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Artificial Intelligence Methods to Forecast Engineering Students’  

Retention based on Cognitive and Non-cognitive Factors 
 

 

Abstract 

 

Engineering students’ affective self-beliefs can be influential factors directly or indirectly 

affecting their academic success and career decision. This paper examines whether students’ 

non-cognitive factors can be used, alone or in combination with cognitive factors, in artificial 

neural network (ANN) models to predict engineering student’s future retention. Four ANN based 

retention prediction models using different combinations of non-cognitive and cognitive factors 

are presented.  The independent variables includes survey items from nine non-cognitive 

constructs (leadership, deep learning, surface learning, teamwork, self-efficacy, motivation, 

meta-cognition, expectancy-value, and major decision) and eleven cognitive items representing 

student’s high school academic performance. The dependent variable (i.e., the output from these 

models) is the student’s retention status after one year.  

 

Data from more than 4900 first-year engineering students from three freshman cohorts (2004, 

2005, 2006) in a large Midwestern university were collected and utilized in training and testing 

these ANN prediction models.  Among the four ANN models developed, the model combining 

11 cognitive items and 60 selected non-cognitive items has the highest overall prediction 

accuracy at 71.3%, probability of detection (POD) for retained students at 78.7% and POD for 

not retained student at 40.5%.  Removing the 11 cognitive items from this model, the overall 

prediction accuracy would drop slightly to 70.5%.   

 

Results from training and testing the same model using student data from different cohorts 

indicate the ANN model’s predictive performance is generally stable across different cohort 

years.  Also, a model trained with earlier year (2004) freshman cohort’s data has maintained its 

predictive power very well when tested with student data from later (2005 and 2006) cohorts.     

 

Introduction 

 

As Thomas Friedman described in his best selling book ‘The World is Flat’
1
, the world has 

become flatter because of the numerous new technologies and developments in the past decades. 

Engineers in India, China or other parts of the world today are now able and eager to compete 

directly with the engineers from the United States.  An alarming trend over the last decade is the 

number of engineering graduates in U.S. continues to fail to keep pace with the increasing 

production of engineers from our international competitors. In the report “Rising Above The 

Gathering Storm: Energizing and Employing America for a Brighter Economic Future” 

published by the National Academies in 2005
2
, it is reported that undergraduate programs in 

science and engineering have the lowest retention rate among all academic disciplines. The 

National Academies further emphasized the importance of advances in engineering and 

technology, and described them as crucial to the social and economic conditions for the United 

States to compete, prosper, and be secure in the global community in the 21st century.   
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Since the advances in engineering and technology have such a strong impact on the future of our 

society, how to attract and retain students in engineering majors becomes an important topic.  

Every year a great number of the top graduates from high schools enter engineering programs 

across this country. Many of them have obtained impressive academic records during their high 

school education, in terms of grade point averages and standardized test scores. Still, various 

engineering educational studies indicate that the attrition from engineering continues to be an 

alarming issue
3,4

. A good number of qualified students continue to leave engineering for other 

majors, or leave the college completely.  It was reported that the attrition in the freshman year in 

engineering has increased from about 12% in 1975 to 25% by 1990
3
.  In a large study of over 

300 universities, Astin
4
 found that only 47% of freshman engineering students eventually 

graduate with an engineering degree. This means that more than half of these engineering-

inspired young people left engineering during their college education. For educators concerned 

about the future of engineering education and the ultimate competitiveness of the United States, 

this is a problem too important to ignore. 

 

In order to address the critical topic of student attrition in engineering education, it is necessary 

to investigate the factors related to student retention, and purposefully develop a predictive 

system which can identify students with a high risk of leaving engineering early.  The 

aforementioned predictive ability can significantly help engineering educators perform proper 

interventions in time to help retain these students in engineering programs.  Therefore, the 

research question for this study is: “Can a predictive model be developed to take multiple non-

cognitive factors, cognitive factors and their interaction into account and improve our prediction 

of students’ future retention in engineering?” 

