
Paper ID #37981

Building a model of polymorphism comprehension
Joshua Gross

Joshua Gross is an assistant professor of computer science at CSUMB. He spent nearly a decade as a software engineer,
earning an MS in software engineering from the University of St. Thomas in St. Paul, Minnesota. He holds a PhD in
information sciences and technology from Penn State, where his research focused on the intersection of artificial
intelligence and human-computer interaction. His current research is focused on the psychology of programming, with the
goal of better understanding factors that support student success in undergraduate computer science coursework and in
software development professions, with the hope of addressing the severe shortfall of qualified developers.

Kevin Coogan

Kevin Coogan is an instructional faculty member at Hampton University in Hampton, VA. He received his Ph.D. from the
University of Arizona where his primary research focus was on malware obfuscation techniques. Over the past eleven
years he has taught a wide variety of courses including information security, networking, operating systems, data
structures, and introductory programming. His current teaching is focused primarily on introductory programming and
data structures, and his current research interests center on improving student outcomes in these and related core courses.

Sarah Heckman (Teaching Professor)

Gabriel Silva de Oliveira

© American Society for Engineering Education, 2022
Powered by www.slayte.com



Building a model of polymorphism comprehension

Abstract

Mastering subclass polymorphism in object-oriented (OO) programming is critical because
polymorphism plays a central role in many commonly used design patterns and in software
development generally. However, designing and implementing polymorphic solutions is
challenging for novice programmers because polymorphism is an emergent consequence of
correctly using multiple OO language features. In order to eventually improve polymorphism
instruction, this research focuses on developing a model of polymorphism comprehension, along
with a schema for placing students within that model. A case study was conducted with ten
students in an OO CS2 course. Participants completed several short assignments, then
participated in mock whiteboard interviews. Analyzing these interviews, researchers derived a
three-level model of polymorphism comprehension: basic structured software design principles,
OO abstraction principles, and OO polymorphism principles. Data show a major gap between OO
abstraction and polymorphism, indicating a need to focus on moving from inheritance to
substitutability.

Introduction

While basic programming concepts require correctly using a keyword or code structure,
polymorphism is emergent. Rosson & Alpert defined subclass polymorphism as a property that
”allows different objects to respond individually to precisely the same message” [1], a definition
affirmed by Armstrong’s survey of definitions of object-oriented (OO) concepts [2]. Because
implementing a polymorphic solution requires correctly integrating several challenging
underlying concepts, polymorphism is among the most complex topics taught in introductory
courses.

A very simple example of subclass polymorphism can be demonstrated by calling a method via
late binding on each element in an array containing multiple types. In Java, a programmer must
(see Listings 1 and 2):

1. Define a superclass with at least one method (Foo, Line 18)

2. Define one or more subclasses (Bar & Grault, Lines 24 & 30) that override the method

3. Declare an array of the superclass type (Line 3)

4. Add instances of the superclass and subclass(es) to the array (Lines 4-8)



5. Iterate over the array, assigning each element in turn to a variable of the superclass type
(Line 11)

6. Call the method declared one the superclass-type variable (Line 12)
1 class Main {
2 public static void main(String[] args) {
3 Foo [] f = new Foo[5];
4 f[0] = new Foo();
5 f[1] = new Grault();
6 f[2] = new Bar();
7 f[3] = new Foo();
8 f[4] = new Grault();
9

10 for(int i = 0; i < 5; i++) {
11 Foo temp = f[i];
12 temp.quux();
13 System.out.println("---");
14 }
15 }
16 }
17
18 class Foo {
19 public void quux() {
20 System.out.println("Running quux() in Foo");
21 }
22 }
23
24 class Bar extends Foo {
25 public void quux() {
26 System.out.println("Running quux() in Bar");
27 }
28 }
29
30 class Grault extends Foo {
31 public void quux() {
32 super.quux();
33 System.out.println("\tRunning quux() in Grault");
34 }
35 }

Listing 1: Late Binding Using OO Polymorphism in Java

1 Running quux() in Foo
2 ---
3 Running quux() in Foo
4 Running quux() in Grault
5 ---
6 Running quux() in Bar
7 ---
8 Running quux() in Foo
9 ---

10 Running quux() in Foo
11 Running quux() in Grault
12 ---

Listing 2: Example Output



Related Work

For the purposes of this paper, we define polymorphism comprehension as the ability to select,
design, and implement a solution using subclass polymorphism where appropriate. Programmers
unable to master these skills may struggle to be hired as software developers. This research was
inspired by a discussion with an industry collaborator, who shared that several students failed to
complete a whiteboard interview because of this struggle.

