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Predicting learning outcome in a first-year engineering course: a human-centered learning 

analytics approach 

 

Abstract: 

First-year engineering courses are relatively large with several sections; thus, it can be rather 

difficult for an individual instructor to recognize when a particular student begins to lose 

engagement. Learning management systems (LMS) (e.g., Canvas, Blackboard, Brightspace) can 

be valuable tools to provide a consistent curriculum across several sections of a course and 

generate data regarding students’ engagement with course materials. However, a human-centered 

approach to transform the data needs to be utilized to extract valuable insights from LMS data. 

The purpose of this Complete Research paper is to explore the following research questions: 

What type of LMS objects contain information to explain students' grades in a first-year 

engineering course? Is the inclusion of a human operator during the data transformation process 

significant to the analysis of learning outcomes? For this, data from LMS is used to predict the 

learning outcome of students in a FYE course. Two predictive models are compared. The first 

model corresponds to a usual predictive model, using the data from the LMS directly. The 

second model considers the specifics of the course, by transforming the data from aggregate user 

interaction to more granular categories related to the content of the class by a human operator.  A 

logistic regression model is fitted using both datasets.  The comparison between predictive 

measures such as precision, accuracy, and recall are then analyzed.   

The findings from the transformed dataset indicate that students’ engagement with the career 

exploration curriculum was the strongest predictor of students’ final grades in the course. This is 

a fascinating finding because the amount of weight the career assignments contributed to the 

overall course grade was relatively low. Additionally, while both models produced adequate fit 

indices, the human-informed model performed significantly better and resulted in more 

interpretable results. 

Introduction and Background 

First-year engineering programs 

As the 21st century approached, Bordogna and Ernst claimed that the engineering education 

paradigm shift needed to consider integration [1]. From a philosophical point of view, the 

authors argued that the field of engineering education was prepared to shift from a disconnected 

curriculum to an integrated curriculum. A more integrated curriculum would help students 

appreciate the importance of complexity and reflect the disciplinary integration of the 

engineering profession [1]. From their perspective, integration meant holistic education, an 

understanding that all knowledge acquired was with an engineering purpose. From this 

paradigm, first-year engineering (FYE) programs have been established as an essential part of 

engineering education and have significantly contributed to student success [2].  

Before institutions established FYE programs, engineering students entered engineering and took 

classes focused heavily on science without direct connections to engineering[1]. Some FYE 

programs, also called Freshmen Engineering Programs, used approaches to integrate a set of 

courses from science, humanities, and engineering (e.g.,[3]). While others consisted of a set of 



engineering courses that exposed students to engineering early on without explicit integration 

with other science and humanities courses (e.g., [4]). Additionally, while some programs were 

designed to host students across all engineering disciplines, others were created for specific 

disciplines (e.g., [5], [6]).  

Over the years, many FYE programs have been established. These programs are different across 

institutions, varying in length, the number of credits, and the disciplines that the students are 

prepared to enter [7]. Nonetheless, FYE programs have proven successful for engineering 

students. For instance, when comparing two different programs at different institutions, 

Richardson and Dantzlet [8] found that the retention and academic performance of students were 

improved by their participation in FYE programs. In addition, a study involving 28 years of data, 

caused Budny and colleagues to find a link between FYE completion and graduation success [9]. 

Marra and other researchers, after analyzing the data from a cross-sectional and longitudinal 

study, concluded that there was an improvement in intellectual development when comparing 

students who had completed an FYE course to their counterparts [10]. Additionally, retention, 

success, and motivation are some of the improved metrics that are attributed to the establishment 

of FYE programs at specific institutions [11]–[13].  

Since the establishment of the first FYE programs, they have been transformed and updated to 

accommodate the changing needs of students and the needs of the environment [14], as well as 

the need to fulfill external factors such as accreditation standards [15]. In the current times, it is 

common that large FYE programs receive thousands of students each semester, and the content 

and strategies used are the result of a long history of amendments. For instance, the increasing 

number of students in some programs led to multi-sectional courses [16], while some of the 

ABET renewed criteria drove programs to include ethics and professional skills in FYE [15].  

