
Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Session FA4-2

Advanced Spreadsheet Use to Improve Engineering Education

John H. Ristroph, Ph.D., P.E.
Professor Emeritus, University of Louisiana at Lafayette

Abstract

This paper illustrates methods that can be used across disciplines by applying Excel to engineer-
ing economics. It first discusses intrinsic functions, and then it shows how to use VBA to create
custom functions that use notation familiar to a student. Next it covers how to produce diagrams
and graphics via the drawing toolbar and custom cut-and-paste libraries, as well as how to show
all formulas and logic rather than just numeric results. Then it describes hiding and protecting
answers, and it addresses common notational issues such as subscripts, superscripts, and Greek
symbols. Finally, it opens the door to further development by explaining objects and user forms.

Introduction
Students are encouraged to use spreadsheets via numerous examples in textbooks, but what about
professors? Do they use spreadsheets to solve routine problems, such as those given for home-
work, and in turn encourage students to do so? Probably not. One obstacle is the differences be-
tween spreadsheet notation and that of textbook or manual solutions. Similarly, drawing and la-
beling diagrams can be time consuming. Another major concern is that of security: Copying and
pasting computer solutions is even easier than the time honored tradition of manual cheating.

This paper examines the foregoing issues by first exploring simple solutions and then progress-
ing to more advanced methods. The presentation is based on Microsoft’s widely used Excel soft-
ware [1], but other systems can be used as long as they support user-written routines known as
macros to extend their capabilities. For example, OpenOffice.org’s free Calc [2] system has most
of the capabilities of Excel, but it uses a different dialect of Basic for its macro language. EIOf-
fice [3] is an integrated office system with a spreadsheet very similar to Excel that uses Java to
program its macros. Most engineers are familiar with engineering economics, so examples are
given for that field. The approach, however, is applicable to other engineering fields, and several
references [4-14] allow extending the material presented below, including offering a numerical
methods course using Excel and VBA [15].

Factors and Functional Notation
Spreadsheets have a wealth of built-in or intrinsic functions. Excel’s financial functions are com-
putationally similar to factors used in textbooks, but notational differences sometimes slow
learning. The Visual Basic for Applications (VBA) component of Excel allows custom or user-
written functions that correspond clearly to factors. For example, Table 1 shows how easily the
challenging (P|A,g,i,n) factor is implemented as an electronic factor or Efactor.

Use the Tools|Macro|Security menu to allow macros by setting security at a medium or low
level. Then click Tools|Macro| Visual Basic Editor (or key Alt + F1 1) and click the editor’s In-
sert|Module menu shown in Figure 1 to create a module in which to store functions and subrou-

http://openoffice.org/

Figure 1. Creating a Module

Table 1. PAG(i, n) EFactor
Function PAG(GRate As Double, IRate As Double, n As Integer) as Double

If n <= 0 Then
MsgBox "Last parameter must be positive."
Exit Function

End If
If GRate = IRate Then
PAG = n / (1 + IRate)

Else
PAG = (1 - ((1 + GRate) / (1 + IRate)) ^ n) / (IRate - GRate)

End If
End Function

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

tines. By default the module is named Module1, but that can be changed by editing its property
labeled (Name) shown in Figure 2. Once the module is created, type in the code, such as that
given in Table 1. Then return to the
spreadsheet interface by pressing Alt + F 11
again. A custom function is used just like Ex-
cel’s intrinsic functions such as Sum, so an
entry into a cell such as that shown at the bot-
tom-right of Figure 3,

= 100*PAG(5%, 8%, 5-0) , evaluates
the desired equivalent.