Polymorphism has been cited repeatedly as one of the most challenging topics in introductory
programming [3, 4]. While Bergin asserted that students can learn polymorphism when beginning
to program in an objects-first approach [5, 6], not all programming course sequences use an
objects-first curriculum, and despite using objects-first, Ragonis and Ben-Ari did not cover
inheritance or polymorphism [7]. Schmolitzky argues for teaching interfaces before inheritance,
in part to delay and prepare students for polymorphism [8]; a model of polymorphism
comprehension could validate that approach.

Drawing on Liberman et al. [9] and Chen et al., [10], Mills et al. developed a list of four common
misconceptions due to ”simplistic alternative programming models” [11], based on the challenges
of overriding, dispatch, and inheritance-based type constraints. In particular, Liberman found late
binding and dispatch to confuse teachers learning OO; one participant believed that downcasting
was necessary to use an overridden method, while another believed that overriding a method in a
subclass changes the superclass. The assignment used in this research addresses all four
misconceptions, and in the context of design, rather than programming or comprehension, as in
Mills.

Research Questions

While the ultimate goal for this research is to improve instruction of polymorphism, it is first
necessary to define a model to evaluate outcomes. Assessing polymorphism comprehension in
exams requires using low-stakes conceptual questions or simplistic programming problems [12],
and completed homework and projects do not demonstrate which aspects of polymorphism a
student found challenging to design. The research questions addressed here are:

1. How can polymorphism comprehension be modeled?

2. How can students be assessed within that model?

Methods

Because this research was partly motivated by software engineering hiring practices, whiteboard
interviews were adopted as the primary assessment mechanism. In a whiteboard interview, an
interviewee is asked to solve a challenging problem by explaining a solution verbally and
visually, using a whiteboard to demonstrate design and programming techniques. Despite
concerns of bias [13, 14], whiteboard interviews have become a core part of the hiring process for
software engineers [15] because they are believed to represent a simplified model of real-world
challenges.



Research Protocol

A case study was conducted at a small liberal arts college in the Midwestern United States
focused on students from backgrounds historically underserved by higher education, including
people of color, people from rural areas, and people from lower socioeconomic strata. Of the 14
students in a CS2 course focused on OO programming in Java, 11 consented to participate,
including nine men and two women, three Black students (including one woman), and one student
retaking the course. The students were a mix of mathematics and CS majors and CS minors, and
in their first through final year. All took CS1 in Java; two had transferred in CS1 credit.

An IRB approval was granted by the host institution. During the consent process, students were
informed that the research project would address polymorphism. All students completed all
activities as part of the course, regardless of their consent status. Consent documents were kept
from the first author (the course instructor) until course grades were submitted. Data collected
from non-consenting students was then discarded. (When referring to assignments, this paper will
use the term students; when referring to data, it will use the term participants.) The overall
research design included four separate assignments, all involving polymorphism:

1. A one-hour lab completed in programming pairs

2. A one-week homework assignment, completed individually

3. A two-week project developed for this research, completed individually, described below

4. A 10-30 minute whiteboard interview, described below

The project and whiteboard interview both used Corc, a framework for developing interactive,
graphical card game assignments in Java. Previous work has explored Corc’s effectiveness in
motivating students to complete challenging introductory programming assignments redacted.

Corc is a large library that allows educators to build interactive card game assignments, exposing
only domain classes to the students. As seen in Figure 1, students are given classes like Card,
Face, Suit, and Hand. Per assignment instructions, students use these classes to implement
specified parts of a card game, such as an automated player or a hand scoring method. Corc uses
library classes, naming conventions, and interfaces to connect to student code and implement
graphics and interactivity using JavaFX. Students do not implement any UI code or call methods
in the UI code.