 

Model of student success 

 

The undesirable fact regarding engineering students’ high attrition rate has provided the authors 

a powerful motivation to study the various factors that influence engineering students’ success. 

Figure 1 shows a Model of Students’ Success (MSS) in engineering. This MSS illustrates the 

potential relationships between numerous factors and outcomes associated with engineering 

students’ success in academics and career. The authors developed this MSS model partially 

based on previous studies on non-cognitive factors by Maller et al.
5
 and Imbrie et al.

6
 The main 

focus of investigation in this work is on the non-cognitive and cognitive factors, and their 

influences on engineering students’ retention, as highlighted in Figure 1. 
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Figure 1.  Model of Students’ Success in Engineering 

 

 

 

Factors affecting student retention 

 

One common misconception about student retention is that students leave engineering largely 

due to lack of academic ability. Studies have found little difference between the academic 

credentials of students who remain in engineering and those who leave
7
. Other studies have 

shown that models incorporating cognitive variables such as student high school math and 

science success
8
, and higher confidence in basic engineering knowledge and skills

7
 are able to 

establish a correlation between cognitive variables and retention in engineering. However these 

variables are not strong enough to be used as single factors in a model to predict retention. 

Therefore, some researchers suggested a model using both cognitive and non-cognitive 

characteristics may provide a more promising tool to identify students who may leave 

engineering or who may benefit from interventions
7,9

.  In a 2002 study to investigate the 

predictive relationship between six variables (high school GPA, SAT math score, SAT verbal 

score, gender, ethnicity, citizenship status) and retention and graduation in engineering, Zhang et 

al.
10

 found that high school GPA and SAT math scores were the best predictor of retention and 

graduation, while SAT verbal was inversely related. They also identified self-efficacy and 

physical fitness as positive predictors of freshman retention. Astin et al.
11

 found that student high 

school record was the best predictor of academic success, and performance on standardized tests 

also had a positive correlation. These studies were valuable in identifying characteristics that 

were predictors for retention, but did not address the interaction of multiple factors. 
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The Pittsburgh Freshman Engineering Attitudes Survey (PFEAS) is an instrument consisting of 

50 items related to 13 student attitude and self-assessment measures
7,12

. Besterfield-Sacre et al. 

have used PFEAS to measure differences in student attitudes before and after the freshman year 

in their study on freshmen attrition from engineering programs. Another related study in recent 

years is the Persistence In Engineering (PIE)
13

. PIE is a survey instrument developed under the 

Academic Pathways Study (APS) by the Center for the Advancement of Engineering Education 

(CAEE). The factors studied in the PIE survey are largely related to the educational experiences 

student received during their college years, and some motivation and self-efficacy factors on the 

non-cognitive constructs. These and similar studies suggest that student attitudes and other non-

cognitive characteristics may be promising factors to be incorporated into a new predictive 

model to predict students’ persistence and retention. 

 

Data Collection and Instrumentation 

 

The sample in this study included more than 4900 incoming freshman engineering students from 

a large Midwestern university during the 2004, 2005 and 2006 academic years. Among them, 

17.02% were female, and 82.98% were male.  Ethnicity was as follows: 2.17% African 

American, 0.48% American Native, 9.44% Asian/Pacific Islander, 2.88% Hispanic, 78.21% 

Caucasian and 6.81% Others. 

 

Non-cognitive survey instruments and cognitive data 

 

The students’ non-cognitive measures were collected across nine scales in a self-reported online 

survey completed prior to the freshman year. This non-cognitive survey instrument was 

previously reported in the works by Maller et al.
5
 and Immekus et al

14
.   These scales are: 

Leadership (23 items), Deep vs. Surface Learning Types (20 items), Teamwork (10 items), Self-

efficacy (10 items), Motivation (25 items), Meta-cognition (20 items), Expectancy-value (32 

items), and Major decision (28 items). All Cronbach’s coefficient alphas for these scales were ≥ 

.80, except for the Teamwork scale (r=.74)
14

. Scales may be divided into subscales with various 

numbers of items.  Previous studies have supported the scales’ construct validity based on the 

results of confirmatory factor analyses
5
. 