Figure 3 shows the results of applying this
technique to each commonly used factor and
also how each computation would be
performed using intrinsic functions. The
similarity of factors and Efactors allows
students to focus on learning the material as
presented in a textbook and worry about nota-
tion later. Figure 2. Naming a Module

Figure 3. Intrinsic Excel Functions and EFactors

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Basic Graphics
Excel provides a drawing toolbar that can be accessed via the View|Toolbars|Drawing menu. It
has buttons for lines, arrows, their styles, and a Draw menu that allows grouping, ordering, and
other options. It is fairly intuitive, for example, a line is drawn by clicking the line button and
then dragging the line. However, there is one trick worth noting: lines and arrows can be made
precisely horizontal or vertical by depressing the Shift key while dragging.

 Creating shapes is not difficult, but it can be time
consuming. One very easy way to facilitate this
process is to create a basic set of cash flow dia-
grams, such as those shown in Figure 3. Figure 4
illustrates selecting the range around each dia-
gram, typing its name into the name box, and
pressing Enter. Copy these named ranges along
with their shapes by

Figure 4. Naming a Range

• selecting the target cell in the upper-left
corner of where the range is to be placed,

• clicking the name box drop-down to list all
names,

• selecting the desired name,
• keying Ctrl + C to copy it,
• keying Ctrl + G and then Enter to return to the target cell,
• and keying Ctrl + V to paste it.

Scaling is maintained if the receiving range has cell sizes equal to those of the source range. Ad-
ditional editing, copying, and drawing frequently are necessary to achieve the desired final result.
A later section explains how macros can greatly simplify creating graphics.

Showing Logic and Naming Equivalents
Figure 5 shows a solution created us-
ing the simple techniques explained
above. Graphics corresponding to F|A
and to P|A were copied, pasted, and
edited. Keying Ctrl + (accent grave,
usually above the Tab key) shows the
logic of the solution by placing the
display in formula mode, as shown in
Figure 6. Notice that the formulas for
E_10 and W reference E_5 and E_10,
respectively, as named ranges. For ex-
ample, the cell containing the result
119.69 is named by selecting it and
typing SheetName!E_5 into the name
box, where SheetName is the name of Figure 5. Solution Using Simple Techniques

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

the current sheet. The sheetname is included as part of the range name so that name can be used
on other sheets, if needed, but references in expressions on the same sheet do not need to include
the sheetname. Keying Ctrl + a second time toggles the display back to results mode.

Checking Solutions
Students usually want feedback regarding the correctness of their solutions. Table 2 shows a cus-
tom function that determines if a student’s numeric response is within a given tolerance of the
target solution. Allowable AE (absolute error) and APE (absolute percent error) values are input,
and if either one is satisfied, then IsClose is true; otherwise it is false. An exact match is required
for non-numeric responses.

Students can be required to put solutions within specific bordered cells, as shown in Figure 7. If
the bordered cell is H12, then the check cell to its right contains:

Table 2. IsClose Function
Function IsClose(Response As Variant, Target As Variant, AE As Double, _

APE As Double) As Boolean
'Returns True if Response is close enough to Target; else returns False.
On Error GoTo IsCloseFail
If IsNumeric(Response) Then
If (Abs(Response - Target) <= AE) Then

IsClose = True
Exit Function
End If
If (Abs((Response - Target) / Target) <= APE) Then
IsClose = True

End If
ElseIf Response = Target Then
IsClose = True

End If
IsCloseFail:
End Function

Figure 6. Formula Mode

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

=IF(ISBLANK(H 12),"", IsClose(H 12,66.75,0.1,0.01)) This
results in its displaying nothing if H12 is blank. Otherwise, it
checks to see if the answer is 66.75 within an AE of 0.1 and
an APE of 0.01, and its value becomes TRUE or

Figure 7. Checking an Answer

FALSE accordingly. Checking solutions can be extended to
automated grading by storing solutions on sheets that have been declared via VBA code as
deeply hidden so that neither is the sheet visible nor does its name appear in any menu. Then a
VBA procedure can be written to compare a student’s result with the correct one, return a score,
and store it.