Strategy Pattern Project

A new project was developed as part of this study, in which students implemented the Strategy
design pattern [16]; Bergin suggested its inclusion as an early introduction to polymorphism [5].
Strategy uses a polymorphic callback mechanism, called inversion of control [17], typical of
many challenging design patterns. It allows a program to dynamically select an approach to solve
a problem, often based on system state. For a card game, these classes could be created:

1. A Player class that contains the hand of cards and has methods to add and discard cards

2. An abstract Strategy superclass, which encapsulates calls to a single method, playRound



Figure 1: Basic Classes in Corc

3. Multiple subclasses of Strategy that implement playRound using different algorithms

Player contains an attribute of type Strategy; when playing a round, Player passes control to the
Strategy object, which calls back to Player to act on decisions. Algorithms are substituted by
changing the instance stored in this attribute to a different subclass.

For this project, the card game Gin was chosen. In this version of Gin, each player receives ten
cards, which can be formed into groups (called melds) of at least three cards in one of two forms:
sets, the same face (e.g., four kings); or runs, sequential in the same suit (e.g., the 4, 5, and 6 of
hearts). The first player to get all ten cards into non-overlapping melds wins the game. Each
round, a player chooses either a face-up card (discarded by the last player) or a face-down card
from the deck, and then discards one card. The only choices made are selecting which card to
pick up, and which of the 11 cards to discard.

The student’s task was to build a competitive player to play against a human or built-in AI player
by implementing both the algorithms and the Strategy pattern itself. The assignment instructions
include a class diagram, several sequence diagrams, and high-level descriptions of an algorithm
for each Strategy subclass. To familiarize students with the Strategy pattern, they first
implemented two simple, naı̈ve algorithms that build only sets and runs, respectively. Students
then implemented three final GinStrategy subclasses, each of which chose cards differently based
on the game state, and changed to another subclass when necessary. The classes implemented
these algorithms (Figure 2):



• At the beginning of the game, BuildMelds selects any card that creates a new partial meld or
that adds to an existing meld, until each card in the hand is in a meld.

• In the middle of the game, CompleteMelds chooses which melds to keep or discard, as new
cards become available.

• Toward the end of the game, WinEndGame looks for one of a small number of cards that
will complete the hand.

Figure 2: Final Strategy Class Diagram

After completing the project, each student participated in a whiteboard interview conducted by
professional software developers. Interviewers had prior experience in conducting whiteboard
interviews as part of their company’s hiring process, and were trained in research ethics. The
researchers wrote the interview protocol with input from the interviewers. The interviews were
video recorded for later transcription. Students were able to use verbal and written descriptions,
including pseudocode or class diagrams.

The interview protocol consisted of two parts, both of which used Corc. Participants received a
simplified class diagram showing Corc’s Hand, Card, Face, and Suit classes.

Participant were first given Problem 1, which used the game War. Two players each play one card
at a time. The higher face wins; matching faces result in a tie. Participants were instructed to
solve only the outcome of a single hand. When the participant completed Part 1 or demonstrated
that they were unable to do so, they were given an example solution showing a WarComparator
class with a compare method that returned an integer. Participants were then given Problem 2,
which asked them to solve the same problem for Poker, and were explicitly told to not attempt to
write an algorithm for comparing Poker hands, only design the necessary components.



Interviews of consenting participants were transcribed and analyzed. Initial analysis demonstrated
that interviewers provided a variety of different kinds of guidance to assist the participants, which
led to coding of Interviewer Prompts. The instructions issued as part of the protocol were not
counted as prompts. Prompts were assigned a level based on content:

1. Prompting – the interviewer encouraged the participant to be explicit (e.g. ”could you show
that in a class diagram?”)

2. Probing – the interviewer addressed a specific problem (e.g., ”And what’s the relationship
between WarComparator and Comparator [classes]?”)

3. Directing – the interviewer suggested a specific approach (e.g., ”swap between
PokerCompare and WarCompare... how would you do that?”)

Results

Analysis of the whiteboard interview data formed the foundation of a three-level Polymorphism
Comprehension Model, described in this section. The model emerged from identifying milestones
completed by the participants.