 

The following eleven cognitive items from students were also collected: overall GPA and core 

GPA from high school, standardized test results (SAT/ACT), average high school grades in 

mathematics, science, and English classes and finally the number of semesters taking 

mathematics, science, and English. 

 

Persistence status 

 

Students’ persistence statuses were collected at the beginning of every semester following their 

freshman year.  Students remaining in the lower-division and upper-division engineering 

programs were considered as “retained” students. The students who transferred to majors other 

than engineering or left the university completely were classified as “not-retained”. The 

investigation in this study focuses on the persistence status at beginning of students' third 
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semester. Among the 4900 students studied in this report, 82.1% of them were retained and 

17.9% were not retained in engineering at the beginning of third semester.     

 

Methods 

 

Artificial Neural Networks (ANNs) 

 

Artificial Neural Network (ANN) is a well developed modeling approach among the various 

tools within the Artificial Intelligence (AI) family.  During the past decades it has been widely 

used in technical applications involving prediction and forecasting, especially in areas of 

engineering, medicine and business 
15,16,17,18

.  The neural network model is especially attractive 

for modeling complex systems because of its following favorable properties: universal function 

approximation capability, tolerance to noisy or missing data, accommodation of multiple non-

linear variables with unknown interactions, and good generalization ability
19

. In this study, the 

neural network model used for predicting students’ retention is a feed-forward neural network 

with back-propagation training algorithm (FFBP).  FFBP neural network was chosen because of 

its strength in modeling prediction/forecast problems involving large amounts of data and 

relatively complex relationships between factors and outcomes 
16

. 

 

The FFBP neural network model developed for this study consists of an input layer, a hidden 

layer and an output layer with various numbers of neurons in each layer. The numbers of neurons 

in the input and output layers are determined by the number of input items and prediction 

outcome. In this work, depending on the models being studied, the number of input items varied 

from 9, 11, 60 to 71, and the number of output (prediction of retention status) is one. 

Determining the number of neurons in the hidden layer is more complicated.  It is generally 

influenced by the nature of problem, such as the complexity of mapping between input and 

output data. For the four models with different input structures stated above, there are 9, 11, 30 

and 36 hidden neurons used in hidden layers, respectively. The decision on the number of hidden 

neurons in each ANN model was determined by comparing performance results from extensive 

ANN experiments covering wide ranges of possible number of hidden neurons in the network, 

trained with actual student data. A general graphic illustration of applying the neural network 

model for the prediction of student’s persistence in this work is shown in Figure 2 below. 
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Figure 2. Using non-cognitive factors as inputs for Neural Network 

prediction models 

 

 

Training of ANN models 

New neural network models must be trained first with existing data so they can learn from the 

examples. A set of training data with known input and output (target) vectors is required for this 

process. During the back-propagation training process, weights associated with the links between 

neurons are adjusted in order to reduce the difference between the network’s actual output and 

target output. This training process continues iteratively until the output results of the new 

network reaches a preset proximity of the desired output.  After the training process is 

completed, a different set of data is used for testing to determine the actual performance of the 

trained model. In this study, Levenberg-Marquardt back-propagation training algorithm is used 

as training algorithm in these models
20

. The activation functions in the hidden and output 

neurons are both tan-sigmoidal functions. This is again determined after comparing performance 

results from alternative activation functions in extensive experiments. The performance function 

utilized is mean square error (MSE). All models were developed using Matlab version R2006b 

from Math Works Inc. The detailed model structures and setup parameters for these four ANN 

models developed are shown in table below. 
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Table 1.  Model description 

