
AC 2008-2023: FOSTERING DESIGN ACROSS MULTIPLE DISCIPLINES WITH
GRAPHICAL PROGRAMMING AND FPGAS.

Shekhar Sharad, National Instruments

Greg Crouch, National Instruments

Reid Lee, National Instruments

Brian Johnson, National Instruments

© American Society for Engineering Education, 2008

P
age 13.621.1

Fostering Design Across Multiple Disciplines With Graphical Programming

and FPGAs.

Abstract
Design has become an essential component of today’s engineering education curriculum. However

traditional tools and techniques that are primarily text-based have hindered students and professors from

taking advantage of the various hardware platforms such as FPGAs that are available in order to be able

to teach design effectively. This is especially true for disciplines other than electrical engineering and

computer science, where the students are not experts in programming with textual languages. With the

evolution of graphical programming tools, it is now possible to leverage the intuitive and powerful

technology of graphical programming to target hardware platforms such as FPGAs in order to teach

design across multiple disciplines. In this paper we demonstrate a new plug-in that we have built in order

to be able to target a commonly used Xilinx Spartan 3E evaluation board with NI LabVIEW, a commonly

used graphical programming software. We will also show a demonstration of this plug-in and discuss the

pros and cons of such an approach

Introduction

Achieving proficiency in designing systems with real-world signals has become a necessity in every

engineering discipline today. Systems of different scale are being created and used by mechanical,

aerospace, biomedical, automotive, chemical and electrical engineers alike[1,2,3]. This is a very good

development – now domain experts from mechanical, biomedical and chemical engineering can create

much more efficient embedded systems that help solve problems in their area of expertise.

However, it is worth noting that unlike electrical engineers, the chemical, biomedical and mechanical

engineers are not core-embedded programmers. This is significant because the tools used to teach design

of embedded systems are still based on traditional textual approaches. In addition, embedded devices are

increasing in complexity – for example, the number of gates on an FPGA have increased keeping pace

with Moore’s law, resulting in more sophisticated embedded platforms. This makes it exceedingly

difficult to teach the design process effectively using traditional techniques. The traditional tools also

restrict introducing embedded systems to introductory engineering courses which serve as an avenue to

create excitement for design in the engineering education.

In this paper, we will examine graphical programming as a possible avenue to leverage to teach design.

We will also examine an FPGA(Field Programmable Gate Array) board found in many embedded design

laboratories, the Xilinx SPARTAN-3E XUP board and finally talk about the a plug-in that we developed

for a leading graphical programming language, LabVIEW to target the Xilinx SPARTAN-3E FPGA

board.

Traditional Vs Graphical Programming for Design

Design has evolved to comprise of two distinct components, software and hardware. From the software

side, literature[4,5,6] shows that the actor-oriented or graphical programming languages are better suited

for embedded design because they are based on the dataflow paradigm. Figure 1 shows an example of an

actor-oriented graphical programming language, NI LabVIEW[7].

P
age 13.621.2

Figure 1. NI LabVIEW, Ex

In order to better understand how act

design, let us take a simple exampl

sensor – a situation that is present in

nature, students could acquire from

abort a particular process. Figure 2a s

graphical programming language wh

representation.

(a)

Figure 2. Acquiring data from an ex

It can be seen that the graphical prog

any programming knowledge to crea

W, Example of actor-oriented, graphical programming lan

w actor-oriented, graphical programming languages are b

xample of acquiring and presenting data from an extern

sent in most real-world, useful systems. Data could be an

 from a thermocouple to regulate a temperature or a swi

re 2a shows how one would go about achieving this with a

ge while figure 2b shows how the same can be achieve

 (b)

 an external sensor in (a) graphical programming language

programming language

l program in figure 2a is intuitive enough for someone w

to create. There is a loop to ensure that data is collected

ng languages

s are better for teaching

external source, like a

 be analog or digital in

 a switch to initiate or

 with an actor-oriented,

chieved with a textual

nguage and (b) textual

one who does not have

ected continuously and

P
age 13.621.3

there is a function block that collects data and a graph that displays it. Figure 2b, on the other hand, uses

the standard set of calls to initiate the same, which while a little more complicated, may still be possible

to teach. Now, let us go ahead and acquire from two sensors, in parallel. The resulting programs would be

as shown in figure 3a and 3b.

