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Implementing Inquiry-based Experiments 

in a Fluid Science Laboratory Class 

 

Abstract 

Two inquiry-based laboratory exercises are incorporated into a laboratory section of a fluid 

mechanics class for third year Civil Engineering and Mechanical engineering students. The 

laboratory section also involves four other conventional laboratory exercises. The inquiry-based 

exercises are designed to confront student misconceptions and to develop the ability of students 

to use qualitative reasoning. Student learning gains and changes in attitude were assessed for 73 

of the 119 students in the class who volunteered to participate in the research project. The study 

group completed background surveys and surveys on attitudinal change during the academic 

term in which the laboratory exercises were completed. Preliminary analysis of the surveys 

indicates that student attitudes toward laboratory work did not shift significantly. Students are 

familiar with conventional laboratory exercises in which their activity in the laboratory is largely 

confined to observing the equipment and recording data. The inquiry-based exercises require 

more active participation and analysis of results while the experiment is being conducted. The 

survey data and observations of the students in the laboratory suggest that additional effort is 

necessary to acquaint students with the inquiry-based approach. It is not clear; for example, to 

what extent student preference for conventional exercises is due to lack of experience with the 

inquiry-based approach. 

 

Introduction 

Laboratory-based classes and lecture classes with a laboratory section provide hands-on learning 

experiences to engineering students. The equipment used in the laboratory exercises can vary 

from simple items on sale in a hardware store
1-3

, to complex and highly engineered systems like 

engines
4
. The nature of the student activity can also vary. In some cases, students make 

measurements from a highly prescribed protocol on equipment that has been tuned to give a 

predictable result. On the other extreme students can be given open-ended measurement 

assignments in which deciding what to measure, and designing the experimental procedure is 

part of the exercise
5
. 

 

 This paper describes our experience in implementing two inquiry-based laboratory exercises 

in a laboratory class that also consists of conventional laboratory exercises. We define a 

conventional experiment as a laboratory exercise focused on collection and analysis of data and 

the written presentation of the results. In a conventional exercise the students spend their time in 

the laboratory following prescribed steps to record sensor readings while the experiment is 

running. There is little or no analysis before the students leave the laboratory. The bulk of the 

effort is spent on data reduction and technical writing. At some other date, typically one week 

after making the measurements, students turn in a report on their measurements. Their report is 

written in the style of a scientific paper. 
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 Inquiry-based learning experiences attempt to present authentic challenges or tasks to the 

student as part of the assignment
6, 7

. In an inquiry-based exercise, the students are expected to 

choose a method of solving a given problem, not merely execute a predefined series of steps. Our 

experiments use guided-inquiry, a compromise between open-ended inquiry and the recipe-like 

approach to conventional exercises. In the guided-inquiry approach, students are presented with a 

question to answer along with a procedure and equipment to be used in obtaining the answer. In 

our approach to guided-inquiry, the purpose of the exercise is to solve a problem in the 

laboratory. Students do not leave the laboratory with an assignment to complete additional 

analysis of their data, though that is not precluded by inquiry-based pedagogy. The inquiry-based 

exercises use relatively simple hardware and data acquisition systems that further simplify the 

data collection tasks. The hardware and exercises are designed to allow the students to focus on 

core concepts, not on the complexity of running an experiment. Students complete worksheets 

during the class and turn the worksheets in for grading before leaving the laboratory. There is no 

lab report. Inquiry-based pedagogy neither requires nor prohibits the assignment of a report. We 

simply designed our research to focus on the difference between learning by doing (in the 

laboratory) and learning by watching in the laboratory and writing a report at home. 

 

 Our guided-inquiry exercises are also designed to cause students to confront their own 

misunderstandings about the system being studied. In order to focus attention on misperceptions, 

students are asked to make predictions about system response immediately before making 

measurements of the system response. It is much harder for students to rationalize a direct 

measurement that contradicts their preconceptions, than it is for the students to ignore a theory 

that contradicts their own belief about a physical system. 

 

 Another goal of the inquiry-based exercises is to help students develop qualitative reasoning 

skills. Predictions of system response are more reliable when students can use an engineering 

model of system behavior. Qualitative reasoning involves the use of models (e.g. formulas, 

differential equations, force and energy balances) without necessarily have quantitative data for 

all terms in the formula. For example, by invoking the Bernoulli equation one concludes that the 

pressure increases when the velocity decreases. 

 

 Both the nature and the timing of student effort are very different in the two types of 

laboratory exercises. In the conventional laboratory exercise, the effort primarily involves data 

analysis and writing and that effort is concentrated outside of the laboratory when students 

analyze the data and prepare their report. In the inquiry-based laboratory exercise, students spend 

all of their effort manipulating the equipment and performing analysis to answering questions on 

a worksheet. All the effort occurs in the laboratory. 

 

 In this paper we report on the process of and the results from implementing inquiry-based 

experiments in a fluid science laboratory class.  We describe the pedagogical framework; the two 

experiments created, and provide a preliminary assessment of the outcome. The work is part of a 

two-year, NSF-funded project called the Engineering of Everyday Things (DUE-0633754). A 

overview of the project is described in an earlier paper 
8
. 
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 We also report on challenges that have arisen in implementing the inquiry-based exercises. 