Model ID A B C D 

 

Non-cognitive factors only 

 

Cognitive 

factors only 

Combination 

of both cog. 

and non-cog. 

factors 

 

 

 

Input factors  

(independent variables) 

Average 

scores of each 

of the 9 non-

cognitive 

constructs 

from the 168 

item survey 

 

Selected 60 

items from 

the 168 item 

survey 

 

11 cognitive 

items as 

described in 

data 

collection 

 

Combination 

of the inputs 

from model B 

and C; totally 

71 items 

Output results  

(dependent variables) 

 

Persistence status in engineering after one year 

Input layer 

(I) 

9 60 11 71 

Hidden layer 

(H) 

9 30 11 36 

 

 

Number of 

neurons 

Output layer 

(O) 

1 1 1 1 

Training algorithm Levenberg-Marquardt back propagation training algorithm 

Hidden layer tan-sigmoidal activation function Activation 

function 
Output layer tan-sigmoidal activation function  

Performance function Mean square error (MSE) 

Size of training data sets* 900, 1050, 1050 for year 2004, 2005 and 2006 

Size of testing data sets* 600 each for all three years 

* For each year, training and testing data are two separate partitions of data without any 

overlapping 

 

Prediction performance measures 

 

The prediction performance measures considered in this study are: 1) overall prediction 

accuracy, 2) probability of detection (POD) for retained students, 3) probability of detection 

(POD) for not retained students, 4) bias for retained prediction, and 5) bias for not retained 

prediction. These measures will be discussed in details using the classification table below.  
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Table 2. Classification table for possible prediction results 

Observed (actual) 

status 

 

 

Not Retained 

 

Retained 

Not Retained 

 

Hits  

(a*) 

False Alarm  

(b) 

 

 

 

Predicted 

Status 

 
Retained 

 

Misses 

 (c) 

 

(d) 

 

* a, b, c, d represent the numbers of students in each classification 

 

The overall prediction accuracy measures the fraction of accurate predictions within the total 

number of all observations. Its range is 0 to 1, and perfect score is 1, which corresponds to 100% 

prediction accuracy. Overall prediction accuracy is defined as: 

 

 Overall prediction accuracy = 
a d

a b c d

+

+ + +
. (1) 

 

Probability of detection for retained student (POD Retained) measures how well the model 

predicts over those who are actually retained. Its range is 0 to 1, with a perfect score of 1. POD 

Retained equals to 1 means 100% of the retained students were predicted correctly. It is defined 

as: 

 POD Retained = 
d

b d+
. (2) 

 

Probability of detection for not retained student (POD NotRetained) measures how well the 

model predicts over those who are actually not retained. Its range is 0 to 1, with a perfect score 

of 1. POD NotRetained equals to 1 means 100% of the not retained students were predicted 

correctly. It is defined as: 

 POD NotRetained = 
a

a c+
. (3) 

 

The bias measures the ratio of the frequency of predicted events to the frequency of observed events. 

It expresses the tendency of the forecast system to over-forecast (bias > 1) or under-forecast (bias < 

1) events. The range of bias is 0 to infinity, and a perfect score is 1. In this work, the Bias Retained 

is the ratio of number of predicted retained students over the number of actually retained 

students.  It is defined as:   

 

 Bias Retained = 
c d

b d

+

+
. (4) 
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Bias NotRetained expresses the ratio of number of predicted not retained students over the 

number of actually not retained students.  Similarly, its range can be from zero to infinity, with 

the perfect score as 1. It is defined as:   

 

 Bias NotRetained = 
a b

a c

+

+
. (5) 

 

 

Results and Discussion 
 

Predicting student’s persistence by different sets of cognitive and non-cognitive factors 

 

Four artificial neural network models with different collections of cognitive and non-cognitive 

input items were developed as described earlier in Table 1.   Model A uses the students’ average 

scores from each of the nine non-cognitive constructs as its inputs.  Model B includes 60 non-

cognitive items carefully selected from our 168-item survey. They were selected based on item 

response theory and exploratory neural network experiments. Model C uses the eleven cognitive 

items previously described in data collection section as inputs. Model D incorporated the 

combined inputs from model B and C to create a hybrid model taking inputs from both cognitive 

and non-cognitive factors into the predicting process. After training and testing these four neural 

network models, their prediction results are presented in table below.  

