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Abstract 

Fiber-reinforced composite materials enjoy widespread uses as structural materials in myriad of 

modern-day applications including airframes, high-performance vehicles, consumer sports 

equipment, biomedical prosthetics, and building construction. Despite years of fruitful progress in 

the materials aspect of composite materials, the still-heavy reliance on manual fabrication and the 

lack of automated composite-making techniques have kept composite materials from being a high-

volume production materials-of-choice and from being easily made into complex shapes with 

consistent quality. To this end, three-dimensional printing of composite materials—a nascent and 

potentially game-changing composite manufacturing technology in its own right—offers an 

enabling technological solutions. The work presented here details a collaborative research effort 

between students and faculty of Canada College and San Francisco State University (SFSU), 

supported by a Department of Education grant, in realizing 3D printing of short-fiber UV-curable 

polymer composite. Four Canada College students working alongside an SFSU student mentor, 

successfully designed, prototyped and commissioned an innovative extrusion mechanism capable 

of printing short-fiber infused polymer composites, at a single-line resolution of 0.5mm and in a 

consistent layer-by-layer fashion. The extrusion mechanism is capable of extruding UV-sensitive 

polymer that incorporates carbon fibers (7µm diameter, up to 0.1g) and cloisites nanoclay (up to 

0.075g) per 1mL of the UV curable polymer, VorexTM. Various composite test specimens were 

printed for mechanical testing and for characterization using a scanning electron microscope. 

Results arising from this research point to: (i) mechanically robust short-fiber composites that are 

capable of being produced by direct 3D printing, and (ii) a remarkable dispersion of short carbon 

fibers in the polymer matrix, which displays relatively defect-free interfacial bonding. Through a 

10-week theoretically grounded, hands on undergraduate research experience, the community 

college students were able to deepen their understanding of the mechanics and manufacturing of 

composite materials, starting from scratch and against a steep learning curve, via meaningful 

experimentations, relentless trouble-shooting, and constant consultation with suppliers and 

industry experts.  

 

1. Introduction 

Fiber-reinforced composite materials have gained popularity as a structural members in aerospace, 

automotive, construction, transportation, biomedical, consumer sports equipment industries 



because of their high strength-to-weight and high modulus-to-weight ratios. Fiber-reinforced 

composites are generally classified into two broad categories: long fiber-reinforced composites 

(fiber length-to-diameter ratio between 200 to 500) and short fiber-reinforced composites (fiber 

length-to-diameter ratio of between 20-60). The former is usually formed by embedding long,  

unidirectional fibers or woven cloth in a polymer matrix; while the latter by the dispersion of short 

fibers in a polymer matrix. The major fibers that are widely used are E-glass, S-glass, carbon, 

graphite, and aramid fibers; whereas common matrices range from polyester, vinyl ester, to epoxy 

resin. Long fiber-reinforced composites have been the mainstay of fiber-reinforced composites 

predominantly due to its superior strength-to-weight properties that are significantly higher than 

metals. Nevertheless, where significant strength-to-weight improvement is not critical relative to 

manufacturing cost, short fiber-reinforced composite materials are often more desirable1. The 

manufacturing of basic, small-volume short fiber-reinforced composite components are labor-

intensive, generally involving a “hand lay-up” where fiber mats are laid out onto molds and coated 

in the polymer, followed by a thermal curing process. For large-volume production, a rich 

repertoire of semi-automated processes are used, which include spray-up, compression molding, 

thermoset compression molding, thermoplastic compression molding, injection molding, 

thermoplastic injection molding, and thermoset injection molding2. Nevertheless, the capital 

investment and technical complexity of these mass production techniques are prohibitive to small- 

and medium-sized enterprises and individuals. To date, it remains a challenge to produce 

customized, complex-shaped composites part, especially at the millimeter and centimeter length 

scales. 