We lack control over the class curriculum because our laboratory exercises are incorporated into 

an existing course taught by an instructor who is not part of our research team. Our colleagues 

are supportive and interested in this work. However, because the inquiry-based approach is 

unfamiliar, we need to provide orientation on goals and pedagogy to the faculty as well as the 

students. 

 

Goals of Research 

The primary goal of this research project is to develop inquiry-based laboratory exercises to 

augment courses in the thermal and fluid sciences. Our hypothesis is that the inquiry-based 

pedagogical model will improve learning of core concepts and increase student appreciation of 

laboratory work. The focus of this paper is on two exercises that were introduced into an existing 

laboratory section of a required fluid mechanics course for third year students. 

 

 To achieve the larger goals, the project has several specific objectives. To engage student 

curiosity and interest, the experiments use equipment or technology that is either simple or easy 

to understand. We believe that students are more likely to reveal their misconceptions when the 

experimental apparatus is familiar or at least not too complex. Where possible, the laboratory 

exercise is designed force students to make an either-or choice in their prediction of system 

response to an input. Those binary choices provide a clear distinction between understanding the 

course material and not understanding it. 

 

 The laboratory exercises use low-cost data acquisition (DAQ) devices and ready-to-run 

LabVIEW Virtual Instruments (VI) that enable students to gather data without worrying about 

connecting sensors or developing data acquisition software. Those tasks are important, but we 

presume that students who are skilled at manipulating cell phones, computers, and MP3 players 

are also predisposed to using software and hardware without reading the manual first. We also 

assume that students will take a follow-up class on sensors and DAQ, and that the preliminary 

exposure via the inquiry-based exercises will motivate their interest in sensors and DAQ. 

 

 Finally, we aim to increase the utility of the laboratory exercises in a variety of settings. The 

exercises are being developed for and tested in courses in mechanical and civil engineering, and 

for mechanical and electrical engineering technology. The exercises are also being developed for 

and tested in classes that do not have a conventional laboratory section. In this paper we describe 

the implementation of the experiments in a class with a lab section. 

 

Inquiry-Based Pedagogy 

Prince and Felder provide an overview of learning experiences based on a constructivist model 

of knowledge
6
.  They describe inquiry-based learning as “instruction so that much learning as 

possible takes place in the context of answering questions and solving problems”.  A guided-

inquiry approach provides more direction to students than a pure inquiry-based approach. 
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 Inquiry-based exercises and conventional laboratory exercises can differ in the degree of 

student preparation necessary before conducting the measurements. Often the explicit goal of a 

conventional laboratory exercise is to confirm a theory presented in a lecture. Thus, for a 

conventional laboratory exercise, it is very important for students to have seen and worked with 

the theory before coming to the lab. In contrast, in an inquiry-based laboratory exercise, students 

can be asked to make observations of phenomena for which they do not have theoretical models. 

In that case, the laboratory exercise is one of authentic discovery and synthesis. The inquiry-

based approach puts more responsibility on the students as they work in the laboratory. 

 

 One of the desirable consequences of guided-inquiry exercises is that students are 

discouraged from racing through the measurements. The inquiry-based laboratory exercises 

require the students to make predictions and verify those predictions with measurements. The 

data collection process is interspersed with analysis and interpretation. An undesirable 

consequence of inquiry-based pedagogy is that students can become frustrated by the unfamiliar 

approach and the extra demands of active participation it places on them
6
. This displeasure is 

shown in the survey results presented later in this paper. 

 

 To deal with the extra demands on student time and attention during the inquiry-based 

exercises, the current version of our experiments have been simplified somewhat from the initial 

implementation. In some cases, fewer data points were recorded to determine a trend. In others, 

the scope of the experimental procedure was reduced. 

 

 The laboratory measurements in our inquiry-based laboratory exercises are designed to 

expose student misconceptions.  The students are asked to make a prediction that exposes their 

thinking.  This is followed with a direct measurement that confirms a correct model or shows the 

error of an incorrect model.  

 

 Finally, our inquiry-based experiments are designed to teach students to apply qualitative as 

well as quantitative reasoning. During the laboratory exercises, and on the pre and post-lab 

quizzes, students are asked to predict trends in the measured data before that data is collected. 

Use of qualitative reasoning is encouraged because the experiments are designed to allow trends 

in the dependent variable(s) to be readily measured. 

 

The Laboratory Exercises 

The two laboratory exercises described in this paper were performed as part of a weekly 

laboratory section in a required fluid mechanics course for third year students in Civil and 

Mechanical Engineering. Altogether, the students performed six laboratory exercises that were 

graded. Four exercises were conventional, and two were inquiry-based. 

 

Tank Filling 

The objective of the tank filling exercise is to develop in students a solid conceptual 

understanding of the hydrostatic equation. In particular, the experiment confronts the 

misconception that in a stationary fluid the pressure at a given depth is determined by the weight 
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of the water above that depth. The measurements and the apparatus are very simple. It is possible 

for students to complete the exercise with only a basic knowledge of physics and without any 

prior exposure to fluid mechanics.  