(a) (b)

Figure 3. Acquiring from two sensors, using (a) graphical programming and (b) textual programming

In this case, the key characteristic to note is that since actor-oriented, graphical programming languages

are based on dataflow paradigm, all that the student/educator needs to do is to replicate the block of code

that was written for acquiring data from one sensor and reconfigure the block to give it the new

information as shown in figure 3a. On the other hand, to achieve the same task, in parallel, with text based

languages requires a significantly higher effort than just copying the code written previously. This is

because the user has to configure the buffers, parallelize the code and make sure that there are no shared

resources or that the right shared resources are allocated and so on.

The key takeaway from this particular example is since the dataflow paradigm is inherently parallel,

graphical programming languages, based on dataflow paradigm are also inherently parallel, making them

suitable to program both multi-core processor based systems and FPGAs. This translates to a significant

advantage while designing systems with FPGAs as we will discuss later in this paper.

Further extending the same example, in order to do anything real with the real-world signals, timing is

essential. We may need to acquire from different sensors at either different rates, or those sensors are

controlled by different clocks and we need to be able to control and modify the program written in figure

3 to do this. Figure 4a shows how this can be done with graphical programming and figure 4b shows the

same implementation with textual code. The change in the graphical programming code is subtle but

intuitive, the loop can now be configured to include timing, without having to learn a convoluted series of

syntax and terms – from a pedagogical perspective, this can be a big advantage when dealing with

P
age 13.621.4

hardware that has multiple timing so

such systems is difficult and cumbers

heterogeneous, parallel embedded-sy

two semesters for engineering studen

design to non-EE and CS majors a

languages in our view provides signi

have developed a plug-in driver fo

Xilinx SPARTAN-3E XUP board thu

non-EE and CS disciplines.

(a)

Figure 4. Acquiring from two se

FPGAs for Design

The other half of the design equation

platform for academia include:

• Features – does it have the ne

• Relevancy to industry – is thi

• Cost – is it cheap enough to b

• Support – can this platform b

There are a lot of core silicon pieces t

The authors have chosen FPGA for th

be used to teach design with real-

topics that are relevant for real-wor

ing sources. Figure 4b has some issues for pedagogy

mbersome. Second, learning the various intricacies of pro

systems and completing the project may not be possib

students that are non-EE or CS majors. Hence, for the pur

ajors as well as freshmen engineering students, graphic

s significant advantages over traditional, textual methods.

ver for LabVIEW, a leading graphical programming la

ard thus bringing the advantages of graphical programmin

 (b)

 two sensors with timing in (a) graphical programming and

programming

quation involves hardware. Some of the areas we evaluat

 the necessary peripherals that students would need?

is this technology being used by industry?

gh to buy for the whole lab?

form be debugged if needed?

ieces that meet these demands, FPGAs, DSPs, Microproce

 for this paper as an example to illustrate how graphical p

-world hardware (silicon). FPGAs also bring several

world design – parallelism in design, integration with

ogy – first, debugging

of programming timed,

possible in one or even

the purpose of teaching

raphical programming

thods. In this paper, we

ing language to target

amming and FPGAs to

ng and (b) textual

valuate for a hardware

oprocessors and others.

hical programming can

everal other important

n with wide variety of

P
age 13.621.5

peripherals, quick prototyping platform that is widespread in industry as a platform to test out a design

before going for full scale production.

Xilinx SPARTAN-3E XUP Student Board

The Xilinx SPARTAN-3E XUP Starter Board is based on the Spartan 3E FPGA from Xilinx. At its core,

it has a 500,000 gate Spartan 3E FPGA with a 32 bit RISC processor and DDR interfaces. The board also

features a Xilinx Platform Flash, USB and JTAG parallel programming interfaces with numerous FPGA

configuration options via the onboard Intel StrataFlash and ST Microelectronics Serial Flash. The Spartan

3E Starter board is also compatible with the MicroBlaze Embedded Development Kit (EDK) and

PicoBlaze from Xilinx. Further technical specifications for this board can be found at [8]. Figure 5 shows

the Xilinx SPARTAN-3E XUP board.

Figure 5. Xilinx SPARTAN-3E XUP Board

LabVIEW FPGA Module

NI LabVIEW is uniquely suited for FPGA programming because of its ability to clearly represent

parallelism and dataflow as discussed in the previous section. The NI LabVIEW FPGA Module uses

LabVIEW Embedded technology to extend LabVIEW graphical development to target FPGAs on NI

reconfigurable I/O (RIO) hardware. With the LabVIEW FPGA Module, educators can create custom

measurement and control hardware without low-level hardware description languages or board-level

design and perform unique timing and triggering routines, ultrahigh-speed control, interfacing to digital

protocols and digital signal processing (DSP). One of the features listed on the LabVIEW FPGA page [9]

is its ability to target FPGAs without having to write any textual code. It can also integrate existing

VHDL code if needed[10]. Figure 6 shows an example of code written using LabVIEW FPGA module.