Therefore, FYE programs are complex. For example, when preparing students for different 

disciplines, FYE programs have multiple stakeholders with a wide range of interests [17]. 

Therefore, the required content for these courses can face constant changes and can be over-

extended [17]. Furthermore, FYE courses are often large. Whether the approach is to have a 

shared large lecture or multiple sections, large enrollment is a factor that affects FYE programs. 

For instance, large enrollment implies a need to dynamically organize instructional support 

teams, graders, teaching assistants, and instructors, among others [18].   

Need for content evaluation of FYE 

The complexity of FYE programs related to multiple stakeholders and large enrollment affects 

the ability to evaluate the content and teaching strategies used. For example, attending to various 

stakeholders can reflect on constant changes related to the content, which may be difficult for the 

deployment of interventions to evaluate changes to the courses. In addition, the prominent 

enrollment aspect jeopardizes the ability to form student-instructor relationships. Large 

enrollment hinders the communication between instructors and students [19], limiting the ability 

of the instructors to gauge the understanding or situation of their students. Consequently, limited 

communication restrains FYE program instructors’ and instructional support teams’ knowledge 

of how changes in teaching strategies used and content selected affect students’ experiences. 

All the evaluations made for FYE bring a common understanding of the good that this type of 

program brought to engineering education, along with the need for a careful evaluation of the 

content and strategies used in FYE programs. FYE programs receive thousands of students each 

semester, with varying levels of academic preparation and prior knowledge about engineering 



and higher education [7]. These two aspects, enrollment size and diversity of students' 

backgrounds of FYE programs, require greater responsibility from course designers, instructional 

teams, and stakeholders. FYE students are in a crucial stage of their academic career, with their 

first-year experiences affecting their motivation to continue and their success [7].  Due to the 

importance of FYE programs' role in student development and the programs’ complexity, there 

is a need to assist instructors and instructional support teams with useful information to make 

both course- and program-level decisions.  

Although an evaluation of FYE programs at the content level is necessary, finding information 

for such evaluation can be challenging. For instance, some content changes that are incorporated 

into FYE programs are done for a short period of time, further complicating the timely 

evaluation of the content. Nevertheless, with the increasing use of data from Learning 

Management Systems (LMS), components that are critical for students’ success in their FYE 

experience can be understood.  

LMS data and data analytics as possibilities for the evaluation of FYE content 

In recent years, the use of LMS has increased in higher education, with LMS becoming a 

standard platform of communication between instructors and students [20]. The use of LMS data 

creates a possibility to regularly evaluate the content and strategies on FYE programs. LMS data 

can provide granular information about the use of materials, student access to specific content, 

and interaction with discussion forums, among other things [21]. Additionally, the use of LMS in 

large-enrollment classrooms is beneficial since these systems allow for a standard structure 

across multi-sectional classes and multiple instructional users [22]. Therefore, the current use 

and possibility for data retrieval from LMS can contribute to the regular evaluation of FYE 

programs.  

Previous research with LMS data has focused on predictive analytics, emphasizing the 

performance of the machine learning models [23]. However, given the complexity of FYE 

programs, we hypothesize that using a human-centered approach will generate valuable insights 

into the evaluation of FYE content and strategies. In learning analytics, a human-centered 

approach refers to approaching learning analytics solutions while constantly responding to the 

why and how humans will use the solution [24]. The main benefit of using a human-centered 

approach is that consideration for how the results can be interpreted is part of the design of the 

model, whereas non-human centered machine learning models often have results that are 

difficult to interpret [24]. One of the most popular approaches to analyzing LMS data in learning 

analytics has addressed the use of data collected in the LMS to predict learning outcomes 

(typically in the form of learner's satisfaction or grade) [25]. The importance of such analysis has 

been justified by the possibility of predictions evolving into a vital tool to find at-risk students 

and identify student behaviors that can lead to success [25]. However, although learning outcome 

predictions offer much insight into educational research, they are not without limitations.  

