and more demanding tasks, which indicates better signal quality according to 

Appendix A, Table C. Lastly, the EP and commercial headset result in similar levels of parietal 

alpha band power differences between eyes open and eyes closed tasks, with 10.0 uV2 difference 

in the commercial headset’s data and 15.3 uV2 difference for the EP data. 

 

TABLE I 

COMMERCIAL DEVICE VS. EP SIGNAL QUALITY 

Measure of Signal Quality Commercial Device EP 

Proportion of noise (%) 44.1 ± 19.7 43.1 ± 11.8 

Signal to noise ratio (dB) 2.6 ± 6.5 2.7 ± 9.3 

Parietal alpha band power difference 

between easy and demanding tasks 

(uV2): easy – demanding 

0.8 ± 1.6 4.1 ± 6.0 

Frontal theta band power difference 

between easy and demanding tasks 

(uV2): demanding – easy 

18.9 ± 34.1 -0.6 ± 15.8 

Parietal alpha band power difference 

between eyes closed and eyes open 

(uV2): demanding – easy 

10.0 ± 13.2 15.3 ± 15.5 



 
 

Fig. 3. Commercial Headset vs. EP: a) Proportion of noise; b) SNR; c) Parietal alpha power 

difference (easy vs demanding tasks); d) Parietal alpha power difference (eyes open vs eyes 

closed baselines)*; e) Frontal theta power difference (easy vs demanding tasks) 

 

* With the development of experimental technique, the parietal alpha band power of eyes closed 

and eyes open were not collected for two initial participants. Therefore, only four sets of data 

were available for this signal quality feature. 

  



VI. DISCUSSION 

 

A. Advantages of the design   

From the data that was gathered, it was found that participants show a slight preference of 

the EP over the commercial headset but take slightly longer to set it up. Additionally, there is no 

distinct difference between the signal quality of the commercial device and the EP. However, the 

EP offers a variety of unique features. The inexpensive and readily available elastics offer easy, 

accurate, and modular positioning of electrodes and clip-on design, and 3D-printable parts 

reduce the cost of manufacturing and increases versatility. Using dry electrodes instead of wet 

electrodes significantly decreases both set-up and clean up time, and the low Young’s modulus 

of the elastics ensures a fit of more head shapes. These features increase the manufacturability, 

cost-effectiveness, usability, and versatility of the design, which may increase viability in 

educational research and take-home experiments.  

 

B. Limitations 

The remote experimental setting introduces various challenges for the accuracy of the 

data collection process. Since the researchers were not physically present when the participants 

were using the EEG headset, it is hard to determine if there are obvious data collection artifacts 

such as misplaced reference node, electrode positions, and incorrect usage of the data collection 

software. The team tried to mitigate these challenges by asking the participant to share their 

screens during data collection so that the researchers could identify any obvious issues. 

 

Additionally, this remote setting has also made it difficult to gather data from many 

participants using multiple commercial devices. As a part of the University of Toronto’s 

response to the pandemic, remote learning was guaranteed so most students never need to be on 

campus. Thus, the Research Ethics Board required the devices to be delivered to the residences 

of the participants through contactless drop-off and pick-up. This reduced the pool of applicable 

participants, as well as the amount of time required to gather data per participant and per device. 

 

It should be noted that the group of data is relatively spread out as reflected by the large 

standard deviation among participants. This could be a result of the data collection processes as 

well as data analysis techniques. As the sample size is relatively small (N = 6), not enough 

information is present to effectively eliminate outliers.  

 

In addition, some trends displayed in previous studies [13] such as the increase in frontal 

theta power when comparing more demanding tasks with easier tasks are not well shown by the 

six datasets. For instance, the average frontal theta power difference between easy and 

demanding tasks produced by the prototype is -0.64 uV2, contradicting the theory that the frontal 

theta power should be larger when the participant is conducting a more demanding task.  

 



C. Use in Education and Educational Research 

Commercial EEGs have already been used in a variety of different correlational studies 

on topics in education such as attention, teaching methods, and student synchrony [1] - [4], [7] - 

[11]. The EP was primarily designed to act as a way to collect physiological data for this type of 

research. Once complete, the EP can be deployed in an educational research context in a variety 

of ways, including providing real-time feedback on student attention, collecting data during tests 

of new teaching strategies, and studying the effects of remote learning environments. 

Additionally, both the relative inexpensiveness of the EP and its versatility allow it to be used as 

demonstration or labs in biomedical engineering, neuroscience, physiology, and other similar 

courses [19], [20]. 

 

VII. CONCLUSION & NEXT STEPS 

 

The EP performs well in terms of comfort, cost-effectiveness, and versatility, although 

conclusions are yet to be drawn from the data quality requirement due to a limited sample size. 