Professors can make cheaters work harder by protecting the check cell. First select all cells via
Ctrl + A, and use the Format|Cells|Protection menu to unlock and unhide all cells by removing
all check marks in the dialog box. Then select the check cell and use the same menu to set it to
locked and hidden. Next use the Tools|Protection|Protect menu to allow users to do everything
but select insert columns, so students cannot move the check cell away from the answer cell and
replace it with one of their choosing. Making the checked cell both locked and hidden prevents
its formula from being seen. If students are permitted to look at the formula to determine the an-
swer, then do not make the check cell hidden.

Professors can make cheating even more difficult by using random number generators to provide
problems for each student that have the same logical structure, but different parameters. For ex-
ample, one student’s problem might have an initial investment of $100,000, whereas another stu-
dent’s might have a cost of $103,000 and a slightly different project life. Students still can mimic
the logic of someone who has gotten his or her question correct, but this requires a more sincere
cheater than a simple copier, and some learning might accidentally occur. Implementing individual
questions is clearly feasible, but doing this in a comprehensive, effective manner ultimately requires
logistical considerations best addressed in a separate paper.

Toolbars and Forms
The foregoing procedures enhance the use of Excel in the classroom, but the large number of
seemingly minor activities, such as editing a shape or entering names or using smaller fonts for
time line values, still take time and discourage use. One solution to this is to automate those tasks
with custom toolbars or forms. The primary difference that an end-user perceives is that a tool-
bar’s buttons are graphics whereas form buttons generally are text-based. The positioning of
toolbars is more flexible, but it is easier to implement forms such as the one shown in Figure 8.

The initial steps in creating a form are similar to those presented for a module. Press Alt + F 11 to
open VBA, and use the Insert menu shown in Figure 2, but this time select UserForm. This
causes a blank form to be displayed.
Editing its (Name) property, and
clicking the Toolbox icon and drag-
ging buttons onto the form eventually
results in the display shown in Figure
9. Double clicking a button opens the
code view of the form. For example,
double clicking the help button (with a
question mark) shows the code that is Figure 8. EngrEcon Form

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Figure 9. EngrEcon Form in Design Mode

executed when the help button is clicked from the spreadsheet interface. In this case, it simply
calls another user-written subroutine named ToolBarHelp as shown in Figure 10. Writing VBA
routines to create arrows and perform various formatting chores is not as simple as creating cus-
tom functions to evaluate factors, since it requires a knowledge of VBA’s object structure for
Excel. The following section provides a brief introduction to that topic, and then the next section
shows how the EngrEcon form uses Excel’s objects.

Objects
Most professors have programming experience, but many are not familiar with object-oriented
programming. One of the basic problems in this regard is learning what objects are in a quick,
efficient manner so that one feels comfortable with using them. That is the topic of this section.

Figure 2 shows how to create code modules used for Efactors and forms. A code module consists
of variables used to store data and of procedures (subroutines and functions). Modules are used
to organize a large program, much like directories arrange files on a hard drive. Variables that
can be accessed in other code modules are declared with a Public statement, which allocates
space like the Fortran Common statement. Variables accessible only by routines within their

Figure 10. EngrEcon Form in Code View
Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference

Baylor University
Copyright © 2009, American Society for Engineering Education

code module are declared with a Private statement. Similarly, Public and Private statements can
control how procedures are used by other modules. Within a procedure, Dim statements serve a
role similar to the Fortran Dimension statement for local variables.

Another option in Figure 2 is to create a class module. Just like a code module, a class module
contains storage declarations using Public, and Private statements, and these declarations are fol-
lowed by functions and subroutines. Unlike a code module, a class module’s Public and Private
declarations do not actually allocate storage; they only describe its type, such as Integer or
String, or the potential number of array elements. The actual allocation of storage occurs when
an object is created by code within a code module such as:

Dim MyArrow as Shape

Excel has an intrinsic class module named Shape that has storage allocations such as Height, and
procedures, such as Flip. Declaring MyArrow to be an object of class Shape creates a new set of
variables named MyArrow with individual elements accessible via references such as MyAr-
row. Height. For example, the following statement changes the value of MyArrow’s height:

MyArrow. Height = 20
Such accessible variables are referred to as properties.