Despite the potential of learning outcome prediction, at least two limitations have accompanied 

the significance of such studies. First, the predictions made seldomly address the fact that they 

were system- and context-dependent, meaning that the variables collected were unique to a 

specific course and a particular platform [26]. This limitation influenced the generalizability of 

the prediction models, which was scarcely discussed in publications. Second, in the majority of 

the cases, the techniques used in these predictions did not return many insights on education 

itself and only focused on the methodologies used for predictions, making it difficult to 



understand the students' behaviors that lead to success [26]–[28]. These limitations contradicted 

the original purpose of LMS, which were designed primarily to help educators supervise the 

learning process of individuals and organizations [29]. As a result, such predictions offered 

limited assistance to instructors in using the outcomes to make data-informed and diagnostic 

decisions in their courses. 

Importance of context and a Human-Centered Learning Analytics approach to evaluate FYE 

content 

In addition to these prediction studies using LMS data, some other studies have offered a good 

understanding of the importance of the context in the ability to use predictive models in FYE 

programs. For example, Marbouti and colleagues found that almost all predictive studies were 

not easily reused [30]. Their proposal then was to use students’ current academic performance to 

build predictive models. For this purpose, the researchers used semester performance as a 

predictor. The focus of their research was to design an accurate model with information available 

to the instructors at the beginning of the semester. They found that their model was able to 

predict 82.6% of the students at risk only with the information from two weeks of the semester. 

They also discussed the importance of reliable grading for the use of this approach and the 

contextual nature of such models. 

Marbouti and colleagues [25], [30], [31] bring to the front the issue of data quality and data 

usability. Although identified as one of the most critical factors in the success of learning 

analytics approaches, data quality is still one of the aspects that fail to garner enough attention 

from researchers [32]. As a result, in this study, we emphasize data transformation, which is 

critical to the use of LMS data in predictive studies. Data transformation is viewed as one vital 

aspect of data quality, which refers to transforming raw data into variables on an intermediate 

level to fulfill different objectives (e.g., standardize, summarize). Under complex conditions, 

such as predicting learning outcomes, data transformation requires human intervention. For 

instance, Human Factors Engineering researchers argue that even though one could think that 

humans are not involved in some machine learning and data science processes, better solutions 

could be achieved in a hybrid space in which human operators are considered as processing 

elements and interpreters [33]. 

Among the various predictive models built with LMS data, most have been used to mainly 

identify at-risk students; however, we argue that another purpose of predictive models could be 

to evaluate the content of the course and inform instructional teams of such results. For instance, 

we assert that, from a learner-centered perspective, the ultimate goal of using these predictions is 

not only to find at-risk students but also to help instructors improve their courses. Therefore, we 

advocate for an understanding of the prediction variables so that instructional teams are aware of 

the content and strategies that are more valuable to the students and advocate for the emphasis on 

such objects.  

The purpose of this paper is to evaluate the content of an FYE course from a human-centered 

approach using LMS data. For this purpose, we explore the following questions:  

(1) What type of LMS content objects contain information that can explain students' grades 

in a first-year engineering course?  

(2) Is the inclusion of a human operator during the data transformation process significant to 

analyzing learning outcomes?  



 

Framework: Human-centered learning analytics 

According to Shum and colleagues, human-centeredness in learning analytics (HCLA) means 

taking into account the range of users that will engage, interact, and use the data, as well as the 

circumstances of such user-tool interactions [24]. In their summary, Shum and colleagues specify 

that HCLA needs to account for human factors, considering at least Why and How analytics tools 

will be used. As we progress with the use of data to evaluate the content and strategies of FYE 

programs, it is critical to use a human-centered approach. For instance, we perform the analysis 

from the perspective that the benefits of data analysis on LMS data should be for instructors, 

programs, and students. In addition, we will ensure that our results are of use to this specific 

program, accounting for the context and human knowledge of the course.  

For this purpose, we will compare two different approaches. In the first approach, we will use a 

traditional prediction approach. In the second approach, we will use a human-centered approach. 