This work describes a collaborative summer research effort between two institutions, Canada 

College (a 2-year community in Northern California) and San Francisco State University (a four-

year university in Northern California) in researching and developing a 3D printing method that 

enables the direct printing of short fiber-infused photopolymer composites. The overarching goals 

of the project are several: (i) to explore 3D printing as an enabling technology to realize small-

volume or one-off, highly customized fabrication of complex-shaped and centimeter-scale 

composite structures, and (ii) to facilitate learning of key topics in mechanical engineering, 

including mechanics of composite materials, mechanical design, 3D modeling, basic electronics 

programming, and hands on fabrication. Equally important, we would like to infuse hands on 

tinkering into important mechanical engineering topics as a means to encourage deep learning, 

critical thinking, and problem solving. By having students work alongside a graduate student 

mentor and a faculty mentor, the additional objective is to provide the context through which 

minority community college students can understand how research is conducted and critical soft 

skills (e.g. resilience, resourcefulness, good communication) that benefit a researcher.  

The faculty mentors and student mentor designed the schedule and milestones for the project, 

which was discussed with the team and agreed upon. A team leader was elected and was 

responsible for tasks assignment. During the 10 weeks, the team of undergraduate students was 

required to meet with the student mentor at least twice per week as a group, and more frequently 

on an individual basis for a “check-in”, progress monitoring, and discussion of the next phase of 

the project. The student mentor act more like an “operations advisor” whose role is to provide 

regular, on-site technical advice and guidance on 3D solid modeling, hands on fabrication, and 

operations of the 3D printers. The faculty mentor meets on a weekly basis with the whole team, 

including the student mentor. For this particular project, the faculty mentor conducted several short 



lectures on composite materials, mechanics of solids, and basic materials science to enable the 

undergraduate students to be acquainted with concepts they would apply in the project.  

 

2. Extruder System Design 

The core of this work is premised on the ability to 3D print short fiber-infused UV curable 

photopolymer resin composites. A critical aspect of this work is therefore the design and build of 

an extruder system capable of simultaneously printing and curing the photopolymer.  Almost all 

of the current dispensing systems used in 3D printing are designed to extrude highly viscous, 

thermoplastic. Currently, there is no known system that readily dispenses UV-curable polymer 

mixed with short fibers. As such, the initial objective of the project is to redesign an existing 

extrusion system to be able to extrude fiber-laden, UV curable polymer. The dispensing system 

consists of two integral components: (i) an extruder, and (ii) a UV curing system, described in the 

following subsections. 

2.1. Extruder Design 

Almost all low-to-mid range 3D printers (i.e. 3D printers with unit prices below $3000) use a 

thermal extruder where thermoplastic filament is fed into a heated chamber, melted, and extruded 

through the print head. Filaments are typically pre-fabricated into a spool and have diameters of 

either 1.75mm or 3mm typically. For this project, the print material feedstock exists in the form of 

a UV-curable, liquid photopolymer rather than a solid thermoplastic. While both types of polymers 

(thermoplastic vs. photopolymer) are eventually extruded, in the case of the photopolymer, a short 

post-extrusion UV light irradiation is necessary to fully cure the photopolymer. In addition, the 

extruder used in this work is required to extrude photopolymers that exhibit a range of viscosities—

from the consistency of maple syrup to that of toothpaste. To this end, we used an existing 3D 

printer platform, but completely redesigned its extruder system. Figure 1 shows the redesigned 

extruder system that contains a stepper motor, an aluminum frame, a motor-driven plunger, 50mL 

extruder syringe with 14-gauge needle, UV LED system, and a fan. Since we are not extruding 

conventional thermoplastic, a heater is not part of the redesigned system. The conventional 

thermoplastic filament system that takes in and extrude solid thermoplastic is also replaced by a 

motor-driven syringe pump system that can precisely dispenses fixed volume of liquid 

photopolymer. Another distinct advantage of this extruder system design is that the syringe can be 

completely removed and replaced between prints. This feature allows syringes containing different 

formulations of epoxy, with or without short fibers, to be easily installed and used in printing. 