 

 Figure 1 shows the apparatus for the tank-filling experiment. Two cylindrical tanks made of 

acrylic are placed side-by-side on the workbench. One tank has a uniform diameter and the other 

has a step change in diameter. Both tanks have a pressure transducer (Omega PX181B-001G5V) 

on the side at a distance H from the base. The pressure transducer output voltage is recorded 

using a low-cost DAQ (National Instrument USB-6008), which sends the digitized data to a 

computer running a VI written in LabVIEW. 

 

Figure 1: Apparatus for the tank filling laboratory exercise. 

 The assignment in the tank-filling exercise is to determine the “relationship between 

pressure measured by the transducers, and the amount” of water in the tank. Choice of the word 

“amount” instead of “depth” is intentional because we want the students to find out whether the 

volume of water or the depth of the water determine the pressure at the bottom of the tank. The 

primary learning objective of this experiment is that students understand that the shape of the 

tank does not matter in determining the pressure distribution. 

 

 The students fill the uniform tank to different depths and record pressure transducer 

readings from the VI display on the computer. The transducer output is in volts (on purpose), so 

that students need to convert the signal to a pressure using the linear calibration curve that we 

provide to them. After the first data set is collected, the students answer a few quantitative 

questions regarding the data. Next the students repeat the tank filling measurements for the tank 

with the step-change in diameter.  Data recorded for both the step tank and the uniform tank are 

used to answer several qualitative questions. Students are then asked to plot the combined 

measurements of pressure versus depth. From that plot the students are asked to determine the 

value and physical significance of the slope, which is the specific weight. 

 

 Similar tank experiments have been used in class demonstrations, science museums, and by 

other others. For example, the supplemental material to the textbook by Munson, Young and 
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Okiishi includes a video of water draining from three holes in a two liter soda bottle
9
.  Libii

10
, 

and Libbi and Faseyitan
11

 describe a tank-draining experiment where the drain orifice is at the 

bottom.  Saleta et al. use a configuration similar to our apparatus
12

. 

 

Sudden Expansion 

The objective of the sudden expansion exercise is to investigate the relationship between 

pressure drop and area change for the flow air through a sudden expansion in a circular duct. 

Students measure the relationship between the pressure across the sudden expansion and the 

magnitude of the centerline velocity immediately downstream of the sudden expansion. 

 

Figure 2: Apparatus for the sudden expansion exercise. 

 Figure 2 shows the main components of the apparatus for the sudden expansion exercise. A 

blower draws air through a duct constructed from acrylic tubing of two diameters. The inlet end 

of the duct is open to the laboratory. The longer section of tubing with the larger diameter 

connects the inlet section to the blower.  The transition from the smaller diameter duct to the 

larger diameter duct is abrupt. The flow rate through the duct is controlled by adjusting a blast 

gate. The flow rate can also be changed by selecting one of two speeds for the blower motor. 

 

 The pressure change across the sudden expansion is measured with a differential pressure 

transducer (Omega PX653-0.5D5V). The air velocity is measured with a thermal anemometer 

(TSI Model 8455) mounted on a manual positioning stage (Velmex A2509Q2-2.5) that allows 

the anemometer to be moved to different radial positions across the larger duct. The velocity 

sensor is connected to a signal conditioner. A DAQ (National Instruments USB 6008) digitizes 

the output of the anemometer and pressure transducer. The data is displayed on the computer 

with a VI written in LabVIEW. 

 

 Although the flow through the sudden expansion is nominally steady, the VI updates the 

display with large samples (150 points) of velocity and pressure readings taken at 50 Hz. The 

sample size and rate are adjustable, of course, but we found that exposing these data acquisition 

parameters to the students was neither necessary nor conducive to their understanding of the 
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basic operation of the equipment. The VI clearly shows the fluctuations in the velocity and 

pressure, but the sampling rate and sensor bandwidth are not high enough to capture a true 

turbulence signal. Each sample from the velocity and pressure sensors is displayed as a function 

of time and as a histogram. The histograms provide an opportunity to talk about the meaning of 

an average and conversely point out that computing the average is not always meaningful. When 

a sample of 150 readings shows histograms with nicely shaped (normal-like) distributions, the 

students click a virtual button on the screen to record the data to disk for later processing. 

   

 The assignment in the laboratory exercise is to measure the pressure difference across the 

sudden expansion and to relate the pressure difference to the prediction of the Bernoulli 

equation. Before turning on the device and recording any data, the students are asked to predict 

the sign of the pressure difference: does the pressure increase or decrease in the flow direction?  

 

 After completing the preliminary analysis, the apparatus is turned on and the students 

measure the centerline velocity downstream of the expansion and the pressure difference 

(pressure rise) across the sudden expansion at four flow rates. The guided-inquiry worksheet 

guides students through additional analysis with the newly collected data. In particular, students 

are asked to compare the measured pressure rise with the pressure rise obtained with the 

Bernoulli equation. Analysis with the Bernoulli equation points out the misconception to 

students who first predicted that the pressure must decrease in the flow direction. Comparison 

with experimental data is startling: the measured pressure rise is several hundred percent smaller 

than the pressure rise predicted by the Bernoulli equation.  

 

 The sudden expansion exercise provides an opportunity to address two student 

misperceptions. The first is the assumption that fluid pressure must always decrease in the 

direction of flow. The second is that Bernoulli’s equation can always be applied. In a laboratory 

exercise for the following course (not discussed in this paper), students use the sudden expansion 

apparatus to measure the minor loss coefficient for the sudden expansion and compare it with the 

design formula for the minor loss coefficient. 