Solutions showed a surprising amount of convergence, such that analysis identified a uniform
eight separate parts of a complete polymorphic solution, with no valid variations proposed by
participants. These were labeled whiteboard milestones, although they did not need to be
expressed sequentially, although some do have dependencies on other milestones. Participants
either successfully completed these milestones or not; no alternative solutions emerged. These
milestones were therefore derived deductively from the interviews.

The first three milestones are part of Problem 1, and the last five are part of Problem 2:

1. War Compare Method – a comparison method that takes in two hands and returns the
outcome

2. Ternary Return Type – three possible outcomes (Hand 1 wins, Hand 2 wins, tie) require a
ternary return type

3. War Comparator Class – a separate comparator class allows for polymorphic substitutability

4. Poker Compare Method – similar to #1 above

5. Identical Signature for Compare Methods – good design practice, and necessary to
generalize the solution

6. Poker Comparator Class – similar to #3 above

7. Comparator Superclass – an extension of #3 and #6

8. Polymorphic Selection of Subclass – allows late binding

These data were then analyzed:

• Whether or not the participant completed the milestone

• The number of prompts given for the specific milestone



• The level of each prompt (Prompting, Probing, or Directing)

One participant achieved no milestones and was removed from the analysis. All ten remaining
participants achieved three of the milestones (1, 4, and 5), while only two and three participants
achieved Milestones 3 and 8, respectively (see Figure 3).

Figure 3: Count of Participants Achieving Each Milestone

Participants were arbitrarily assigned code names from the NATO alphabet (first removing
concerning or gender-coded terms). Figure 4 shows the number of milestones each completed.
Two participants only completed four milestones, while three completed three milestones. No
participant achieved all milestones. Only one common error emerged: four participants made the
War Compare Method return a Boolean value, and had to be prompted to deal with ties.

Next, to measure the importance of interviewer feedback for each successfully completed
milestone, a composite level of prompting was developed to incorporate both the number of
prompts and the amount of guidance. Recall that interviewer guidance was classified as Level 1
(Prompting), Level 2 (Probing), or Level 3 (Directing). By far the most common prompt level
was Level 1 (61 of 112 prompts); participants had to be encouraged to demonstrate (verbally or in
writing) the ideas that they hinted at.

Each relevant prompt preceding a participant’s completing a milestone was counted, along with
its level. Each prompt was multiplied by its level, and these products were summed in a Prompt
Score for each achieved milestone. For example, if a participant received one Level 1 prompt, two
Level 2 prompts, and one Level 3 prompt, they received a Prompt Score of 1*1 + 2*2 + 3*1 = 8.
Prompt Scores ranged from 0 (no prompts) to 9.



Figure 4: Milestones Completed by Each Participant

Prompt Scores were averaged per milestone (Figure 5), indicating that milestones represented
rather different levels of challenge. This can be seen most dramatically for Milestones 3 and 8,
where high levels of prompting were necessary to produce the few answers that satisfied those
milestones. Milestones fell into three frequency groups:

1. Three milestones were achieved by all ten participants (Universal Group): #1 (War
Compare Method), #4 (Poker Compare Method), and #5 (Identical Signature)

2. Three milestones were achieved by 7-8 participants (Common Group): #2 (Ternary Return
Type), #6 (Poker Comparator Class), and #7 (Comparator Superclass)

3. Two milestones were achieved by few participants (Rare Group): two achieved #3 (War
Comparator Class), and three achieved #8 (Polymorphic Selection of Correct Subclass)

A Three-Level Model

Further analysis derived three separate levels of novice ability to design a polymorphic solution,
based on participants producing clusters of related design features. These levels represent
Structured Software Design Principles, OO Abstraction Principles, and OO Polymorphism
Principles. Each of the three levels is associated with a distinct set of milestones from the analysis
above.

The students in this course initially learned Java as a procedural language, only using static



Figure 5: Milestones vs. Average Prompt Score Per Milestone, Ordered by Count of Participants
Completing Milestone

methods. Subclass polymorphism in Java rests on a foundation of good structure software design
principles that do not imply any aspect of object-oriented design:

• Milestone 1 – War Compare Method

• Milestone 2 – Ternary Return Type

• Milestone 4 – Poker Compare Method

• Milestone 5 – Identical Method Signature

This is the Universal Group, with Milestone 2 added, as it is conceptually related to the others and
not specific to OO. All ten participants achieved Milestones 1, 4, and 5. The three participants
who did not include a ternary return type simply never addressed the return type for the method.
Of the seven who did, four started with a Boolean return value, were prompted to address ties,
and resolved the issue by returning a string or integer.