Aside from its versatility in printing different types of composites, the ease of changing out 

syringes enables the printing of layers made up of different composites.  



 

Figure 1. A newly designed extruder system (left) that is integrated with an existing 3D printing 

platform (right).  

 

2.2. UV Curing System 

Figure 2 shows the UV curing system that is part of the extruder needle (Figure 1). The design 

allows for the simultaneous dispensing and UV curing of the photopolymer. Eight 365nm-

wavelength UV LEDs—each dissipating 2W—were embedded on a circular PCB board, with an 

aluminum heat sink to dissipate heat emanating from the LEDs. The total power output from this 

LED curing system is designed to achieve complete curing of the polymers used. The lack of 

information on the required irradiance for the polymers used compels the incorporation of a 

variable resistor in order to adjust the irradiance during the testing process. A circuit was designed 

using Eagle, a circuit design software, and milled into a printed circuit board using a desktop CNC 

machine, The Other Mill. An ATtiny85 microcontroller was programmed to send a pulse width 

modulation signal to the transistors and a RGB LED indicator. The RGB LED produces a color 

with the voltage supplied from the potentiometer: a green color meant zero volts and a purple color 

meant five volts were coming from the potentiometer. This assisted the process of adjusting the 

irradiance of the UV LEDs during the cure testing of the composites.  
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Figure 2. (a) Side view of a UV curing system that is integrated with the extruder needle. (b) Eight 

equally spaced 365nm UV light emitting diodes (LED) embedded in the curing system provides a 

quasi-isotropic lighting environment. (c) Magnified view of the embedded LEDs.  

 

3. Materials: Fibers and Matrices 

Narrowing down the matrix-fiber combination was necessary to focus on a composite mixture that 

provided smooth extrusion with a paste-like consistency. An ideal composite would have the 

ability to form a small bead when extruded and hold a shape so that more layers could be laid upon 

it in the printing process. The composite also needed to cure within one second of exposure to UV 

light to provide a completely cured composite. UV curing of resins are common in 

stereolithography (SLA) printing where a UV laser cures a bath of photopolymer resin layer by 

layer[4]. This research is adapting the curing process of photopolymers while introducing fibers in 

order to produce a product with higher toughness and ultimate tensile strength (UTS) when 

compared to traditional 3D printed materials. The mix ratio must be carefully monitored because 

the fiber volume fraction affects the curing of the composite. When the composite is saturated with 

fiber, UV light will not be able to cure the matrix because the fibers are blocking the UV light. 

Since the UV light is applied from the top, the fibers create a shadow in the resin, causing the 

shadowed part to not cure. Similarly, in random discontinuous short fiber reinforced composites, 

the elastic modulus and strength decrease as the volume fraction of fiber increases[3]. 

Several matrix materials were used, including (i) a polyester resin, Solarez (Wahoo International 

Inc., Vista, CA), (ii) a proprietary polyester resin, Vorex (MadeSolid Inc., Berkeley, CA) and (iii) 

a cationic epoxy, Loctite 3355 (Henkel, USA). All resins used were curable using a 365 nm UV 

light. The UV curing matrices extruded alone had a low viscosity similar to maple syrup, making 

them undesirable in this application. To increase viscosity a surface modified nanoclay was added 

to the matrix. The fibers tested for reinforcement were milled glass fibers (16 micron diameter; 

230 micron mean length), Kevlar® pulp (Fibre Glast Developments Corporation), 250 milled 

carbon fiber (7 micron diameter; 250 micron mean length), 100 milled carbon fiber (7 micron 

diameter; 100 microns mean length), or silicon carbide micron-whisker (2.5 micron diameter; 50-

80 micron mean length).   

The mechanical properties of the composites were determined using theoretical modulus values 

calculated using the Halpin-Tsai model1. These equations predict the elastic properties of a 

composite material based on the geometry and orientation of the fibers and elastic properties of 

the matrix and fibers. Theoretical values showed that Vorex and a five percent volume fraction of 

250 milled carbon fiber would provide the largest modulus. Vorex and a five percent volume 

fraction of 100 milled carbon fiber showed the second largest modulus.  