 

Assessment  

Quizzes, exam questions, and surveys were developed to measure student learning gains and 

changes in attitude toward laboratory work. The assessment results reported in this paper are a 

preliminary analysis of our first large cohort of students. The assessment results point to obvious 

improvements in our assessment instruments and methodology. 

  

Assessment Methodology  

The research was conducted at a large urban university located in the center of a major 

metropolitan area. The university has a mission of access: many students work part time, and 

many are not recent high school graduates. We solicited 73 volunteers to participate in our study 

from the entire population of 119 students originally enrolled in the course. The procedures for 

soliciting volunteers and protecting their anonymity were approved by the PSU Human Subjects 

Research Review Committee. By volunteering for the study, students allowed us to record and 
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track their individual scores on quizzes, exams, and laboratory exercises. In the remainder of this 

paper the volunteers are referred to as the study group. Since all students performed the same 

experiments, there was no control group. 

 

Three assessment instruments were administered only to the study group. 

1. A Background Survey collected information on the students’ age, ethnicity, previous 

post-secondary educational experiences, work experience, academic major, and 

estimated GPA. The complete background survey is provided in Appendix A. 

2. A Pre-Study survey of attitudes obtained a self-assessment of student learning styles, 

laboratory skills, attitudes toward laboratory work. The Pre-Study Survey is provided in 

Appendix B. 

3. A Post-Study survey of attitudes used many of the questions from the Pre-Study survey 

and some additional questions aimed at determining the students’ experience in the 

laboratory during the term. The Post-Study Survey questions that were not on the Pre-

Study survey are listed in Appendix C. 

 

The average age of the study group is 26.8. Two thirds of the study group has a job and work an 

average of 18.5 hours per week. The high fraction of working students is consistent with the 

urban location and university mission of access. The study group consists of 58 percent civil 

engineering majors, 38 percent mechanical engineering majors and 4 percent from other majors. 

 

 For each of the two laboratory exercises all students in the class completed a pre and post-

lab quizzes in addition to a guided-inquiry worksheet. 

1. The Pre-lab Quiz assesses the students’ knowledge before the laboratory exercise, and 

in particular their misconceptions related to the laboratory material. The quiz consists 

of one or two (depending on the experiment) very simple qualitative reasoning 

questions. Students are given points for completing the pre-quiz, but are not graded for 

correctness of their answers. 

2. The Laboratory Exercise consists of a several page worksheet. The goal of the exercise 

is to reinforce core concepts by applying direct observation and simple analysis. The 

laboratory exercise was also designed to further expose and correct misconception that 

the student might have. 

3. The Post-lab Quiz assesses whether students’ misconceptions persisted after completing 

the laboratory exercises. As with the Pre-lab Quiz, students are given points for 

completing the pre-quiz, but are not graded for correctness of their answers. 

 

 In addition to the laboratory exercises, the research team worked with the course instructor 

to design one question each for the midterm and final exams. These questions were designed to 

measure whether students learned the concepts addressed in the laboratory exercises. 
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Volunteer Effect 

The volunteer effect is a bias that occurs in social science research when the subjects are selected 

by their willingness to volunteer to participate
13, 14

. Table 1 and 2 show that the study group (who 

volunteered to complete surveys) usually has higher average laboratory and exam scores than the 

students the non study group who chose not to complete the additional surveys. Thus, we can 

conclude that there is a volunteer effect and that conclusions in this paper can only be applied to 

the study group. 

Table 1: Differences between pre-test, post-test and laboratory exercise scores for students not 

in the study group and students in the study group. 

 Tank-Filling Laboratory Exercise Sudden Expansion Laboratory Exercise 

 Percentage 

making no 

errors in the 

Pre-Lab Quiz  

Worksheet 

Average 

Score Out 

of 30 

Percentage 

making no 

errors in the 

Post-Lab Quiz 

Percentage 

making no 

errors in the 

Pre-Lab Quiz 

Worksheet 

Average 

Score Out 

of 30 

Percentage 

making no 

errors in the 

Post-Lab 

Quiz 

Non 

Study 

Group 

(n = 30) 

40.0 % 26.1 93.3 % 67.9 % 27. 9 82.1% 

Study 

Group 

(n = 73) 

60.3 % 26.8 98.6 % 75.0 % 28.04 72.1% 

Table 2: Average scores on the exam questions that focused on concepts related to the tank 

filling (midterm) and sudden expansion (final) exercises. 

 Midterm Exam Question Final Exam Question 

 Average Score Out of 20 Average Score Out of 10 

Non Study Group (42)  14.8 4.9 

Study Group (70) 15.8 6.9 

 

Survey Scoring 

 As shown in Appendix B and Appendix C, survey responses were indicated on a Likert 

scale. For each question with a Likert scale response, the average response was calculated from 

  ÂÂ
??

?
5

1

5

1 i

i

i

ii nnrR  (1)  

 

where ri is the numerical value of the response corresponding to one of the following assigned 

numerical values of the Likert scale (Strongly Agree = 5, Agree = 4, Neutral = 3, Disagree = 2, 

and Strongly Disagree = 1) and ni is the number of students with response ri. There are five terms 
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in the numerator and denominator of R because there are five possible responses (five bins) for 

each question. 