The prototype may be suited for educational research studies such as the evaluation of student 

attention in online lecture settings, as well as for teaching purposes such as in demonstrations or 

labs, since it is easy to use and inexpensive in an educational setting.  

 

Due to the COVID-19 pandemic, the sample size and the number of devices in this study 

are greatly limited as the data collection process is prolonged, and equipment is generally not 

directly accessible to participants. Future work aims to increase the sample size, compare the EP 

with more commercially available EEG headsets, and improve the data quality evaluation 

process to compare the current design in a more accurate and holistic manner. The researchers 

also plan to redesign the control board such that it retains similar functionality to our current off-

the-shelf PCB, for a much lower cost. As more data is collected, the designed EEG headset will 

be used in future educational research such as classifying the attention levels of students [11].  
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APPENDIX A 

DESIGN REQUIREMENTS FOR A LOW-COST, EASY-TO-USE EEG FOR EDUCATION RESEARCH 

 

A. Cost 

The EEG should be able to be produced at a relatively cheap price 

Metrics Constraints Criteria 

Cost of production, divided 

by the number of units 

produced 

Must be less than the average price of a 

similar EEG (commercial, 8+ channel), 

approx $850 USD [21] - [22] 

Lower is better 

 

B. Usability 

The EEG sets should be easy to transport from location to location 

Metrics Constraints Criteria 

Weight of one set, in grams Must be less than or equal to 

commercially available EEGs with a 

similar number of channels 

Lower is better 

Stackability (YES/NO) Should be yes Yes is better 

Volume of storage taken up 

by one set, in cm3 

 Lower is better 

Can it be shipped by mail? 

(YES/NO) 

 Yes is better 

 

The EEG sets should take little effort to set up 

Metrics Constraints Criteria 

Time to set up by a user 

without setup experience, in 

minutes (with instructions) 

Should be less than or equal to 

commercially available EEGs with a 

similar number of channels 

Lower is better 

Time to set up by a user 

with experience, in minutes 

Should be less than or equal to 

commercially available EEGs with a 

similar number of channels, approx 3-5 

min [22] 

Lower is better 

 

  



C. Signal Quality 

The electrodes should be able to get the best signal possible 

Metrics Constraints Criteria 

Proportion of artifacts: the 

length of data identified as 

artifacts divided by the 

entire length of the data [%] 

 Lower is better 

Signal to noise ratio: 

calculated using the 

formula, where si is the 

band-pass filtered signal and 

xi is the signal after ASR 

(Artifact Subspace 

Reconstruction), which is 

provided by EEGLAB* 

[dB] 

 

 Higher is better 

Berger effect: the decrease 

in parietal alpha band power 

for eyes open compared 

with eyes closed. [uV2] 

Parietal alpha band power should be larger 

for eyes closed. 

Bigger difference 

is better. 

Decrease in parietal alpha 

band power for demanding 

tasks compared with easy 

task†  [uV2] 

Demanding tasks should produce lower 

parietal alpha band power compared to 

easy tasks. 

Bigger difference 

is better. 

Increase in frontal theta 

band power for demanding 

tasks compared with easy 

tasks† [uV2] 

Demanding tasks should produce higher 

parietal frontal theta band power compared 

to easy tasks. 

Bigger difference 

is better. 

* Parameters are tuned for the ASR algorithm in EEGLAB to have a Burst Criterion of 10 and 

Window Criterion of 3 for optimal artifact removal and reconstruction [13] 
† In the experiment, the 0-back task is the easy task, while the stop signal task is the demanding 

task. 

  



D. Versatility 

The EEG should be able to fit on most heads 

Metrics Constraints Criteria 

Can it fit on a head 

(YES/NO)  

Must be able to fit on all heads between 1st 

and 99th percentiles (see below) 

More is better 

Circumference of EEG, in 

cm [23] 

Must be able to encompass 51.34 cm to 

60.65 cm 

The larger the 

range, the better 

Breadth of EEG, in cm [23] Must be able to encompass 13.33 cm to 

16.52 cm 

The larger the 

range, the better 

Length of EEG, in cm [23] Must be able to encompass 17.23 cm to 

21.34 cm 

The larger the 

range, the better 

Length of the EEG 

‘headband’, in cm 

(Bitragion Coronal Arc) 

[23] 

Must be able to encompass 30.78 cm to 

38.48 cm 

The larger the 

range, the better 

 

The EEG should be able to support a variety of electrode configurations from the 10-20 system 

Metrics Constraints Criteria 

The number of electrode 

points the EEG encompasses 

Must have the ones required for current 

study (Fp1, 2; C3, 4; P5, 6; O1, 2) 

More is better 

 

E. Manufacturability 

The EEG should be easily built, and should have easily replaceable parts  

Metrics Constraints Criteria 

The number of parts that 

need to be assembled [24] 

   Lower is better 

The number of ‘self-

assembling’ parts [24] 

 Higher is better 

Is the work location easily 

viewed and accessed? 