Each batch of composite material was mixed using a spatula in a drill press running at 600 rpm 

from 10 to 20 minutes until the batch was visually well mixed, meaning the presence of fiber 

and/or clay clumps were not visible.   

 



4. Testing Procedure 

Each matrix-fiber combination was evaluated for printability and curing ability as well as print 

quality in order to identify the optimal parameters that would give rise to a viable composite. 

Testing was implemented to compare the elastic modulus and ultimate tensile strength (UTS) to 

that of pure matrix materials, with commercially printed 3D printed poly-lactic acid (PLA) used 

as a reference. The PLA samples were printed using an Ultimaker 2+ desktop 3D printer. To 

prepare the pure matrix tensile specimens, each matrix was poured into an identical shaped mold 

conforming to the dimensions of standard tensile specimen and cured with UV light. These 

specimens were used control specimens. The DFCs were 3D printed with the aforementioned 

extruder system at various volume fractions of fibers in different matrices. All tensile test 

specimens conform to the ASTM D638-02A standard for plastics and tensile tests were done with 

an Instron 3369 tensile test machine. 

 

5. Results and Discussion 

Figure 3 (a) shows that the extruder system successfully printed fully cured photopolymers—

Solarez, Vorex, and Loctite 3355. Figure 3 (b) shows three as-printed specimens of Kevlar-Vorex 

composite and Figure 3 (c) shows post-tensile test specimens of various composites. Figure 3 (d) 

and 3 (e) are the scanning electron micrographs of the cross sections of a representative printed 

composite, E-glass/Vorex. The matrix-fiber combinations that were able to print a standard tensile 

test specimen are listed in Table 1. Figures 4, 5, and 6 are the tensile test results from short fiber-

reinforced polymer composite using Vorex (Figure 4), Solarez (Figure 5), and Loctite 3355 (Figure 

6), with 3D-printed polylactic acid (PLA) using a standard Ultimaker 2+ machine as a comparison. 

As expected, the test results generally show a lower elastic modulus and UTS for each composite 

compared to a 3D printed PLA sample. Inherently, all three polymers have lower elastic modulus 

than PLA when fully cured. When comparing the elastic modulus and UTS of between the molded 

polymer matrix specimens and its 3D printed fiber-reinforced specimens, the composites of these 

polymers showed lower elastic modulus and UTS than the molded polymer matrix. The key reason 

behind this observation is shown in Figure 3 (d) and 3 (e), where due to the non-optimized 

fabrication parameters, poor adhesion between layers during 3D printing leading to microcracks 

and delamination, as well as a significant amount of embedded air bubbles, result. Upon examining 

Figure 3 (e), the volume fraction of the air bubbles in our specimens are similar to or greater than 

the volume fraction of fibers, leading to compromised mechanical properties in the reinforced 

composites. 
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Figure 3. (a) Printing and curing of photopolymer in progress. (b) As-printed short Kevlar fiber-

reinforced Vorex composite tensile test specimens. (c) Tensile test specimens made of different 

combinations of fibers and polymers. (d) and (e) Cross-sectional scanning electron micrograph 

of a sub-optimally printed composites showing the presence of significant voids and incomplete 

adhesion between layers of prints. 

 

Table 1: Recipe of each composite mixture that enabled successful printing of a standard tensile 

test specimen.  

Specimen 

Index 

Matrix 

Type 

Matrix 

(mL) 

Fiber 

Type 
Fiber (g) Clay Type Clay (g) SiC (g) 

1 Vorex 80 CF 100 7.4 Nanoclay 6 3.75 

2 Vorex 80 E-Glass 20 Nanoclay 10 0 

4 Loctite 25 E-Glass 10 - - - 

6 Vorex 80 CF 100 7.4 Nanoclay 6 - 

9 Vorex 80 E-Glass 20 Cloisite 10 - 

13 Vorex 80 Kevlar 1 Cloisite 3 - 

17 Solarez 60 Kevlar 1 Cloisite 3 - 

10 Vorex 20 CF 100 3.7 Cloisite 6.3 - 

 

 



Figure 4: Stress-strain graph of Vorex matrix alone, Vorex/fiber composite of different fiber 

combinations, and as-printed PLA as a comparison. 