 

 The value of R is calculated for each question on each survey. For pairs of surveys by an 

individual student, an aggregate change in response was computed from  

 prepost RRD /?  (2) 

where D is the difference in response for each question, Rpost is the average response on the post-

study survey, and Rpre is the average response on pre-study survey. 

  

 For example, Survey Item 31 states, “Laboratory exercises help students learn engineering 

concepts”. Figure 3 shows the histograms of responses for the pre-study and post-study surveys, 

and the change in responses. For this question, Rpost =3.90, Rpre = 3.86, and D=0.4. The aggregate 

numerical values indicate that there was a small shift in attitude toward agreement with the 

statement. We are not prepared at this point to say whether the change is significant or whether it 

is attributable to participation in the study.  

 
Figure 3: Histograms of responses to survey item 31, “Laboratory exercises 

help students learn engineering concepts”. 

Observations of Students in the Laboratory 

 The laboratory class was scheduled for one hour and 15 minutes, but it usually took an hour 

and 30 minutes to complete the inquiry-based exercise. That time does not include an extra 15 

minutes in the first laboratory session to introduce the study, fill out the consent forms, and 

complete the pre-study surveys. 

  

 Instead of following the laboratory exercise worksheet step by step, several groups, skipped 

around because they thought it would be faster to get all the raw data first then answer the 
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analysis/discussion questions. This behavior shows that years of practice with conventional 

laboratory exercises create expectations and attitudes that interfere with inquiry-based exercises. 

Although groups thought that changing the order of the exercises would shorten their time in the 

laboratory, our observation notes do not show any significant reduction in time to complete the 

inquiry-based exercises for those students who did not follow the instructions for the exercise. 

 

 Students doing the inquiry-based exercises were aware that other groups in the lab 

completed the conventional lab exercises in less time. This was apparent during the first 

experiment (the tank filling exercise) because another conventional exercise was conducted in 

the same room at the same time as the inquiry-based exercise. The conventional exercise took 45 

minutes to “complete”, while the inquiry-based exercise took an hour and a half. However, 

“completion” in the laboratory meant only that all of the data was recorded. Students doing the 

conventional exercise would then spend substantially more time at home analyzing the data and 

writing a report. Some students working on the inquiry-based exercise would comment that the 

other group was “done” but that they were still working on this “longer” inquiry-based exercise. 

To be fair, this attitude persisted only with some students, and it was largely corrected when 

instructors pointed out that the students doing the inquiry-based exercise did not have to write up 

a laboratory report. 

 

 When they performed the tank-filling exercise, some students had not completed all the 

lectures and homework that provided the theoretical background. This was especially true for the 

students in the first week of class. The sudden expansion experiment was performed at the end of 

the academic term, and after the theoretical background was covered in lecture. In addition, the 

sudden expansion exercise was conducted in a one-week span instead of the two week span for 

laboratory sessions involving the tank filling apparatus. The effect of the extra preparation for 

the sudden expansion laboratory is evident in these observations:   

‚ More students used correct terms to discuss the sudden expansion experiment than 

the tank filling experiment. 

‚ Students that conducted the tank filling laboratory exercise in the one week were 

sharing experiment information with other students in other weeks.  

‚ Once the students were exposed to the theoretical background, they had a hard time 

understanding that difference between theoretical and measured results might be 

due to an inapplicability of the theoretical model.  When the theoretical did not 

match the measured results, they assumed that the measured results were wrong and 

the experiment setup was faulty.   

 

Quantitative Results 

Students performing the tank-filling exercise had three different laboratory instructors: the 

teaching assistant assigned to the laboratory section (Quinn), the research assistant (Hsieh) for 

the research project, and the PI (Recktenwald). For the sudden expansion exercise, there were 

two different instructors: the teaching assistant assigned to the laboratory section (Quinn), and 
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the research assistant (Hsieh). Table 3 shows that the students’ scores on the laboratory exercise 

worksheet have a slight correlation with the instructor. The research assistant (Hsieh) graded all 

of the lab worksheets. 

Table 3: Average scores on the laboratory exercise as a function of the instructor present when 

students completed the laboratory exercise. The maximum score was 30 points. T.A. 

is the teaching assistant assigned to the laboratory section. R.A. is the research 

assistant working on the project. Professor is the principle investigator. 

 Number of students/Average Score 

 T.A. R.A. Professor 

Tank-filling Experiment 9/24.6 71/27.4 23/24.6 

Sudden Expansion Experiment 24/28.2 72/27.9 N.A. 

 

Survey Results 

Table 4 shows the values of R and D for the survey questions that were completed on both the 

pre-study survey and post-study survey; of the 73 volunteer study group 51 completed both 

surveys. The p-values at 95 percent confidence intervals are given for the values of D. Only the 

results for questions 32 and 34 are statistically significant. 