Lima achieved Milestone 2 without prompting:

[Interviewer] [Reads Problem 1]
[Lima] ...I guess the first would be check to see if... they are [the same], then that
would return a tie. Else if hand 1 is less than hand 2, some sort of method declares a
winner.



Foxtrot needed two prompts:

[Foxtrot] What would it output? I guess it could be a Boolean that outputs true if the
first one beats the second one and false if the second one beats the first one.
[Interviewer] What if there is a tie?
[Foxtrot] Null. Don’t know if you can do that actually.
[Interviewer] So maybe there is a better type for this?
[Foxtrot] You can just do an int and 1,2,3.

Milestones 1 and 4 are nearly identical (War and Poker Compare Methods), but Milestone 4 had a
much higher APS. This seemed to be caused by two issues. First, some participants had to be
reminded to not try to write an algorithm for scoring poker hands, and two needed multiple
reminders. Second, some participants had to be prompted to make their solution explicit. Here is
the exchange after Delta drew a Poker Comparator Class:

[Interviewer] Well, there’s a line [reads problem aloud]. How would this Poker class
implement CardGame [the superclass]? So what methods would you have in the
Poker class?
[Delta] So per class we’d still have the Compare [method] and probably, possibly its
core method to run each hand.

The next level of comprehension demonstrated participant mastery of OO abstraction principles,
adding the use of classes and inheritance to abstract from the problem domain to an effective
generalized OO solution; these are the remaining elements of the Common Group. Java
abstraction uses classes to organize and isolate functionality. Once given the model solution for
War, which includes the WarComparator class with a compare method, it is reasonable to expect
participants to see the value of both a Poker Comparator class and a Comparator Superclass.
Eight participants achieved both milestones.

• Milestone 6 – Poker Comparator Class

• Milestone 7 – Comparator Superclass

As seen in Figure 5, these milestones required high levels of prompting. Typically, the participant
had to be encouraged to isolate the functionality of the Poker Compare Method after completing
Milestone 5. Several participants immediately jumped from seeing the value of isolating the
method to seeing the need for both a Poker Comparator Class and a Comparator Superclass. As
noted above, when participants achieved both milestones together, the prompts counted for
both.

For example, after Alfa created a Poker Compare Method, the interviewer prompted as below.
Immediately thereafter, Alfa added a Poker Comparator Class and a Comparator
Superclass.

[Interviewer] If you had to design a system that contained both of these comparator
methods... is there a way? Cause these two aren’t related ... you just have a duplicate
method definition.



[Alfa] ...So, the question is if is it the same comparator? So this would be
PokerComparator [writes the name of the class].

OO subclass polymorphism is often dependent on late binding, allowing a specific
implementation of a method to be invoked. This requires mastering both static and dynamic
aspects of polymorphism, selecting the appropriate subclass at runtime.

• Milestone 3 – War Comparator Class

• Milestone 8 – Polymorphic Selection

This is the Rare Group. Only three participants achieved polymorphic switching, out of eight who
had the underlying components (superclass, subclasses, and appropriate methods). All three
needed significant prompting to articulate it. As an example, after Sierra added a Poker
Comparator class (Milestone 6), the interviewer eventually explained the goal (swapping which
method was called) in order to clarify, at which point Sierra immediately described a full solution.
The success of this prompt exposes a potential lever for future educational interventions: focusing
additional attention on the mechanism and value of switching.

[Interviewer] If you... wanted to swap between PokerCompare and WarCompare,
how could you go about accomplishing that?
[Sierra] So, like, changing games with a single change of code?
[Interviewer] Yes.
[Sierra] I could do a superclass and just call it Comparator, and then [make]
PokerCompare and WarCompare a subclass and basically I would want to, so, let’s
say I guess, Compare c1 = new and I could basically put the PokerCompare or
WarCompare to swap between games.