Figure 5: Stress strain graph of Solarez matrix alone, Solarez and different fiber combinations, 

and as-printed PLA as a comparison. 



Figure 6:  Stress-strain graph of Loctite matrix alone, Loctite with different fiber combinations, 

and as-printed PLA for comparison purpose. 

 

5.1. Influence of fibers 

The fiber type influenced print quality where it was found that the 250 milled carbon fibers were 

too long producing clumps in the mixture with Vorex and was not able to extrude out of the 14 

gauge needle. An attempt with a larger syringe was used and was unsuccessful because the mixture 

would not extrude and the larger syringe was not able to mount to the modified extruder. The 

CF100 provided a printable composite with Vorex at low volume fraction. It was found that more 

than a 10% volume fraction of carbon fibers inhibited the curing time. This was due to the fibers 

blocking UV light from curing the matrix surrounding the fibers. The carbon nanofibers at less 

than 2% volume fraction mixed very well and printed easily, but the saturation of these nanofibers 

caused the matrix to not cure due to blocking of the UV light from curing surrounding matrix. The 

Kevlar pulp was not easily mixed into each matrix causing a very lumpy mixture and poor print 

quality if it printed at all. E-glass provided good printing capabilities and faster curing than 

matrices containing carbon fibers.  

 

5.2.  Influence of matrix 

Each matrix influenced print quality as well. Vorex cured in one to four seconds when exposed to 

the UV light. Nevertheless, the extent of curing is also intimately dependent on the amount and 

type of fibers present in the mixture. Vorex also was easily mixed and would not cure in the syringe 

or container. Solarez was sensitive to light where it could slightly cure in the container or syringe 

if the vessel was exposed to sunlight or room light (fluorescent lamps). The samples with Solarez 

were purposely taped or wrapped to mitigate exposure to light. We observed that while Solarez 

printed well, the extruded paste did not cure instantly in the presence of UV light. It would gel but 

not fully cure, indicating the monomers were not completely crosslinked possibly due to 



insufficient irradiation. Each of the Solarez samples were later cured fully in with prolonged 

exposure to sunlight.  

 

5.3. Influence of printing parameters 

Settings in the slicing software allowed the control of flow and print speed. Each composite 

mixture had a different consistency where the printer settings had to be adjusted.  The flow rate, 

layer height, and speed affected the time the layers were exposed to the UV light which would 

affect interlayer bonding. Having a slow speed would produce completely cured layers and a fast 

speed would provide a partially cured layer. The completely cured layers caused poor print quality 

when the needle would run over the previous layer that had clumps or air bubbles. These cured 

hard layers caused the needle to divert from its path and lay more material in those areas causing 

layer build up and low quality and non-usable samples. In some samples the layers would harden 

fully preventing subsequent layers from bonding to previous layers. 

 

5.3.  Influence of other additives and mixing method 

The addition of bentonite clay—an agent that promotes shear-thinning—made the mixture thicker, 

more consistent, and easier to print. On the other hand, the addition of silicon carbide whiskers 

made each mixture very thick and difficult to extrude. The silicon carbide also produced bigger 

agglomerates which would not disperse even when mixing for long times. The presence of air 

bubbles also inhibited interlayer bonding and weakened the overall sample. These air bubbles are 

likely due to a suboptimal mixing technique. Additional processing of the composite material is 

needed to eliminate agglomeration and air bubbles.  