 

 The post-study survey did not make it clear that students should distinguish the conventional 

and inquiry-based labs in their responses. In the open-ended response section, several students 

wrote comments that indicated they did not understand the conceptual differences between the 

inquiry-based and conventional exercises. To those students, all of the lab exercises are the same, 

regardless of whether the grading was based on a report or an in-lab worksheet. An example of a 

positive (written) comment was that, “(there needs to be) less lectures, more labs”. A negative 

comment was that, “I feel like school labs currently are usually a waste of time”. 
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Table 4: Summary of average response for both surveys.  Pre and Post columns are the 

average response from Likert Scale questions. 

  RPre RPost D (p-value) 

31 Laboratory exercises help students learn engineering concepts 3.86 3.90 0.04 (0.596) 

32 I learn a lot from laboratory exercises that are “canned”, i.e. the 

equipment is already configured and running properly, so all I 

have to do is write down the data. 

2.53 3.08 0.55 (0.001) 

33 I would learn more from laboratory exercise if it was not 

“canned”, i.e. if I was responsible for setting up the equipment 

and get it running myself. 

3.67 3.47 -0.20 (0.104) 

34 I would be willing to set up laboratory equipment myself and get 

it running, even if it took me twice as long as a “canned”   lab to 

complete the assignment. 

3.43 3.04 -0.39 (0.007) 

35 I would be willing to set up laboratory equipment myself and get 

it running, but only if it took me less than 25 percent more time in 

the lab to complete than a “canned” experiment. 

3.48 3.56 0.08 (0.701) 

36 Laboratory exercises for students are not necessary if the 

instructor does an in-class demonstration with the same laboratory 

equipment. 

2.77 2.67 -0.10 (0.699) 

37 Laboratory exercises and homework exercises are similar because 

they both are ways of testing my knowledge of the course 

material. 

3.20 2.92 -0.28 (0.172) 

38 Laboratory exercises and homework exercises are similar because 

they both provide a way to learn important concepts about the 

material. 

3.70 3.66 -0.04 (0.796) 

39 Laboratory exercises only reinforce what is taught in lecture; they 

do not teach new concepts. 

3.00 2.86 -0.14 (0.744) 

40 Getting good data in a lab experiment is mostly due to luck 

because experiments rarely match theory. 

2.38 2.56 0.18 (0.175) 

41 Laboratory experiments are only useful for researchers. 2.10 2.10 0.00 (0.500) 

42 In my future engineering job I will not need to make 

measurements. 

1.55 1.69 0.14 (0.202) 

43 In my future engineering job I will use experiments (laboratory 

measurements) to obtain useful engineering data. 

3.78 3.77 -0.02 (0.451) 

44 In my future engineering job I will use computer simulations to 

get data instead of making measurements in a laboratory. 

3.49 3.59 0.10 (0.547) 

45 Laboratory experiments (laboratory measurements) are more 

reliable than computer simulations for verifying the performance 

of an engineering design. 

3.18 3.20 0.02 (0.868) 
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Discussion 

The scores in Table 3 show that the instructor can have an effect on the success of student 

completion of the worksheet. This makes obvious sense, but it also suggests that using the 

scoring the laboratory worksheet to indicate student learning requires control for the effect of the 

instructor. Several students commented that each instructor had different ways of explaining the 

material, which affected their scores. One student wrote on their post-survey,  

“I thought the 1st lab (tank filling) was inconsistent from group to group in that 

some groups were coached toward answers by the researchers.  Where researchers 

weren't present, other groups were left to find answers themselves. This affected 

the outcome because some of the questions were unclear and those without 

coaching were not given equal treatment”. 

 The role of the instructor is especially important in an inquiry-based exercise because 

student learning is happening while the experiment is being performed. The worksheets have 

questions requiring qualitative reasoning, a form of problem-solving that many students have not 

mastered. Even when the instructor is careful not to provide answers to the exercises, students 

need guidance on how to approach the question: what is being asked? what readily available 

tools can help with the answer? 

 

 The tank filling laboratory exercise was conducted at the start of the quarter. The differences 

in student scores shown in the first row of Table 3 caused us to rethink the worksheet for the 

sudden expansion laboratory exercise. First an “instructor check answer” box was added to the 

worksheet, which made the students check their answer with the instructor before they could 

move on to the next part.  Second, we involved the teaching assistant with the creation of the 

inquiry laboratory exercises. The laboratory scores for the sudden expansion experiment were 

much more consistent than the tank-filling experiment. 

  

 The research team did not anticipate the positive change in student attitude for Question 32 

and negative change in attitude for Question 33 in Table 4. The change in responses indicates 

that the students in the study group viewed the conventional lab exercises more favorably at the 

end of the term. One explanation for this change is unfamiliarity with the inquiry-based 

approach. Some students were frustrated when they learned that the Bernoulli equation did not 

apply to the sudden expansion.  One student wrote in the post-survey: 

“the 2nd experiment, sudden expansion, was poorly designed and did not 

reinforce concepts. It showed us where the theory does not work. However, we 

were still struggling to understand the basic concept. 4000% only confused 

us…… I want results that confirm theory, not contradict it”. 

 This frustration may have caused a significant number of students to favor “canned” 

experiments because in “canned” experiments they believe that the experiment will confirm the 

theory.   

 

 Not all students disliked the inquiry-based experiments.  There were several positive 

comments on the post-survey.  One student wrote, 
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“Testing before and after was beneficial. (This) gave the students a chance to start 

thinking about the concepts before the lab even began”. 