 

 

Table 3.  Comparison of prediction results between different ANN models using data from 

the 2004 cohort 

Model  A B C D 

Input Factors Non-cognitive  

factors 

Cognitive 

factors 

Combination 

of both B & C 

 

Description of ANN 

model’s input data 

9  

Non-cognitive 

measures 

60 

Non-cognitive 

items 

11  

Cognitive 

items 

11 cognitive 

and 60 Non-

cog items; 71 

items totally 

Overall Prediction 

Accuracy 

67.3% 70.5% 69.7% 71.3% 

POD Retained 

 

76.2% 78.3% 77.7% 78.7% 

POD Not Retained 30.2% 37.9% 36.2% 40.5% 

Bias Retained* 93.0% 93.2% 93.0% 93.0% 

Bias Not Retained* 129.3% 128.4% 129.2% 129.3% 

* The preferred score for bias here is as close to 1 (100%) as possible. 

 

 

Results in Table 3 showed that the better performing models, B and D, can achieve overall 

prediction accuracy above 70%. The probability of detection for retained students can be as high 

as 78%, while probability of detection for not retained students are lower at 37% and 40%. The 

values in Bias Retained and Bias Not Retained indicated these models under-forecast the number 
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of retained students slightly (7%), but over-forecast the not retained students for about 29%.  The 

authors considered this acceptable because it is preferred to bring more high risk students into 

our attention than under-estimate the number, which would result in ignoring some of the 

students who were in need of help.  Other interesting observations from the table above are 

discussed here.  First, the results showed that the model B using only non-cognitive factors can 

actually predict students’ retention as good as the model C using cognitive records.  This is 

indeed a very encouraging finding. Second, for the two models A and B using only non-

cognitive measures, model B with 60 non-cognitive items does perform better than model A 

using only averaged scores for each of the nine non-cognitive constructs.  This justified the 

additional developing and computing efforts/costs for a larger and more complex model using 

individual survey items. Third, the model combining factors from both cognitive and non-

cognitive categories does improve the prediction accuracy when compared with models using 

only cognitive or non-cognitive alone.  

 

Predicting student’s persistence for different freshman cohorts using the same neural network 

structure 

 

Here we explore the reliability of prediction performance when using same ANN network 

structure to predict students’ retention for different cohort years. Model B, with 60 non-cognitive 

items, was selected because of its good prediction performance without additional requirement 

on student’s cognitive records. This ANN model was trained and tested with students from 2004, 

2005 and 2006 cohort independently and results are shown in table below. 

 

 

Table 4. Predicting student’s persistence for different first-year cohorts 

using the same neural network structure within year training 

Model  Model B: with 60 Non-cognitive items 

 

Cohort data used in 

training* 

2004  2005  2006  

Cohort data used in  

Testing * 

2004  2005  2006  

Overall Prediction 

Accuracy 

70.5% 69.5% 72.0% 

POD Retained 78.3% 77.5% 80.9% 

POD NotRetained 37.9% 35.7% 22.8% 

Bias Retained 93.2% 92.8% 94.9% 

Bias NotRetained 128.4% 130.4% 128.3% 

* For each year, training and testing data are two separate partitions of data 

without any overlapping 

 

 

After training and testing independently with students from three different cohorts, the results 

suggest that the ANN model structure tested here is reasonable stable in their overall prediction 

accuracy over different cohorts, ranging from 69.5% to 72.0%.  The results for the remaining 

four performance measures are also mostly consistent across years. The only exception is found 
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in the POD NotRetained for year 2006, which may require further investigation by the authors. 