(YES/NO) [25] 

Should be Yes Applies more for 

parts that must be 

replaced 

regularly/fail 

easily 

Are tools required? 

(YES/NO) [26] 

Should be No If Yes, the more 

common/ simple 

to use the tool is, 

the better 

Should also follow sections 5.8 and 5.9 of MIL-STD-1472G [27] 



The EEG should be designed around 3D printability 

Metrics Constraints Criteria 

Print time, in minutes Must be less than 24 hours Less is better 

Wall thickness, in mm [28] Must be greater than 0.8 mm Larger is better 

Overhang angle, in degrees 

[28] 

Must be less than 45 degrees Lower is better 

Embossed/engraved detail 

dimensions, in mm [28] 

Must be larger than 0.6 mm wide and 0.2 

mm high/deep 

Larger is better 

Horizontal bridge length, in 

mm [28] 

Must be less than 10 mm Less is better 

Hole diameter, in mm [28] Must be greater than 2 mm Larger is better 

Connecting clearance, in 

mm [28] 

Must be greater than 0.5 mm Larger is better 

Minimum feature size, in 

mm [28] 

 Must be greater than 2 mm  Larger is better 

Pin diameter, in mm [28] Must be greater than 3 mm Larger is better 

Misprint tolerance, in % 

[28] 

Must be greater than 0.5% Larger is better 

Post-processing time 

required per device, in 

minutes  

 Less is better 

Design should also consider the anisotropic nature of FDM printing [29] 

Design should attempt to lessen the impact of the various considerations in this article [29] 

 

F. Comfort 

Participants should be comfortable with wearing the EEG for extended periods of time 

Metrics Constraints Criteria 

Subjective rating of 

participant, on a Likhert 

scale from 1 to 10, 

measured during 

preparation, during the 

experiment, and after the 

experiment 

Should be at least 5 Higher is better 

Method taken from [14] 

 



APPENDIX B 

BILL OF MATERIALS PER EEG HEADSET 

 

Part Source Amount/EEG Cost/EEG* (USD) 

OpenBCI Cyton Board† OpenBCI 1 $499.99  

TDE-210 electrodes Florida Research Instruments 6 $3.67 

TDE-201 electrodes Florida Research Instruments 2 $1.33 

TDE-430 ear clips† Florida Research Instruments 2 $45.90 

No. 4, 3/8” Screws McMaster-Carr 8 $0.53 

Lipo Battery Adafruit 1 $7.95 

Micro Lipo Charger Adafruit 1 $5.95 

3” Jumper wires Adafruit 2 $0.20 

6” Jumper wires Adafruit 4 $0.39 

12” Jumper wires Adafruit 2 $0.40 

19.7” Jumper wires Amazon 10 $1.17 

Velcro Strap Amazon 1 $1.42 

1” Flat elastics Amazon 50 cm $0.49 

1/8” Round elastics Amazon 60 cm $0.10 

Total Cost per EEG Headset $569.49 

* Assuming assembly of 30 EEG headsets, not including tax or shipping, rounded to the nearest 

cent 
† Will be redesigned in future work 

  



APPENDIX C 

RAW DATA FOR INDIVIDUAL PARTICIPANTS 

 

 Proportion of 

noise (%) 

Signal to 

noise ratio 

(dB) 

Parietal alpha 

band power 

difference: 

Easy vs 

demanding 

tasks (uV2) 

Frontal theta 

band power 

difference: 

Easy vs 

demanding 

tasks (uV2) 

Parietal alpha 

band power 

difference: 

Eyes closed 

vs eyes open 

(uV2) 

Commercial 

Headset 

0.40 2.74 1.64 -5.90 3.54 

0.42 6.11 0.03 37.02 N/A * 

0.76 -5.03 3.57 80.87 N/A * 

0.25 -4.61 -0.63 -0.82 29.39 

0.24 4.91 -0.05 1.98 0.39 

0.55 11.61 0.13 0.10 6.82 

Average 0.44 2.62 0.78 18.87 10.04 

St Dev 0.19 6.47 1.56 34.09 13.17 

EEG 

Prototype 

0.25 5.88 2.07 -5.17 1.19 

0.52 11.20 1.99 25.14 N/A * 

0.55 -2.27 16.15 -24.39 N/A * 

0.50 -13.90 0.91 1.10 33.03 

0.33 8.90 3.24 -0.08 23.40 

0.41 6.50 0.12 -0.43 3.40 

Average 0.43 2.72 4.08 -0.64 15.26 

St Dev 0.12 9.33 6.01 15.83 15.50 

* With the development of experimental technique, the parietal alpha band power of eyes closed 

and eyes open were not collected for two initial participants. Therefore, only four sets of data 

were available for this signal quality feature 

 

 

 

 