 

 The other large change in student attitude is associated with their willingness to invest time 

into the laboratory exercises. Question 34 and Question 35 can be summarized as, “are you 

willing to invest a lot or a little time on an experiment that was not ‘canned’?” Student responses 

to Question 34, would you be willing to invest a lot of time, shifted negatively during the term, 

i.e. students were less inclined to invest a lot more time at the end of the quarter than at the 

beginning. Student responses to Question 35, would you be willing to invest a little time, were 

essentially unchanged. The lack of interest in committing more time to academics may be 

influenced by student fatigue at the end of the term. We need to do follow-up interviews with 

students to probe the reasoning behind their answers to the survey questions. 

  

 The other questions on the survey showed little change in student responses. There are many 

aspects to the survey data to be explored: are the responses by men and women different? does 

prior work experience affect attitudes toward laboratory work? is there are difference between 

mechanical engineering students and civil engineering students? 

 

 Table 4 contains the first assessment data for the first deployment of the inquiry-based 

experiments in our fluid mechanics laboratory. We are using this experience to revise the 

laboratory exercises and the assessment instruments. 

 

Conclusions 

Attitudes 

The students in this study had relatively small changes in attitude over the academic term. The 

two most prominent changes in attitude were associated with (1) the students’ belief about the 

(negative) effectiveness of the inquiry-based exercises and (2) students’ loss of interest in 

spending more time doing experiments that are not pre-configured and ready to run.      

Instructors 

The inquiry-based laboratory exercises require students to use qualitative reasoning, which is a 

problem-solving strategy that requires greater conceptual understanding of the material. The 

instructor needs to have knowledge of the subject matter and an appreciation for active learning 

strategies to help student answer questions requiring qualitative reasoning.  

Length of the Experiment 

Students are willing to put in extra time to complete an inquiry-based exercise, but only up to a 

point. We assume that during the pre-study survey they did not have an idea of what it meant that 

a laboratory exercise takes “twice as long” as a conventional exercise. After completing the 

laboratory exercise their awareness of the time commitment increased and their tolerance for 

extra effort decreased. 
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Lesson Learned 

We have learned some things that should have been obvious to us from the start: 

1. Students are unfamiliar with terms like “inquiry-based” and “pedagogy”. Hence, is it 

not helpful to use these terms to explain the experiments or motivate student interest. 

2. Students are unfamiliar with the inquiry-based approach. They can be confused and 

upset when confronted with assignments that do not have cookbook like instructions.  

There is little comfort in explaining to students that real engineering problems do not 

come with cookbook instructions. 

3. Making the experimental apparatus “interesting” or “practically relevant” does not fully 

compensate for the student discomfort at being confronted with a task that they feel 

unprepared to successfully complete. 

4. The post-lab surveys did not clearly tell the student to limit their answer to the inquiry-

based experiments. This error in our instrument caused many students to report on their 

experience with both types of experiments in mind. The next version of our instrument 

will correct this flaw so that we can obtain a better measure of student attitude toward 

the inquiry-based and conventional laboratory exercises. 

Future Work 

Using the knowledge gained from implementing the inquiry-based experiment in the fluid 

mechanic laboratory class, we will improve the inquiry-based laboratory exercises for use 

subsequent academic terms. Further analysis is required on the survey data collected for Fall 

2007. In particular, patterns of responses amongst subgroups in the study need to be identified. In 

the future we plan to conduct interviews with students to further clarify and refine the survey 

questions.  
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Appendix A: Participant Background Survey 

1. Age (optional):   ______________ 

2. Ethnicity (optional, circle one) 

Black/African American American Indian/Alaskan Native 

Hispanic/Latino American White/Caucasian 

Asian/Pacific Islander Other:   ____________________ 

3. Gender (optional, circle one):    M        F 

4. How many years has it been since you completed your high school degree? 

5. a. Since completing high school, have you ever stopped going to school except during summer?  

(circle one)         YES        NO 

 If you answer “no” to question 5a, skip to question 6 

b. How long did you work before returning to school?  _______ years 

c. Approximately how many hours did you work per week?   ______________ 

d. Did this work involve engineering or related technical skills?   YES     NO 

6. Do you currently have a job?  (circle one)         YES        NO 

7. If you answered “yes” to question 6, how many hours per week (on average) do you work? 

______________ 

8. Have you already completed a college degree? If so, in what subject? 

a. No 

b. Yes, a 2 year degree in __________________ (subject, e.g. Drafting, EE Technology) 

c. Yes, a 4 year degree in __________________ (subject, e.g. Drafting, EE Technology) 

9. What year are you in school? 

  a.  Freshman          b.  Sophomore          c.  Junior            d. Senior 

10. In which calendar year do you expect to graduate? 

  2007        2008        2009        2010        2011        2012        Other: __________ 

11. Did your parents go to college? (circle one) NEITHER            ONE            BOTH 

12 How long have you been in the upper-division engineering program at PSU? ____ years 

13. Did you attend a Community College full time before coming to PSU? YES         NO 

 If yes, which one?  ________________________ 

14. What is your major? 

Civil Engineering Electrical Engineering Mechanical Engineering 

Computer Science Other:  _______________ I don’t know 

15. Approximately what is your current GPA? (circle one) 

3.5 or above Between 3.0 and 3.5 Between 2.5 and 3.0 

Between 2.0 and 2.5 Below 2.0 I don’t know 
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Appendix B: Pre-Study Survey of Self Assessment of Learning Styles and Preferences 

For each of the following questions, use a scale of 1 to 5 to indicate your agreement with the statement. 