The second approach is human-centered due to two conditions. First, the objective responds to 

the stakeholders directly; we are performing a predictive analysis on FYE program data to obtain 

valuable insights that help us evaluate the content of an FYE course. In addition, the stakeholders 

will be able to use these insights directly in the classroom by promoting higher student access of 

the content tagged as relevant and identifying students early on that are not complying with the 

access of these materials. Second the complexity of the context is accounted for by transforming 

the data with the help of an expert grader of the class to reflect the main components of the 

classroom.   

Methods: 

Context and participants  

The course this study used was an FYE course in Spring 2019 with approximately 187 students 

divided into two main sections at a midwestern university. Section 1 had a total of 100 students, 

while Section 2 had a total of 87 students. The course content was concerned with data analytics, 

professional habits, engineering modeling and design, communication, and teaming. In addition, 

this course served students who had not chosen their engineering disciplinary areas yet. The 

grade breakdown of the course is generally 40% projects, 37% exams and quizzes, 10% 

assessments related to the team, 9% class preparation and participation, and 4% career 

exploration assignments. The university's first-year engineering cohort in Spring 2019 consisted 

of 26% female students and 74% male students. Among these students, 47% identified as White, 

26% international, 11% Asian, 5% of two or more races, 5% Hispanic/Latino, 4% Black or 

African American, and 1% Other.  

The course's final grade corresponded to a letter grade (A, B, C, D, or F), with a plus or minus 

indicating the student's achievement level. In 2019, these courses were hybrid (online and in-

person), in which smaller portions of the course with approximately 25 students were able to go 

to the classroom in person once a week. Thus, during any given class period, some of the 

students could attend the lecture with the instructor in the classroom while others were using a 

streaming device. Because of the hybrid nature of the course and the number of students 

registered, students and instructors alike were accessing the LMS continuously.   



In this study, we studied the difference between statistical analysis performed using LMS data 

with and without involving human operators with knowledge of the undergraduate first-year 

engineering course. By enlisting the contextual knowledge of the human operator, we were able 

to categorize students' clickstream behaviors with this knowledge. 

Data Categorization 

The LMS information contained 389 and 387 distinct objects for Section 1 and Section 2, 

respectively. These objects correspond to content that is by default in the platform before the 

course starts (e.g., welcome to the course, general use of the platform) and objects uploaded or 

created by instructional members (e.g., quizzes, lectures). Three researchers participated in this 

study, reviewed the objects, and discussed the possible categories until agreement was reached 

with eight broader categories and 38 granular categories to which the distinct objects could 

belong. One of the researchers had experience as a former student and teaching assistant in the 

class. After reaching an agreement on the categories, one of the researchers classified the objects 

into both broader and granular categories, leaving some of the objects for further discussion with 

the team. The remaining objects were classified through discussion until an agreement was 

reached. The definitions of the broader classification categories are found in Table 1.  

 

Table 1.   

Broader Classification Categories  

 

Category  Definition  # Objects 

Section 1 

# Objects 

Section 2 

 Career 

exploration  

Refers to videos, plans of studies, and external links 

that were designed to help students explore the 

different engineering disciplines.    

69 69 

 Assessment  Refers to any traditional grading object, such as 

quizzes, homework, and activities for extra credit for 

which the students receive a grade. This category was 

left out from the modeling, as it was directly related to 

the learning outcome.  

48 41 

 Miscellaneous  Refers to links or content objects related to 

management (e.g., regarding requests) or general 

information (e.g., university policies, emergency 

evacuation).  

99 83 

Student 

Support  

Refers to materials published for students to get advice 

on specific topics that can help them succeed in the 

course. This category includes materials related to 

effective learning practices, among others.  

2 4 

 Materials  Refers to links, documents, or content objects that 

include information related to tools and topics not 

covered directly through the course, but that might be 

necessary to succeed (e.g., basic excel operations 

materials, data collection strategies, datasets, among 

others).  

37 52 



 Lecture content  Refers to videos, PowerPoint slides, and other 

documents that cover topics directly related to the 

course's objectives and that are typically posted in 

sequential order. Lecture material does not include 

content related to career exploration or design 

projects. It was not possible to code this category at a 

more granular level.  