Creating a WarComparator class in Problem 1 (Milestone 3) can be seen as anticipatory design, a
controversial practice in software engineering [18]. No overlap existed between the two
participants who achieved Milestone 3 and those who achieved Milestone 8. This interaction
between the interviewer and Foxtrot is typical; they do not see any inherent value in isolating the
compare method:

[Foxtrot] You’d have like a compare method, so...
[Interviewer] Can you put that in a class diagram?
[Foxtrot] If it’s a method, not a class itself [confirming with interviewer], I need to
put it into a class, so...
[Interviewer] Would this be a new class or would you use one of those other classes?
[Foxtrot] I mean, couldn’t you put it in Card?

Table 1 shows participants, the count of milestones each completed, and their APS. Bravo and
Echo did not achieve either milestone for OO abstraction, which emphasizes classes and
inter-class relationships, but the remaining eight participants achieved both. Five of those eight
achieved one of two milestones associated with OO polymorphism, but none completed both, and
all needed high levels of prompting. This supports the idea that the gap between OO abstraction



Table 1: Participant Placement by Level
Level Participant Milestones APS

Level 1 Bravo 4 2.00
(Structured Software Design) Echo 4 2.00

Level 2 Golf 6 1.67
(OO Abstraction) India 5 3.60

Tango 6 1.33
Level 3 Alfa 7 1.67

(OO Polymorphism) Delta 7 1.43
Foxtrot 6 2.71
Lima 7 1.43
Sierra 7 2.67

to OO polymorphism is large. Further refinement of the model will hopefully confirm the model
and create additional delineation and clarity on how to assess students within it.

Discussion

The research questions for this project were:

1. How can polymorphism comprehension be modeled?

2. How can students be assessed within that model?

The case study analysis supports a Polymorphism Comprehension Model with three distinct
levels (Structured Software Design, OO Abstraction, and OO Polymorphism Principles,
respectively); participants were placed into that model based on design milestones completed.
Ten participants achieved Level 1 (completing at least three of four milestones), eight achieved
Level 2 (completing both milestones), and five achieved one milestone within Level 3. This
confirmed study assumptions that polymorphism would represent a significant gulf in student
comprehension.

While qualitative case studies are useful to build models, less subjective validation is necessary to
confirm the model. Future work will need to validate the model to address methodological
limitations and investigate what the model implies for improving polymorphism
comprehension.

Limitations include:

• The need for different prompting meant that interviews proceeded differently

• The interviewers decided when and how to prompt, adding subjectivity and possibly
implicit bias

• The size, origin, and objects-later education of the participant group may have influenced
findings

• The specific nature of the assigned problems may have influenced findings



• Recording interviews may have influenced participant reaction; in one study on whiteboard
interviews, no women successfully completed a task in a public interview, but all succeeded
in a private interview [14]

Improving Polymorphism Comprehension

While substitutability is not the only benefit to subclass polymorphism, it offers a clear
justification for the complexity introduced by inheritance. Driven by participant interactions and
milestone achievement, further emphasis on substitutability may improve student comprehension.
With that in mind, a simplified strategy project that focuses more on substitution than algorithmic
problem-solving may better address the gap between student abilities to comprehend OO
abstraction and OO polymorphism.

Student ability to design solutions with subclass polymorphism has not been well studied. Having
the three-level model provides guidance for future work, and maps well to a scaffolded approach
of mastery of advanced language features.

The ultimate goal of this research is to improve polymorphism instruction. While most
participants understood the underlying language features, polymorphism remained confusing,
demonstrated by the fact that only three participants implemented polymorphic selection, and
needed high levels of prompting. For that milestone above, Sierra struggled to identify the
relationship between poker and war comparator classes, but the mention of swapping between the
two immediately led them to both the comparator superclass and polymorphic selection
milestones. This seems to encourage the importance of emphasizing substitutability [19] as the
primary benefit of inheritance, rather than reuse of code.

This work demonstrates both the viability and limitations of using whiteboard interviews as a
method to evaluate student comprehension with respect to design. Despite challenges, this
approach offers a novel means of evaluation, creates an opportunity for industry partnership, and
can aid students in preparing for real interviews.