Circle the number corresponding to the following degree of your agreement or disagreement 

1. Strongly Disagree 

2. Disagree 

3. Neutral 

4. Agree 

5. Strongly Agree 
 

16. I prefer laboratory measurements to lectures as a way to learn engineering 

course materials. 

1 2 3 4 5 

17. I have a concrete learning style. 1 2 3 4 5 

18. Seeing a laboratory demonstration helps me to learn concepts better than 

reading about the concept in a textbook. 

1 2 3 4 5 

19. Reading a textbook is more helpful for learning a new concept than 

running a lab experiment that demonstrates the concept. 

1 2 3 4 5 

20. Attending a lecture is more helpful for learning a new concept than 

running a lab experiment that demonstrates the concept. 

1 2 3 4 5 

Self Assessment of Skills and Interests 

21. I have good practical, hands-on skills. 1 2 3 4 5 

22. I am better at building things than in doing engineering analysis with 

formulas. 

1 2 3 4 5 

23. I am skilled at making measurements in a laboratory. 1 2 3 4 5 

24. My previous laboratory-based classes have given me the necessary training 

to perform engineering experiments. 

1 2 3 4 5 

25. I am comfortable connecting sensors to electronic measurement equipment 

like multimeters, voltmeters, ammeters, power supplies. 

1 2 3 4 5 

26. I am comfortable connecting sensors to data acquisition (DAQ) systems. 1 2 3 4 5 

27. I know how to use a computer controlled data acquisition (DAQ) system. 1 2 3 4 5 

28. I am interested in learning more about sensors and electronic measurement 

systems. 

1 2 3 4 5 

29. I am interested in learning more about computer-controlled data 

acquisition (DAQ) systems. 

1 2 3 4 5 

30. I am interested in learning more about how to write LabVIEW programs 

for computer-controlled data acquisition (DAQ) systems 

1 2 3 4 5 
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Educational Value of Laboratory Exercises 

31. Laboratory exercises help students learn engineering concepts 1 2 3 4 5 

32. I learn a lot from laboratory exercises that are “canned”, i.e. the equipment 

is already configured and running properly, so all I have to do is write 

down the data. 

1 2 3 4 5 

33. I would learn more from laboratory exercise if it was not “canned”, i.e. if I 

was responsible for setting up the equipment and get it running myself.  

1 2 3 4 5 

34. I would be willing to set up laboratory equipment myself and get it 

running, even if it took me twice as long as a “canned” lab to complete the 

assignment. 

1 2 3 4 5 

35. I would be willing to set up laboratory equipment myself and get it 

running, but only if it took me less than 25 percent more time in the lab to 

complete than a “canned” experiment. 

1 2 3 4 5 

36. Laboratory exercises for students are not necessary if the instructor does an 

in-class demonstration with the same laboratory equipment. 

1 2 3 4 5 

37. Laboratory exercises and homework exercises are similar because they 

both are ways of testing my knowledge of the course material. 

1 2 3 4 5 

38. Laboratory exercises and homework exercises are similar because they 

both provide a way to learn important concepts about the material. 

1 2 3 4 5 

39. Laboratory exercises only reinforce what is taught in lecture; they do not 

teach new concepts. 

1 2 3 4 5 

40. Getting good data in a lab experiment is mostly due to luck because 

experiments rarely match theory. 

1 2 3 4 5 

 

Practical Value of Laboratory Exercises 

41. Laboratory experiments are only useful for researchers. 1 2 3 4 5 

42. In my future engineering job I will not need to make measurements. 1 2 3 4 5 

43. In my future engineering job I will use experiments (laboratory 

measurements) to obtain useful engineering data. 

1 2 3 4 5 

44. In my future engineering job I will use computer simulations to get data 

instead of making measurements in a laboratory. 

1 2 3 4 5 

45. Laboratory experiments (laboratory measurements) are more reliable than 

computer simulations for verifying the performance of an engineering 

design. 

1 2 3 4 5 

Your Comments 

Please use the following space to add any comments about your participation in the research project. 
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Appendix C: Post-Study Survey 

The post-study survey consisted of questions 31 through 45 from the Pre-Study Survey (Appendix B) and 

the following additional questions 

 

Attitudes toward Laboratory Measurements 

 

46. As a result of performing experiments in this class, I am more curious 

about the engineering principles at work in the machines and gadgets I use 

everyday.. 

1 2 3 4 5 

47. As a result of performing experiments in this class, I am more interested in 

doing work in a laboratory. 

1 2 3 4 5 

48. As a result of performing experiments in this class, I have a better 

understanding of the course material. 

1 2 3 4 5 

49. As a result of performing experiments in this class, I have a better 

understanding of the practical use of making laboratory measurements. 

1 2 3 4 5 

50. I would be interested in buying my own data acquisition (DAQ) system if 

it cost approximately as much as a typical engineering textbook. 

1 2 3 4 5 
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