43 45 

 Teaming  Refers to content on group assessment and 

assignments, as well as content on creating good team 

groups, such as strategies for teamwork.  

24 24 

 Project  Refers to any object type related to projects. These 

include but are not limited to videos, PowerPoint slides, 

and other documents available for students to review.    

67 72 

 

Data analysis: 

Before modeling, we summarized the data available to better understand the variables that we 

were measuring to evaluate the content of this first-year engineering course. Afterward, the 

analysis of the data was performed using a series of logistic models. The response variable 

corresponded to a binary classification of the learning outcome. Students whose final grade was 

A, A+, or A- were coded as one, and those whose final grade was lower than A- were coded as 

zero. The decision for the binary classification was made because an expert grader argued that, 

based on their experience in this course, there was a large difference between students that 

earned an A and students who had less than this letter grade. Further, there were few 

observations that had a final grade lower than A-.  

A logistic linear model was used as the prediction tool due to two main reasons. First, a logistic 

type model serves well the objective of predicting students that can be at risk, while offering an 

approach in which it is still possible to understand which factor affects the model. Second, it was 

likely to have an unbalanced dataset and logistic regression is one of the most common 

techniques used in such cases [34]. In addition, logistic type models have appeared previously in 

LMS prediction of at-risk students’ literature [25]. 

Two types of models were trained.  The first type corresponded to models using summaries of 

the total accesses, such as the number of total accesses and the number of unique objects 

accessed. Three models were under this category, Model 1.1, Model 1.2, and Model 1.3. Model 

1.1 corresponds to a model in which the only predictor for the achievement of an A was the 

number of clicks (NC) on the LMS. Model 1.2 corresponds to the model in which the only 

predictor was the number of unique objects visited (UNO). Finally, Model 1.3 is a model in 

which the explanatory variables correspond to NC and UNO. These first models reflect on the 

usual approach of summarizing the data with the information that comes from the platform 

without any human transformation. The second type corresponds to models that included the 

accesses discriminated by the broader categories (See Table I). For model 2.1, the NC to each 

broader category was included as an explanatory variable. In model 2.2, the UNO from each 

category was used as an explanatory variable. Model 2.3 corresponds to all variables from NC or 

UNO. From Model 2.3, a stepwise regression procedure [35] was used to select the variables that 

explained the largest variance in the grade. Model 2.4 was obtained using both backward and 



forward selection. Backward and forward selection are model selection strategies used frequently 

to select the more meaningful variables in models and therefore get the most parsimonious model 

[35]. In backward selection, all variables are considered at first, and the variables without 

relevance in the model are removed until all variables are meaningful to the model. Forward 

selection starts with the variable that contributes the most to the variance explanation of the 

model and add variables until no significant difference is obtained from including further 

variable [35]. After obtaining the final model, we ran verifications of linear assumptions [36]. 

For instance, the Variance Inflation Factor (VIF), was used to detect possible multicollinearity 

[37], as some of the variables were hypothesized as possibly correlated.  

The evaluation of the performance of the different models was conducted by using Section 1 as 

the training dataset and Section 2 as the testing data set. Different measures were used to 

compare the models. The accuracy measures the probability for the model to be correctly 

classifying a student, regardless of whether the students is at risk or not. Precision measures the 

effectiveness of the model when predicting students that are not at risk. The recall corresponds to 

the ability of the model to detect students that are at risk. Finally, the F1 score corresponds to the 

harmonic mean of the precision and recall, summarizing the performance of the model when 

classifying both students at risk and students not at risk. For each model, the four measures were 

obtained to understand the usability and generalizability of the model.  

Results  

We had a total of 187 students participating in this study. Of these students, 77% had an A as 

their final grade in their course. The percentage of students getting an A was not statistically 

different across sections (see Figure 1). From Table 2 it is possible to see that the average 

number of clicks (NC) for Section 1 and Section 2 was close to the number of unique objects 

(389 and 387, respectively). However, for Section 1, the NC is higher than the number of objects 

available, while for Section 2, it is less than the number of objects available. In addition, students 

from Section 1 visited an average total of 220 unique objects (NUO), while students from 

Section 2 visited an average of 211 unique objects. Both sections show very dispersed 

distributions, with a standard deviation that reached almost a third of the mean value for the NC 

variable and a quarter of the mean value for NUO.  

