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Work-in-Progress: Ambiguous Reaction Couples: A Universal
Approach for Analyzing Bearing and Hinge Supports in 3D

Statically-Determinate Problems

Abstract

Having students develop an understanding on how to draw proper FBDs is perhaps the main
objective of any Statics course and reactions due to supports are often a challenging part of this
process. The most unfamiliar supports that students encounter in Statics are hinges and bearings
in three dimensions, which may or may not require reaction couples that need to be accounted for.
Different textbooks have treated this topic in very different and sometimes confusing ways. In
this paper, we introduce the ambiguous reaction couple approach to analyzing bearing and hinge
supports in 3D statics problems. In this method, all the possible reaction couples are first
considered during the drawing of the FBD and translation of the forces and moments to the
equilibrium equations and subsequently a decision is made on whether to keep or discard each
reaction couple with the help of an equations/unknown table. We provide three examples to show
the application of this universal approach to different types of problems that involve bearing
supports. We have found assessing the effectiveness of this approach difficult in a Statics class,
but plan on implementing an assessment in Capstone Design.

Introduction and Motivation

The fundamental purpose of a Statics course is to initiate and encourage the development of a
student’s engineering judgment, at least with regards to mechanics, by employing the free-body
diagram (FBD) as a tool. In a standard undergraduate civil or mechanical engineering curriculum,
students build upon the concepts introduced in earlier courses utilizing tools such as the FBD
(while ideally enhancing their engineering judgment simultaneously) until their Capstone course,
in which the tools, concepts, knowledge and judgment are all employed in the service of solving
an open-ended problem. Gainsburg1 presents engineering judgment as the integration of theory
and practicality, which implies that incorporating good engineering judgment requires a strong
foundational understanding of the theory, significant practical experience and being able to
connect the two in order to address an engineering problem. From an instructor’s perspective, it
can be challenging to present a new topic to students, whether in a Statics class or in Capstone,
where there can be ambiguity and the student will need to rely on their knowledge and judgment
in order to make a decision. We present one such topic in this work and aim to provide a general
enough solution approach that will be understandable to undergraduate engineering students in
any year of study.



From experience, one of the most difficult-to-teach aspects of FBDs is the proper consideration of
reactions due to supports. Two important types of mechanical supports are hinges and bearings.
Planar systems that include these supports are not problematic to a student when drawing the
FBD since they are modeled as simple pin joints. In three dimensions, however, hinges and
bearings can behave “strangely”, in that depending on the problem, reaction couples may or may
not be needed to be considered when drawing the free-body diagram. The reason for this is that
while bearings can generally resist a small reaction couple, the primary purpose of utilizing
bearings in most applications is to constrain motion in a certain direction, reduce friction and
maintain proper alignment. If bearing supports or hinges are perfectly aligned and properly
manufactured, the reaction couples would be zero in the FBD assuming a rigid body.

The unusual nature of three-dimensional bearing and hinge supports has been treated differently
in eight common Statics textbooks reviewed by the authors. By far, the most comprehensive
treatment of bearing supports was found in Costanzo, Plesha and Gray2, who discuss
self-aligning and perfectly-aligned bearings and when and why the reaction couples moments
should or should not be considered. Sheppard, Anagnos and Billington3 divide their bearing
supports into two groups: individual bearings which will have reaction couples and
perfectly-aligned bearings which have no reaction couples. Riley and Sturges4 discuss several
types of bearing designs and explicitly mention that the reaction couples are negligible if the
bearings are perfectly aligned. Bedford and Fowler5 and Hibbeler6 mention that reaction couples
may be zero and provide examples, but do not explicitly discuss the reason for this and are
somewhat vague on the scenarios in which the reaction couples are zero. Meriam and Kraige7

only briefly mention that the reaction couples on a thrust bearing may be zero to provide
statistical determinacy while Beer and Johnston8 only mention that radial and thrust bearings may
have up to two reaction couples without providing a justification or an example. Lastly, Pytel and
Kiusalaas9 do mention radial and thrust bearings and hinges, but completely ignore the reaction
couples and provide no explanation as to why they do so.