VBA records that MyArrow was based on the class module Shape, so Shape’s procedures can
access MyArrow’s data. For example, the syntax for reversing the direction of MyArrow is:

MyArrow.Flip
Such procedures are referred to as methods. Each set of variables and their related procedures is
called an object. Multiple objects can be created, such as You rArrow, as shown in Figure 11.
Some class modules, such as Shape, contain methods for creating new objects. For example,

ActiveSheet. Shapes.AddLine(FromX, FromY, ToX, ToY)
refers to the active sheet and creates a new line object on it.

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Professors developing computer-aided-instruction
using Excel as a platform can regard object ori-
ented programming basically as a naming device
and a convenient way to use Excel’s extensive
subroutine libraries that are stored as class mod-
ules. One of the best ways to learn which objects
exist and how to use them is to click Tools|Macro|
Record New Macro from an Excel spreadsheet,
perform several actions, and then examine the re-
sulting subroutine. VBA’s help menu is another
source of information, but sometimes Internet
searches using the keyword VBA followed by
others words result in quicker finds. Another good
method is to click VBA’s Object Browser icon as
shown in Figure 12, scroll through it (or use its
search facility) until the desired method or prop-
erty is found, and then press F 1.

MyArrow
Storage

Storage
Declarations

Figure 11. Excel Shape Objects

Shape
Class

Module
Functions &
Subroutines

YourArrow
Storage

Figure 12. VBA’s Object Browser

EngrEcon Form
The EngrEcon form uses subroutines that access Excel’s intrinsic objects. It works by first se-
lecting either a range of cells or one or more shapes, and then clicking the appropriate button.
For example, Figure 13 shows drawing down arrows by first selecting E5:H5 and then clicking
EngrEcon’s Down button; the resulting arrows are shown at the bottom of the figure. Shapes
usually are left in a selected state immediately after they are created, so simply clicking the Incr
or Decr buttons increases or decreases the length of the arrows in convenient increments. Click-
ing elsewhere deselects the arrows, and then clicking the third arrow and keying the Delete key
removes it. Multiple shapes can be selected by shift-clicking them.

Figure 14 shows the completed cash flow diagram and solution, as well as providing explanatory
notes on the function of other buttons. The Fmt button used for cell M7 also can create Greek
letters, and it assigns a currency format to numbers. The Eq’n (Equation) button used for cell F9
also provides superscripts and Greek. In this example it accesses a user-defined substitution list
to find FA(in cell F9 and replace it with (F|A in cell J9. Clicking the Help button displays the
additional information shown in Figure 15.

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Figure 13. Down Arrows

Conclusion
Calculators have enhanced engineering education by allowing both professors and students to
explore and solve problems more quickly. Some of the far greater potential offered by
spreadsheets has been incorporated into the classroom, but they remain a largely unexploited tool
in part due to problems with formatting, notation, and graphics. This paper offers suggestions to

Figure 14. Completed Diagram and Solution
Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference

Baylor University
Copyright © 2009, American Society for Engineering Education

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

Buttons (left to right)
Up Draw up arrows with their bases at the bottom of each selected cell.
Down Draw down arrows with their bases at the bottom of each selected cell.
Incr Increase size of selected arrows.
Decr Decrease size of selected arrows.
Dash Toggle selected arrows between dashed and solid lines.
Dot Put ··· in selected cell.
Left Slant selected arrows to left.
Right Slant selected arrows to right.
Flip Reverse direction of selected arrows
Time Draw time line at bottom of selected cells.
Fmt Formats a single cell by performing the following actions in order:

Greek: change g_English to Greek, such as g_d to d and g_D to D
Subscript: whatever is between an underscore and a space
Currency: prepends $; uses no decimals if integer, two decimals if not integer

Eq'n Name a formula cell, format its value, and show its text. Equation entries
must have a cell on the left that contains the name of the formula (with an
optional = sign) with no more than 10 cells between them, such as:

E_5 = = E_20 *(1+i)^-5 *PF(10%,20-5) / g_a
Select the cell the formula cell and click Eq'n to cause the following actions:

Name: the formula cell is assigned the name to the left, such as E_5,
so that the formula cell can be referred to as E_5 in other formulas.