 

Figure 1  

Distribution of Grades per section   

 

 



Analyzing the information by category, we found that, on average, students clicked more objects 

than the number of objects available when it corresponded to categories such as assessment, 

student support, materials, teaming, and project. Also, students’ number of clicks was less than 

the number of objects available for the categories career exploration, miscellaneous, and lecture 

content. When analyzing from the NUO, student support, assessment, and materials were the 

categories with the highest number of objects accessed. In contrast, career exploration and 

miscellaneous had less than 50% of the objects accessed.  

 

Table 2  

Summary statistics of objects clicked per student 

 

 Section 1 Section 2 

 NC 

Mean 

(SD) 

NUO 

Mean 

(SD) 

NC 

Mean 

(SD) 

NUO 

Mean 

(SD) 

All objects available in 

the LMS 

392.48 

(109.72) 

220.80 

(50.53) 

374.20 

(118.59) 

211.87 

(52.20) 

Career exploration 0.64 

(0.30) 

0.44 

(0.22) 

0.62 

(0.30) 

0.43 

(0.23) 

Assessment 

 

1.33 

(0.35) 

0.74 

(0.14) 

1.32 

(0.37) 

0.75 

(0.16) 

Miscellaneous 

 

0.67 

(0.21) 

0.42 

(0.13) 

0.63 

(0.20) 

0.40 

(0.12) 

Student Support 1.22 

(0.65) 

0.94 

(0.39) 

1.18 

(0.57) 

0.85 

(0.24) 

Materials 1.58 

(0.55) 

0.82 

(0.15) 

1.23 

(0.45) 

0.68 

(0.15) 

Lecture Content 0.97 

(0.34) 

0.59 

(0.15) 

0.96 

(0.42) 

0.52 

(0.13) 

Teaming 

 

1.20 

(0.53) 

0.62 

(0.20) 

1.08 

(0.54) 

0.60 

(0.24) 

Project 

 

1.29 

(0.57) 

0.61 

(0.16) 

1.24 

(0.61) 

0.60 

(0.18) 

*Number of unique objects (NUO) refers to the count of unique objects accessed by the student in 

the semester 

**Number of clicks (NC) refers to the number of clicked objects during the semester 

 

From Table 3, we can observe that the LMS accessing behavior does contain information that is 

relevant to predicting a student's learning outcomes. Regarding Model 1.1 and Model 1.3 it is 

possible to observe that the accuracy of both models is the same. However, Model 1.1 is more 

precise when predicting students’ achievement an A in the course, while the F1 score favors 

Model 1.3 Both models seem to include relevant information regarding the prediction of student 

outcome. 

Another relevant result from Table 3 corresponds to good accuracy achieved by even simple 

models. For instance, a logistic regression paired with summarized accessing behavior (Model 

1.3), achieved 83.9% accuracy. Although the accuracy in Model 1.3 intuitively could be caused 



by correlation between NUO and NC, an analysis of the VIF overruled this possibility. The 

maximum VIF for Model 1.3 was 3.48  

For Model 2.1, the VIF was also calculated, with a maximum of 3.31 obtained when evaluating 

the NUO on lecture content. Although none of the variables were significant in this model, in the 

linear relationship, NUO of students’ support, miscellaneous, projects, and teaming showed a 

negative relationship with respect to students gaining an A in the class. While assessment, career 

exploration, lecture content, and materials are categories that showed a positive relationship.  

For Model 2.2, VIF had a maximum value of 3.95 corresponding to NC on lecture content. This 

model resulted in two significant variables, NC career exploration and NC miscellaneous objects. 

When using just the number of clicks, most of the variables resulted in a positive relationship 

except for NC materials and NC miscellaneous.  