 

6. Insights on student learning 

Pre- and post-summer research internship surveys5 of participating students were conducted to 

investigate the effectiveness of the research program in reaching its intended goals, namely, to 

attract and retain minority students into the STEM field. These results are included in Table 2 

below, using a 1 (Strongly Disagree) to 5 (Strongly Agree) scale for the pre- and post-internship 

responses. Comparing pre- and post-summer research internship surveys of participating students, 

it was found that after the 10-week summer internship, community college students (i) gained 

stronger understanding of what a STEM career path entailed and how it aligned with their own 

career aspirations, (ii) were more likely to pursue a STEM career, (iii) had a more informed 

perspectives on the nature of the work of researchers. For many of these students, the most 

beneficial aspect of this internship is the imparting of the scientific method of research, which were 

otherwise not readily understood and learned at a two-year community college, whose focus is on 

foundational courses. Students reported a deeper understanding of the research process in their 

field, stronger ability to analyze scientific data and interpret results, keener sense of how theory 

and practice are integrated, and most importantly, an appreciation of how scientists work on real 

problems. In addition, because students had an active involvement in knowledge construction 



rather than being a passive receiver of knowledge, they gained first-hand appreciation of the 

importance of being resilient as a researcher. Outcomes from this survey support and validate the 

significance of this collaborative summer internship program between Canada College and San 

Francisco State University, and underscore the importance of research mentorship as a critical 

means of attracting and retaining minority students in the STEM field. 

 

Table 2. Pre- and post-summer research internship surveys conducted over 20 participating 

community students. 

Question 
Pre-

Internship 

Post-

Internship 

Improvement 

(%) 

I understand the research process in my field. 3.21 3.86 20.25 

I understand how scientists work on real problems.  3.61 4.28 18.56 

This internship clarifies whether I wanted to 

pursue a STEM research career  

3.79 4.36 15.04 

I have the ability to integrate theory and practice. 3.61 4.07 12.74 

I have skill in interpreting results.  3.86 4.32 11.92 

I have the ability to analyze data and other 

information.  

3.96 4.39 10.86 

I have a clear career path. 3.79 4.14 9.23 

I understand how knowledge is constructed.  3.86 4.21 9.07 

I have tolerance for obstacles faced in the research 

process.  

4.04 4.39 8.66 

I am ready for more demanding research. 3.82 4.14 8.38 

I understand science. 3.71 4.00 7.82 

I understand that scientific assertions require 

supporting evidence.  

4.25 4.43 4.24 

I am confident I will complete a BS in a STEM 

field  . 

4.71 4.89 3.82 

 

 

7. Conclusions 

We have successfully designed and built an extruder system capable of printing short fiber- 

photopolymer composites on an existing 3D printer platform. The 3D-printed short fiber-infused 

photopolymer composites was evaluated by visual inspection to determine 3D printing quality and 

by performing tensile tests on test specimens of standard sizes. We further compared the ultimate 

tensile strength and elastic modulus of different combinations of fiber/matrix composites against 

as-printed polylactic acid thermoplastics. Tensile test results showed that the composite samples 

had lower UTS and elastic modulus than printed PLA samples. Based on observation using a 

scanning electron microscope, sub-optimally printed composites contained a significant amount 

of voids between layers attributed to the incomplete adhesion between the layers of prints and air 

bubbles that were trapped in the photopolymer during mixing. Such defects are likely the results 



of extensive cavitation during mixing, as well as less-than-optimal print speed, layer height, flow 

rate, and curing rate. In addition, the lower strength of the short fiber-infused polymer also point 

to incomplete curing of the inner core of the polymers, due to light shielding by fibers such as 

carbon and Kevlar. As such, further optimization of the system is required to produce mechanically 

enhanced short fiber-reinforced photopolymer composites. Lastly, the process of researching, 

designing, and implementing from thought to fruition is a valuable educational experience for the 

community college students involved in this project and reinforces their interest in a STEM career. 

Students reported significant gain in their understanding of the research process, insight into how 

scientists work on real problems, and overall increase in confidence about their analytical ability. 
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