While each of the aforementioned texts presents the topic of the bearing and hinge support
reactions in its own way, none of them provide a general guideline to tackle any
statically-determinate three-dimensional rigid body that contains at least one bearing or hinge
support. With this in mind, the ambiguous reaction couple (ARC) approach, which is a simple and
intuitive way to deal with the reaction couples in three-dimensional bearing and hinge supports, is
explored in this paper.

Ambiguous Reaction Couple (ARC) Approach to 3D Bearing and Hinge Supports

In the context of statics, we define an “ambiguous reaction couple” or ARC as a reaction couple
due to a 3D bearing or hinge support that has a unique property: It may or may not be needed to
be considered in the force and moment equilibrium equations for a given situation. The ARC will
be identified with an asterisk, M∗

O. The purpose of presenting this approach in this context is to
develop a uniform series of steps that allows for the FBDs of three-dimensional rigid bodies or
structures containing bearings and hinges to be properly diagrammed and analyzed from a
mechanics perspective. Some of the steps that will be outlined below are not entirely new
concepts, but serve as effective intermediate tools in helping us develop this uniform
methodology.



Step 1: Identify the type of bearing/hinge support and draw the FBD There are
different types of bearing and hinge supports and it is very important that the proper
reactions are considered when drawing the FBD. A few common supports and their
reactions are discussed below:

• Ball bearing: This bearing type is designed to transmit radial forces. Assuming the
bearing to be frictionless, there will only be reaction forces in the non-axial directions
in the FBD. Each ball bearing should ideally be in contact with the shaft at a single
point, which means that there is no need to account for reaction couples since the
bearing will not be able to resist shaft rotation along any direction.

Figure 1 (a) Ball bearing; (b) Reactions on a shaft due to the ball bearing

• Journal (or radial) bearing: This bearing type is also designed to transmit radial
forces. However, the friction experienced due to the presence of a journal bearing is
significantly larger than a ball bearing. For this bearing type, the shaft is allowed to
rotate about and translate along the axial direction. Hence, reaction forces and
possible reaction couples (denoted as ARCs in Figure 2) should be included when
drawing the FBD.

Figure 2 (a) Journal bearing; (b) Reactions on a shaft due to the journal bearing



• Thrust bearing: This bearing type is designed to transmit both radial and axial forces.
Similar to the journal bearing, the shaft is allowed to rotate along the axial direction,
but unlike the journal bearing, it is not allowed to translate axially, which implies that
when drawing the FBD, reaction forces in all three directions and possible reaction
couples about the non-axial axes (denoted as ARCs in Figure 3) should be
considered.1

Figure 3 (a) Thrust bearing; (b) Reactions on a shaft due to the thrust bearing

• Hinge: A hinge limits the relative motion between two objects to an angular
displacement with respect to a fixed axis. The reactions due to a hinge are similar to
that of a thrust bearing, as shown in Figure 4.

Figure 4 (a) Hinge support; (b) Reactions due to a hinge support

It is important to note that a student is not expected to memorize these reactions and should
be able to derive them and draw the proper FBD when they encounter each case as long as
they have a basic understanding on how the bearing or hinge is limiting motion. In terms of
drawing the free-body diagram, which is the most important step in solving virtually any

1The term “thrust” bearing is a generic word used to describe a bearing that can transmit both radial and axial
forces. In Statics texts that do discuss thrust bearings, they are graphically represented similar to Figure 3. However,
different types of thrust bearings such as ball, cylindrical roller, spherical roller and tapered roller look quite different
in real-world applications. The reader is encouraged to explore some of these bearings along with their applications
from vendors such as Timken®.

https://www.timken.com/products/timken-engineered-bearings/thrust/


mechanics problem, mnemonics such as BREAD10 and techniques like the exploded-view
approach11 can assist the students in arriving at the correct FBD.