 

Table 3  

Model comparison 

 

 Model *** Model  Precision  Accuracy  Recall   F1  

Model 1.1 Number of unique objects 

(NUO*)  

83.1%  81.6%  95.5%  88.9%  

Model 1.2 Number of clicks (NC**)  81.5%  81.6%  98.5%  89.2%  

Model 1.3 NUO+NC  83.5%  83.9%  98.5%  90.4%  

Model 2.1 NUO by category  86.8%  80.5%  88.1%  87.4%  

Model 2.2 NC by category  

 

83.3%  82.8%  97.0%  89.7%  

Model 2.3 NUO by category + NC by 

category 

84.9%  81.6%  92.5%  88.6%  

Model 2.4 NC career exploration + NUO 

materials  

87.5%  85.1%  94.0%  90.6%  

Model 2.5 NC career exploration  85.1%   

*Number of unique objects (NUO) refers to the count of unique objects accessed by the student in 

the semester 

**Number of clicks (NC) refers to the number of clicked objects during the semester 

*** The first type of model, models using summaries of the total accesses, such as the number of 

total accesses and the number of unique objects accessed are identified with a starting numbering 

of one.  The second type of model, models using categorized summaries, are identified with a 

starting numbering of two.    

 

For Model 2.3, the maximum VIF obtained was 12 corresponding to the NC of career 

exploration and the NUO of career exploration. This model failed the multicollinearity 

assumption. Nonetheless, the NUO of materials, and the NUO of students support result was 

significant with NUO of student support having a negative effect and NC materials having a 

positive effect on the final grade.  



Model 2.4 is the result of using both backward and forward model. From both model selection 

strategies, the same model resulted in the best model. This is model 2.4. Model 2.4 has only two 

variables: NC career exploration and NUO materials; both significantly explain the final grade 

on the course for the students. Both significant variables have a positive relationship with the 

final grade. These results point to the importance of access to career exploration and other 

materials.  

When comparing the different models, the models that contained human categorized data (e.g., 

model 2.4) achieved better precision, accuracy, and recall than those that used only summaries of 

the total access. Students' number of clicks in objects categorized as career exploration achieved 

an 83.9% accuracy on predicting whether a student would get an A or a lower grade in the 

course. This finding is relevant, as career exploration materials account for only 4% of the grade, 

and access to the career exploration materials occurred mainly at the beginning of the semester.   

Discussion 

The purpose of this study was to evaluate the content of a course of an FYE engineering 

program. Numerous evaluations of the FYE program have been made at the program level [9], 

[10], and the benefits of such programs have been proven. In this study, we offer insights into the 

content that is relevant for students’ success.  For instance, we found that although the career 

exploration assignments weighed very little in overall course grade, students’ access to the career 

exploration materials was most predictive of student overall grade. The importance of career 

exploration might be underestimated by instructors without the results of this study since it might 

be considered unrelated to the subject matter of the course and takes up only 4% of the total 

grade. These results indicate the significance of career exploration content objects can be 

interpreted in two ways: in the light of internal and external motivation. In terms of internal 

motivation, more motivated students might look for more information about career exploration 

than those who only access objects in the course with greater weight in the course grade. On the 

other hand, in the light of external motivation, it is possible that students who explore these 

objects find more motivation to pursue a path in engineering, and because of that, they obtain a 

greater grade in the course. Either way, the categorized results give the instructional team 

insights on the importance of these objects and help outline some strategies to help students 

succeed. For example, giving students opportunities to reinforce the access to these objects, 

improving these materials, or early monitoring of students' access to these materials.  

In addition, while there have been many prediction studies conducted in the context of large 

courses, this research compared two analytic approaches to determine which yielded the better 

prediction and returned the most insights into the classroom. The research presented differs from 

other predictive models at different levels. For instance, the use of the prediction is not only to 

identify students at risk (e.g., [25]) but also to provide insights into the relevant content. In 

addition, the use of a human-centered approach to transform the data is crucial to address the 

complexity related to content. We showed the differences in the prediction metrics and the 

interpretation of the models. While a model without categories would give us only a prediction, a 

categorized model can open room to understand what content has more relevance. For instance, 

the results highlighted the importance of the number of clicks that a student had on objects 

categorized as career exploration.  