The most pressing concern is to validate the three-level model. Original plans for a larger-scale
replication study have been hampered by the pandemic. Plans now call for two separate
approaches: semi-structured interviews with industry professionals, and the development and
validation of an assessment focused on separating the students at Level 2 (OO Abstraction) from
those at Level 3 (OO Polymorphism). While designing the assessment, researchers will focus on
the critical prompts leading to participants achieving milestones.

Acknowledgements

This material is based upon work supported by the NSF under Grant Nos. 1525028, 1525173,
1525373.



References

[1] M. B. Rosson and S. R. Alpert, “The cognitive consequences of object-oriented design,” Human-Computer
Interaction, vol. 5, no. 4, pp. 345–379, Dec. 1990.

[2] D. J. Armstrong, “The quarks of object-oriented development,” Communications of the ACM, vol. 49, no. 2, pp.
123–128, Feb. 2006.

[3] C. Schulte and J. Bennedsen, “What do teachers teach in introductory programming?” in ICER ‘06. ACM,
Sep. 2006, pp. 17–28.

[4] I. Milne and G. Rowe, “Difficulties in learning and teaching Programming—Views of students and tutors,”
Education and Information Technologies, vol. 7, no. 1, pp. 55–66, Mar. 2002.

[5] J. Bergin, “Teaching polymorphism with elementary design patterns,” in OOPSLA ’03. ACM, Oct. 2003, pp.
167–169.

[6] J. Bergin, E. Wallingford, M. Caspersen, M. Goldweber, and M. Kolling, “Teaching polymorphism early,”
SIGCSE Bulletin, vol. 37, no. 3, pp. 342–343, Jun. 2005.

[7] N. Ragonis and M. Ben-Ari, “A long-term investigation of the comprehension of OOP concepts by novices,”
Computer Science Education, vol. 15, no. 3, pp. 203–221, Sep. 2005.

[8] A. Schmolitzky, ““objects first, interfaces next” or interfaces before inheritance,” in OOPSLA ’04. ACM,
2004.

[9] N. Liberman, C. Beeri, and Y. Ben-David Kolikant, “Difficulties in learning inheritance and polymorphism,”
ACM Transactions on Computing Education, vol. 11, no. 1, pp. 4:1–4:23, Feb. 2011.

[10] C.-L. Chen, S.-Y. Cheng, and J. M.-C. Lin, “A study of misconceptions and missing conceptions of novice java
programmers,” in Proceedings of the International Conference on Frontiers in Education: Computer Science
and Computer Engineering (FECS), 2012, p. 1.

[11] N. Mills, A. Wang, and N. Giacaman, “Visual analogy for understanding polymorphism types,” in Australasian
Computing Education Conference. New York, NY, USA: ACM, Feb. 2021, pp. 48–57.

[12] B. Y. Alkazemi and G. M. Grami, “Utilizing BlueJ to teach polymorphism in an advanced object-oriented
programming course,” Journal of Information Technology Education, 2012, accessed: 2021-8-5.

[13] M. Behroozi, A. Lui, I. Moore, D. Ford, and C. Parnin, “Dazed: Measuring the cognitive load of solving
technical interview problems at the whiteboard,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER). ieeexplore.ieee.org, May 2018,
pp. 93–96.

[14] M. Behroozi, S. Shirolkar, T. Barik, and C. Parnin, “Does stress impact technical interview performance?” in
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ACM, Nov. 2020, pp. 481–492.

[15] D. Ford, T. Barik, L. Rand-Pickett, and C. Parnin, “The Tech-Talk balance: What technical interviewers expect
from technical candidates,” in 2017 IEEE/ACM 10th International Workshop on Cooperative and Human
Aspects of Software Engineering (CHASE). IEEE, May 2017, pp. 43–48.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1994.

[17] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of object-oriented programming, vol. 1,
no. 2, pp. 22–35, 1988.

[18] A. Hunt and D. Thomas, “The trip-packing dilemma [agile software development],” IEEE Software, vol. 20,
no. 3, pp. 106–107, May 2003.

[19] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM Transactions on Programming
Languages and Systems, vol. 16, no. 6, pp. 1811–1841, Nov. 1994.