The overall results are still encouraging, because they suggested that a model structure developed 

and confirmed with good performance using one year’s data would likely maintain its predictive 

performance when applied to different student populations from other cohorts/years.   

 

Predicting future student’s retention status with ANN model developed and trained by previous 

year’s student population 

 

One question the authors were eager to answer is: How well can an ANN model trained in 

previous year predict the in-coming student’s retention status in future?   With the data from 

three first-year cohorts available, we were able to investigate this possibility by training one 

model with year 2004 data, and test it with 2005 and 2006 cohort data in a simulated prediction 

experiment. Additionally, another model was also trained independently with year 2005 data and 

tested with 2006 students in a similar manner.  The results were displayed in table below. 

 

 

Table 5. Predicting future student’s retention status with ANN model trained by previous 

year’s student population 
ANN model Model B: with 60 Non-cog items 

 

Cohort data used in 

training 

2004* 2005 * 

Cohort data used in 

testing 

2004* 2005 

Prediction 

2006 

Prediction 

2005*  2006  

Prediction 

Overall Prediction 

Accuracy 

70.5% 70.3% 71.8% 69.5% 69.2% 

POD Retained 78.3% 78.1% 77.6% 77.5% 76.0% 

POD NotRetained 37.9% 37.4% 40.2% 35.7% 31.5% 

Bias Retained 93.2% 93.0% 88.4% 92.8% 88.4% 

Bias NotRetained 128.4% 129.6% 164.1% 130.4% 164.1% 

* Training and testing data are two separate sets of data without any overlapping even from the 

same cohort year 

 

 

With the model trained with 2004 freshman students, the overall prediction accuracy for ‘future 

students’ in 2005 and 2006 cohorts have maintained very well as shown in the table.  Similar 

prediction performance was also obtained for the model trained with 2005 data and tested with 

data from 2006 ‘future’ students.  These findings are again very satisfying. 

 

Applying these prediction models to assist the academic counseling professionals and improve 

student retention in engineering 

 

As discussed earlier in this paper, the engineering colleges in this country lose more than 20% of 

their freshman students after one year, and only less than 50% of the students will eventually 

complete their engineering degree.  Early preventive intervention from the academic counseling 

professionals is a very important way to help students remaining in the engineering programs 
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before it is too late.  However, it is often difficult to identify students with high risk early enough 

to make the intervention meaningful and effective. With all the needed data collected and 

available before the students start their first semester, this artificial intelligence (AI) based 

prediction system will be very valuable in helping the counseling professionals focusing their 

efforts on the right population early, and eventually improve the overall retention in long term.   

 

Conclusion 

 

This paper presented artificial neural network models developed with different 

collections of students’ cognitive and non-cognitive factors to predict student persistence in 

engineering after their freshman year. The prediction performance results using different input 

data were compared. The models developed here achieved an overall prediction accuracy around 

70% or higher consistently, with the probability of detection for retained students close to 78%. 

However, the probability of detection for not retained students was lower and in the 40% range. 

Considering the fact that there are still other types of factors (such as financial issues, health 

condition, family reasons…etc.) that influence engineering students’ persistence, it is 

understandable that the current models using cognitive and non-cognitive variables may only 

discover some of the non-persisting students, but not all of them. The authors also examined the 

performance robustness of using the same ANN network structure to predict student retention 

from different freshman cohorts, and the possibility of using a model trained with previous 

years’ student data to predict future students’ retention status. In both cases our models 

performed consistently satisfying across different years of data. These results are very 

encouraging. Future efforts will be concentrated on further improving the power of detecting the 

group of not retained students by 1) enhancing the ANN models further with other promising 

ANN techniques, and 2) incorporating fuzzy logic techniques to develop new fuzzy-neural 

hybrid prediction models. 
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