The supervision of learning processes for individuals and organizations is an essential goal for 

higher education institutions [38]. For instance, while institutions create room for a more diverse 



background of students and increase the number of students on their student board, monitoring 

learning processes for different groups of students becomes a necessity. This is of particular 

importance for FYE programs due to their complexity. In addition, the richness of LMS data can 

lead educators to find important metrics about student engagement, find students at risk of 

dropping the class and generate insights for instructors to make decisions and improve materials 

[39], [40].Due to its complexity, LMS data analysis might require human intervention to ensure 

data quality, particularly for categorizing the data [32]. 

The involvement of a human operator who has internal knowledge of the general structure, 

content, format, and design of the course yielded unexpected results regarding the significance of 

access to certain types of content objects and their influence on student success. As shown in our 

model comparisons, the findings in this study revealed what would most likely remain hidden 

without the involvement of human operators in the data transformation and analysis process. 

These findings supported previous literature on the importance of HFE [33] and emphasized the 

context-dependent nature of predictions in education [27]. Research findings that take the 

aforementioned factors into account have the potential to lead researchers to discover new 

patterns and relationships regarding student behaviors via LMS data and explore the underlying 

explanations for these behaviors, provide directions for future research, and offer instructors a 

new perspective to examine their courses for improvement to facilitate student learning.   

Although it was necessary to employ a human operator for this study, the overarching argument 

of the study was to show the importance of LMS data and the need for a human centered 

approach when considering the evaluation of content in FYE programs. Therefore, a human 

operator might not be required if there is a coding schema that links the course content with the 

LMS objects. That is, to not only predict at-risk students but also evaluate the content of FYE 

courses, it is necessary to develop a naming scheme that gives enough information to use LMS 

data for FYE content evaluation. A general naming with the broader categories used in this 

article is possible; however, better naming conventions can be used if granular content categories 

are defined and followed when using an LMS.  

Limitations 

Some of the limitations of our work are related to the contextual dependence of the data. For 

instance, the data obtained, and the categories used are relevant for the course; however, they 

cannot be used for other FYE programs. In addition, even though the models used in this study 

are interpretable, more complex modeling should be considered in future studies to place more 

emphasis on the trade-off between interpretability and robustness of the methods. Lack of time 

data due to the storage of information from the LMS is another limitation. The LMS used did not 

provide access to the time in which the students clicked the objects. 

Conclusion 

FYE programs are a crucial part of engineering education     . They are also      complex 

environments. Evaluation of the content and strategies used in FYE is essential but, at times, also 

challenging to execute. LMS data represents an alternative for evaluating      an FYE program's 

content. However, currently, LMS data are often only used for at-risk prediction. Despite 

yielding meaningful insight, such predictions often disregard the need to also provide insights 

into course decision making. In this case study, we present a human-operator approach that 

predicts students at risk while also returning insights into the classroom. We conclude that career 



exploration items contained the highest amount of explained variance when predicting students' 

final grade. The single use of students' access to career exploration content was able to predict 

student’s final grades with an 84% precision in the class. The results generated with a human-

categorized model give the instructional team insights on the importance of these objects and 

point to some strategies to help students succeed. For example, giving students opportunities to 

reinforce the access to these objects, improving these materials, or early monitoring the students' 

access to these materials.  

Research to practice 

This paper informs practice in FYE classrooms in the following manner. First, analyzing 

information on student-LMS interaction is critical; this information is often readily available and 

can be valuable for uncovering insights into the content and strategies used in FYE classrooms. 

Nonetheless, for the data from LMS to be useful, it is necessary to use a naming convention and 

do so with a person who is knowledgeable about the content and strategies used in the classroom. 

In addition, while there exist previous prediction studies in FYE classrooms, there is a need to go 

beyond prediction studies and think from a human-centered approach about How and Why users 

will use the information from these studies. Finally, results of this case study show career 

exploration materials to have an effect on the student’s final grade. This would suggest that there 

can be space to investigate if this is the case for other settings, and if so, give more relevance to 

these types of materials in FYE courses.  
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