Step 2: Write the force and moment equilibrium equations Once the proper FBD is
(hopefully) obtained, the equilibrium equations should be applied to the FBD:

ΣFx = 0 (1)

ΣFy = 0 (2)

ΣFz = 0 (3)

ΣMO,x = 0 (4)

ΣMO,y = 0 (5)

ΣMO,z = 0 (6)

Note that if we are dealing with a bearing or hinge, the ARC should be present in the FBD
and equilibrium equations. A suggested approach to implement in order to solve such
problems is to establish an equation/unknown table, similar to the one shown in Table 1.
There are clear advantages to utilizing such a table. It allows the student to visually account
for their unknowns and make sure that they have enough equations to solve the problem.2 It
also prepares the student to solve more complex problems in their upcoming engineering
courses like system dynamics where multi-domain problems involving over 20 equations
and unknowns are not unusual.

Table 1 Equations/unknowns table

Equations Unknowns

(1) F1

(2) F2

(3) F3

(4) M1

(5) M2

(6) M3

Step 3: Identify whether the ARCs are true reaction couples or should be ignored
After writing all of the equilibrium equations and establishing the equations/unknowns
table, it is now time to make the important decision of whether to keep the ARCs as
unknowns or neglect them from further consideration. Assuming that the problem is
well-posed and statically determinate, there a handful of possible scenarios to consider:

2In statics, this is referred to as static determinacy. While the equations/unknowns table is usually helpful in identi-
fying a statically determinate system, it by no means guarantees it. For example, if there are more than three unknown
forces along the same direction, statics alone cannot be used to find the unknowns, even though the equation/unknown
table might suggest an equal number of unknowns and equations in a given problem.



1. If there are as many equations as unknowns in the table: The ARCs will be necessary
to maintain static equilibrium. Therefore, we can drop the asterisk and solve for all the
unknowns.

2. If there are more unknowns than equations in the table: Eliminate all of the ARCs
from consideration first. Two scenarios are possible:

(a) If the number of equations and unknowns are now equal, the bearings or hinges
were properly aligned and no reaction couples due to these supports need to be
considered.

(b) If there are now more equations than unknowns, then at least one of the ARCs
should be brought back to maintain static equilibrium. This would require a
careful reexamination of the problem schematic and the FBD equations. If any
pair of bearings or hinges are properly aligned along the same axes, those ARCs
should be eliminated. If the removal of any of the ARCs makes it impossible to
achieve static equilibrium, that reaction moment should not be ignored.

Step 4: Solve for the unknowns Once the number of equations and unknowns match, we
can solve for the unknowns using linear algebra techniques or through a computer software
such as MathCAD, Maple, Mathematica or MATLAB.

Examples

Example 1: Need all of the ARCs A bent rod is subjected to external forces as shown in
Figure 5 and held in static equilibrium by a rocker support at A and a journal bearing at C.
The shorter leg of the rod is 30 cm while the longer leg is 40 cm. Points B and D are located
at the center of each leg. Determine the reactions.

Figure 5 Example 1



Example 1 Solution The free-body diagram for this example is shown in Figure 6. In vector
form, the applied/reaction forces and moments to the FBD are:

Figure 6 Example 1 FBD

#  »

FA = RA,z k̂
#  »

FB = −40k̂ N
#  »

FC = 50k̂ N
#  »

FD = 20̂i N
#  »

FE = RE,xî + RE,zk̂
#    »

M∗
E = M∗

E,xî + M∗
E,zk̂

Equilibrium of forces results in:
Σ

#»

F =
#»
0

î : RE,x + 20 N = 0 (7)

k̂ : RA,z + RE,z + 50 N− 40 N = 0 (8)

Applying moment equilibrium about Point E results in:

Σ
#    »

ME =
#»
0

#    »

M∗
E + #    »rEB ×

#  »

FB + #    »rEC ×
#  »

FC + #    »rED ×
#  »

FD =
#»
0

î : M∗
E,x − (40 cm)RA,z − 200 N · cm + 1600 N · cm = 0 (9)

ĵ : 600 N · cm− (30 cm)RA,z = 0 (10)

k̂ : 400 N · cm + M∗
E,z = 0 (11)

As we derive each equilibrium equation, it is a good idea to properly account for the
equations and unknowns instantaneously until a completed table similar to Table 2 is found.



Table 2 Original equations/unknowns table for Example 1

Equations Unknowns

(7) RE,x

(8) RA,z

(9) RE,z

(10) M∗
E,x

(11) M∗
E,z

We now have to evaluate whether the ARCs M∗
E,x and M∗

E,z are required for static
equilibrium. From Table 2, since we currently have as many equations as unknowns, the
ARCs will be needed for static equilibrium and thus, should be treated as needed reaction
couple, as reflected in the final equations/unknowns Table 3.

Table 3 Final equations/unknowns table for Example 1

Equations Unknowns

(7) RE,x

(8) RA,z

(9) RE,z

(10) ME,x

(11) ME,z

Simultaneously solving for 5 equations and unknowns results in:

RE,x = 20 N↗
RA,z = 20 N ↑
RE,z = 30 N ↓

ME,x = 600 N · cm �

ME,z = 400 N · cm �

This example demonstrates a scenario where static equilibrium would not be met without
the support reaction couples due to the journal bearing. The three external forces acting on
the rod contribute to moments about point E in all three directions which requires
counteraction from support forces and couples. In this case, the reaction couples from the
journal bearing counteract the net moment about the x and z axes, while the rocker reaction
is responsible for opposing rotation about the y axis. Next, we will consider a case where
the reaction couples should all be ignored.

Example 2: Do not need any of the ARCs A bent rod is subjected to a 40-N external force
in the xz-plane as shown in Figure 7 and held in static equilibrium by a rocker support at A,



a thrust bearing at C and a journal bearing at D. The shorter leg of the rod is 30 cm while
the longer leg is 40 cm. Points B and C are located at the center of the shorter and longer
legs, respectively. Determine the reactions.

Figure 7 Example 2

Example 2 Solution The free-body diagram for this example is shown in Figure 8.
In vector form, the applied/reaction forces and moments to the FBD are:

Figure 8 Example 2 FBD

#  »

FA = RA,z k̂
#  »

FB = −10
√

3̂i− 20k̂ N
#  »

FC = RC,xî + RC,y ĵ + RC,zk̂
#  »

FD = RD,xî + RD,zk̂
#    »

M∗
C = M∗

C,xî + M∗
C,zk̂

#    »

M∗
D = M∗

D,xî + M∗
D,zk̂

Equilibrium of forces results in:
Σ

#»

F =
#»
0

î : RC,x + RD,x − 10
√

3 = 0 (12)

ĵ : RC,y = 0 (13)

k̂ : RA,z + RC,z + RD,z − 20 N = 0 (14)



Applying moment equilibrium about Point C results in:

Σ
#    »

MC =
#»
0

#    »

M∗
C +

#    »

M∗
D + #    »rCA ×

#  »

FA + #    »rCB ×
#  »

FB + #    »rCD ×
#  »

FD =
#»
0

î : M∗
C,x + M∗

D,x + (20 cm)RD,z − (20 cm)RA,z + 400 N · cm = 0 (15)

ĵ : 300 N · cm− (30 cm)RA,z = 0 (16)

k̂ : M∗
C,z + M∗

D,z − 20RD,x − 200
√

3 N · cm = 0 (17)

The initial equations/unknowns table should look like Table 4 below:

Table 4 Original equations/unknowns table for Example 2

Equations Unknowns

(12) RC,x

(13) RD,x

(14) RC,y

(15) RA,z

(16) RC,z

(17) RD,z

M∗
C,x

M∗
D,x

M∗
C,z

M∗
D,z

From Table 4, it is clear that static equilibrium will be met if we eliminate the ARCs:

Table 5 Final equations/unknowns table for Example 2

Equations Unknowns

(12) RC,x

(13) RD,x

(14) RC,y

(15) RA,z

(16) RC,z

(17) RD,z



Simultaneously solving for 6 equations and unknowns results in:

RC,x = 20
√

3 N↙
RD,x = 10

√
3 N↗

RC,y = 0 N
RA,z = 10 N ↑
RC,z = 20 N ↑
RD,z = 10 N ↓

In this example, the problem becomes statically indeterminate if the ARCs are kept as
unknowns, which implies that if the two bearings fall out of proper alignment for any
reason, additional equations from mechanics of materials will likely be needed to solve for
all of the unknowns. Finally, we will consider a case where some of the ARCs will be
required and some will not in order to maintain static equilibrium.

Example 3: Need some of the ARCs Two rods connected via two bevel gears are subjected
to a 40-N external force along the y axis as shown in Figure 9 and held in static equilibrium
by three journal bearings at A, B and C. The shorter leg of the rod is 30 cm while the longer
leg is 40 cm. Point B is located at the center of the longer leg. Determine the reactions
assuming that the reaction couple in the z-direction of the journal bearing at A is negligible
and that the journal bearing reaction force at C is 10 N in the +z-direction and unknown in
the x-direction.

Figure 9 Example 3



Example 3 Solution The free-body diagram for this example is shown in Figure 10. In vector
form, the applied/reaction forces and moments to the FBD are:

Figure 10 Example 3 FBD

#  »

FA = RA,y ĵ + RA,zk̂
#  »

FB = RB,xî + RB,zk̂
#    »

M∗
A = M∗

A,y ĵ
#  »

FC = RC,xî− 40ĵ + 10k̂ N
#  »

FD = RD,xî + RD,zk̂
#    »

M∗
B = M∗

B,xî + M∗
B,zk̂

#    »

M∗
D = M∗

C,xî + M∗
C,zk̂

Equilibrium of forces results in:
Σ

#»

F =
#»
0

î : RB,x + RC,x = 0 (18)

ĵ : RA,y − 40 N = 0 (19)

k̂ : RA,z + RB,z + 10 N = 0 (20)

Applying moment equilibrium about Point C results in:

Σ
#    »

MC =
#»
0

#    »

M∗
A +

#    »

M∗
B +

#    »

M∗
C + #    »rCA ×

#  »

FA + #    »rCB ×
#  »

FB =
#»
0

î : M∗
B,x + M∗

C,x − (20 cm)RB,z − (40 cm)RA,z = 0 (21)

ĵ : −(30 cm)RA,z + M∗
A,y = 0 (22)

k̂ : M∗
B,z + M∗

C,z + 20RB,x + 30RA,y N · cm = 0 (23)



Table 6 Original equations/unknowns table for Example 3

Equations Unknowns

(18) RB,x

(19) RC,x

(20) RA,y

(21) RA,z

(22) RB,z

(23) M∗
B,x

M∗
C,x

M∗
A,y

M∗
B,z

M∗
C,z

The initial equations/unknowns table should look like Table 6. Eliminating all the ARCs in
Table 6 will result in 6 equations and 5 unknowns, which means that one of the ARCs
would be needed in order to maintain static equilibrium. From the problem diagram,
journal bearings B and C are properly aligned, which leads to the final version of the
equations/unknowns table in Table 7.