Fmt: the Fmt command is applied to the name cell.
Decimals: integers are displayed as integers, otherwise with two decimals

Show Formula: the text of the formula is put into a cell on the right of the
formula cell and formatted as follows:

Greek: change g_English entries to Greek, such as g_a to a
Subscript: whatever is between an underscore and a space
Superscript: whatever is between a caret and a space
Remove Mulitiply: remove the multiplication symbol *
Substitute: perform substitutions listed on sheet System, such as

changing PF(1 0%,20-5) to (P|F, 1 0%,20-5)
If the cell on the right side of an equation entry is only a value rather

than a formula, then the Show Formula step is skipped.

Figure 4 15. elp Help

facilitate using spreadsheets by applying Excel to engineering economics. It presents basic
intrinsic features and then extends them via macros, and it is demonstrates how a discipline
specific form or toolbar can remove many of the problems associated with spreadsheets.

Extensions to this basic system already are underway to modularize graphic toolkits so that
disciplines other than engineering economics can be served. Other advances include procedures
for giving each student unique homework assignments, automating grading, developing

interactive tutorials, and authoring classroom presentations. Computer-aided-instruction is
improving, but the key word is aided. Professors dedicated to engineering education must
continue to help students reach their potential, and enlightened administrators must encourage
and facilitate the pursuit of excellence in teaching.

Bibliography

1. http://office.microsoft.com/en-us/excel/default.aspx
2. http://www.openoffice.org/product/calc.html
3. http://www.evermoresw.com/
4. http://peltiertech.com/Excel/excellinks.html
5. http://www.anthony-vba.kefra.com/
6. http://www.bettersolutions.com/excel.aspx
7. http://www.cpearson.com/excel.htm
8. http://www.digdb.com/
9. http://www.exceltip.com/category.html
10. http://www.exceltip.com/category.html
11. http://www.functionx.com/excel/
12. http://www.microsoft.com/technet/prodtechnol/office/office2000/proddocs/opg/part2/ch09.mspx
13. http://www.mrexcel.com/articles.shtml
14. http://www.aiche.org/uploadedFiles/CareersEducation/Education/DepartmentUploads/CEI Catalog Spring09.pdf

See CH200 and CH201 course descriptions on page 4.
15. Chambers, Terrance L., “Teaching Engineering Analysis Using VBA for Excel,” Computers in Education Jour-

nal, ASEE, April-June, 2008, p. 71-78.
http://www.asee.org/asee/publications/divisions/coedPapers/display.cfm?pdf=16148 1 .pdf

Note: All web sites were last visited and functional on December 2, 2008.

Proceedings of the 2009 ASEE Gulf-Southwest Annual Conference
Baylor University

Copyright © 2009, American Society for Engineering Education

http://office.microsoft.com/en-us/excel/default.aspx
http://www.openoffice.org/product/calc.html
http://peltiertech.com/Excel/excellinks.html
http://www.bettersolutions.com/excel.aspx
http://www.cpearson.com/excel.htm
http://www.exceltip.com/category.html
http://www.exceltip.com/category.html
http://www.functionx.com/excel/
http://www.microsoft.com/technet/prodtechnol/office/office2000/proddocs/opg/part2/ch09.mspx
http://www.mrexcel.com/articles.shtml
http://www.aiche.org/uploadedFiles/CareersEducation/Education/DepartmentUploads/CEI
http://www.asee.org/asee/publications/divisions/coedPapers/display.cfm?pdf=16148