�

� ��������	�
�����������������������
������

P
age 13.621.6

LabVIEW FPGA driver for Xilinx SPARTAN 3E XUP Board

In order to facilitate bringing real-world design to engineering especially to non-EE and CS disciplines,

we have developed a plug-in for LabVIEW FPGA that lets educators and students target the Xilinx

SPARTAN-3E board from LabVIEW. Previously, only National Instruments hardware could be targeted

with LabVIEW FPGA making it hard for educators to take advantage of this technology. This plug-in is

available as a download for educators worldwide[11]. Figure 7 shows how this plug-in shows up in

LabVIEW FPGA after it is installed.

Figure 7. Xilinx SPARTAN-3E Starter Board in LabVIEW FPGA

Additionally, we have developed support for all the peripherals on the Xilinx SPARTAN-3E Starter

Board in this plug-in. Figure 8 shows all the of peripherals that we support on the plugin for LabVIEW

FPGA.

��������	���������������� ���!�
"#
$%&�����������������
�

P
age 13.621.7

 We have also taken care to build this plug-in so that it is compatible to work with all of the internal

LabVIEW FPGA systems. This means that educators are only limited by the size of the FPGA to create or

reuse any existing programs created with LabVIEW for FPGA. One such example is shown in figure 9

wherein we are reusing an existing program to create a 16-bit counter that increments every time the

button is pressed.

Figure 9. A counter program reused with LabVIEW for the Xilinx SPARTAN-3E

Conclusion

Design is becoming more and more crucial to creating well-rounded engineers. Real-world engineering

projects revolve around creating designs and the engineers creating them are no longer just embedded

experts from EE and CS. It is therefore critical to find innovative ways to teach design with intuitive tools

and cost-effective hardware. In this paper, we present one such approach to teaching design, with

graphical programming and FPGAs. We have created a plug-in for NI LabVIEW to target the Xilinx

SPARTAN-3E XUP board and incorporated peripheral support and native LabVIEW FPGA integration

thus enabling the educators and students to not only create their own FPGA designs but also reuse

existing designs created in LabVIEW FPGA. We believe that such an approach to teaching design with

graphical programming tools and reconfigurable hardware will foster design in the non-EE and CS

disciplines where the steep learning curve of traditional tools have posed several barriers – both to

teaching and learning.

References

[1] Rapid Prototyping of an FPGA based sensor system for Biomedical Monitoring, Newman, Kimberly;

Laramie, Nathan; Medina, Casey, WSEAS Transactions on Biology and Biomedicine. Vol. 3, no. 2, pp.

97-103. Feb. 2006

[2] A new approach to detect-mitigate-correct radiation-induced faultsfor SRAM-based FPGAs in

aerospace application, Yanmei Li, Dongmei Li, Zhihua Wang, National Aerospace and Electronics

Conference, 2000. NAECON 2000. Proceedings of the IEEE 2000

[3] Position feedback control with a 'smart' controller based on an FPGA, Seals, R C, IEE COLLOQ DIG.

no. 017, pp. 6/1-6/2. 1994

[4] $	� '���(����)� �	� *����)� �	� "�+����)� ���� ,	� ������	� #��� �+���������� �� �� ���(� ������������

������������ ��	����������	
�����������)�-./.012&3452&2.)�2..2	�

647�8	�9����:��)�"	����������)�
	�$������)�����,	������	�
� ��� ��������������������;� �������������	
�

����������)��2/<01<225<=&)�2..&	�

P
age 13.621.8

6�7��	�9���+	�#�������� �>����������+������������������������ �����>������� �������� +%��� ������+� ���	�

��� �������)��� �����#�����������)�<33&	�

[7] ?>��>��(�����������)�

� �1@@;���	��	���@��>;���@������ �	���@(������@�&=3=4,<**4&4-�=��<4�,&=33�=�*3�A?���,��

���� B����C<333�-D��

[8] Overview of Xilinx SPARTAN-3E XUP Board, http://www.xilinx.com/products/devkits/HW-

SPAR3E-SK-US-G.htm,

[9] What is LabVIEW FPGA Module, http://www.ni.com/fpga/what_is.htm

[10] Integrating existing VHDL code into LabVIEW FPGA, http://zone.ni.com/devzone/cda/tut/p/id/3483

[11] Download the Xilinx SPARTAN-3E Board plug-in for the LabVIEW FPGA Module,

http://digital.ni.com/express.nsf/bycode/spartan3e?opendocument&lang=en&node=seminar_US

P
age 13.621.9