Table 7 Final equations/unknowns table for Example 3

Equations Unknowns

(18) RB,x

(19) RC,x

(20) RA,y

(21) RA,z

(22) RB,z

(23) MA,y

Simultaneously solving for 6 equations and unknowns results in:

RB,x = 60 N↗
RC,x = 60 N↙
RA,y = 40 N↘
RA,z = 10 N ↑
RB,z = 20 N ↓

MA,y = 300 N · cm 	



The presence of an odd number of bearings in this problem leads to the unusual scenario of
requiring only some of the ARCs to be eliminated and one ARC to be considered as a true
reaction couple. This example also demonstrates one of the limitations of statically
determinate systems with bearings: Since each bearing type requires at least two reaction
forces to be accounted for, we cannot have any more than three bearings in a statically
determinate problem without some of the reaction forces or couples being known apriori. In
this case, since the journal bearing at A needed to counteract the moment due its own
reaction force, its ARC in the y-direction needed to be considered, which meant that some
of the reactions needed to be provided in the problem statement.

Conclusions and Future Work

In this work, the ambiguous reaction couple (ARC) approach to analyzing bearing and hinge
supports in 3D statics problems has been presented and its utility is demonstrated with three
examples. While most bearings are designed to maintain alignment in a mechanical system, most
can also transmit a small reaction couple. This means that in problems where the bearings are not
properly aligned, reaction couples may need to be accounted for. The dual nature of reaction
couples for bearings led to the development of the ARC approach in which all the possible
reaction couples are first considered during the application of the equilibrium equations and
subsequently a decision is made on whether to keep or discard each reaction couple with the help
of an equations/unknown table. As the three examples in this paper demonstrate, this approach
can be universally applied to any statics problem involving bearings or hinges with a reasonably
straightforward result. The ARC approach can also be helpful in explaining the proper application
of bearings and hinges. Examples 1 and especially 3 are poor applications of bearings and hinges
in a real-world scenario. When discussing this topic, instructors should encourage students to
think about the situations that necessitate the application of bearings and hinges and why the case
where the elimination of all of the ARCs leads to a statically determinate system is preferred to
others. It is the authors’ sincere hope that this technique will help make this topic less confusing
for students compared to how we learned it when we were in their position.

The primary work that is still left to do is to assess the effectiveness of the ARC approach in the
classroom. There are, however, a couple of impediments to this process in a Statics course. First,
3D supports, particularly those that involve bearings and hinges, can be a rather esoteric
component of most Statics courses and are often either not taught at all or briefly covered without
much depth. Collectively, the authors have taught Statics at three different institutions and at only
one did the coverage entail bearing and hinge supports. Bearing and hinge supports are not a part
of the curriculum of the Statics course at our current institution, Rose-Hulman Institute of
Technology, and as such, we cannot assess the effectiveness of the ARC approach in our classes
without significantly modifying the curriculum. Furthermore, 3D rigid-body problems in general
are not as common as 2D rigid-body problems in Statics courses because they are more difficult
to draw, the FBDs are generally not as complex, the translation of the FBD to equilibrium
equations can be much more mathematical as opposed to intuitive and going from three to up to
six equations and unknowns can be more time-consuming. All of this means that unless a 3D
rigid-body problem is relatively simple, it is difficult to have a summative assessment of student
performance in an exam-type setting, for example. This does not mean that making such an



evaluation is impossible; it just means that the particular problem that is designed to assess this
topic is very targeted. If any reader of this work is interested in assessing this technique in their
Statics class, we would be more than happy to provide any assistance that we can.

Even though assessment of the ARC approach is rather difficult in Statics, we do still plan to
study the effectiveness of this technique in a series of courses where its application may be very
important - the Capstone Design sequence at our institution. One of the authors regularly teaches
Capstone Design and has often seen students struggle with analyzing 3D components of their
designs, especially when bearing are involved. We plan on utilizing the crux of this paper for
seniors in Capstone Design as a self-study guide supplemented by a short video in order to
evaluate the effectiveness of this approach in improving student understanding of the analysis of
their designs and reporting our findings in a follow-up paper.
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