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Problem-solving experience through light dose computational 

mathematical modules for undergraduate engineering students 
 

Abstract 

 

In this paper, the authors discuss the development of a framework for creating computational 

mathematics modules for engineering students. The purpose of the modules is to introduce 

mathematical concepts through modeling real-world applications and is intended to develop the 

students’ ability to generalize a concept and to work with models of varying abstraction. The 

authors represent an interdisciplinary team contributing expertise from the fields of mathematics, 

computational science, and teacher education. 

 

Introduction 

 

Postmodern technology is characterized by great complexity and demands tremendous modeling 

and abstraction capabilities. For students to be successful in most engineering program, they 

should be able to apply the mathematics to model this complexity
1,2

. Problem-solving 

experiences have been advocated for decades in numerous textbooks, reference articles, and 

teaching modules
3,4,5,6,7,8,9,10,11

. The authors observed that many students enrolled in entry-level 

engineering and computer science courses tend to plug in data without considering the purpose 

of the analysis and demonstrate little ability to extend mathematical concepts beyond an 

algorithmic level.  These observations motivated the authors to form an interdisciplinary team of 

university faculty to discuss the development of instructional mathematics and computer science 

modules that would enhance students’ ability to apply complex mathematical reasoning when 

presented with novel real world problems.  The authors met once a week for six months in 

roundtable discussions.  In these discussions the authors identified the following challenges 

teachers face when teaching mathematics :  1) motivating students in the applications of the 

mathematical concepts that reflect realistic problems in their prospective engineering careers, 2) 

integrating these complicated applications into the tight schedule of engineering courses, 3) 

leveraging the overwhelming complexity so that the students are not intimidated, and 4) 

compensating for the lack of physical models required in most engineering applications The 

authors considered these  challenges in the development of modules and agreed that a framework 

for module development was required.  The authors began preliminary research to develop such 

a framework centered on the concept of abstraction.   

 

The authors began by exploring resources developed by other colleagues, reviewing the existing 

digital library and organizations that provide free course materials relevant to engineering 

courses offered at the authors' home institutions. Researches also examined a past module 

developed by one of the authors that implemented light doses of mathematical modeling that 

accommodated the tight schedule of various mathematics courses taught by those authors. Based 

on polarized feedback from students who participated in these past modules, the authors began 

exploring ways to address the diverse learning needs of entry level computer science, and 

engineering students.    
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Examination of past modules 

 

Past modules were designed to facilitate modeling behind differential equations and to enable 

students to overcome the complexity inherent in DEQ modeling,   One researcher had previously 

developed several modules, each of which targeted a variety of related problems with 

incremental complexity.  Each module was made up of multiple models spanning from simple 

idealistic ones to complex realistic ones. For example, a module in spring-mass systems started 

with a linear spring model, transited to a nonlinear spring model, and finally ended with a 

coupled spring system model for the landing system of a spacecraft. A module about fluid 

mixing problems started with a one-tank model having equivalent entering and exiting rates to a 

multiple tank model with different entering and exiting rates. The strategy he used to teach these 

modules was to gradually increase the complexity of the models by asking “what if” and then 

relaxing some unrealistic assumptions. These modules clearly demonstrated to students that 

mathematics models are based on model assumptions and invariants derived from the domain 

knowledge of the modeler. Hence, idealistic assumptions result in a basic model.  The students 

learned that when more and more realistic concerns are addressed, some idealistic assumptions 

must be removed, and then more and more complicated models have to be built. The students 

also realized that when the model changes, the differential equations must also change, resulting 

in a need to change the mathematical tools as well. Students saw that they could solve the linear 

spring-mass equation analytically, but had to use computers to approximate non-linear systems 

of equations for the landing system of a spacecraft.  The incremental approach allowed the 

instructor to introduce software tools such as Maple, Stella, and Microsoft Excel as real world 

problem-solving tools. These tools not only helped students to get numerical solutions, but also 

provided intuitive simulations and visualizations to help students to understand the problems and 

solutions.  

 

From observing the students' work and the feedback from course evaluations at the end of each 

semester it became apparent that there were two main groups of students, those who could 

handle the required level of abstraction and those who couldn’t.  The coauthor who taught these 

courses was concerned about the reasons behind the latter group’s failure and subsequently 

tested his modules on a group of talented students in an honors course. The student work and 

survey results at the end of the honors course showed that 13 out of 14 students enjoyed the 

modules and 5 out of 6 objectives of the modules have been achieved. This result was 

significantly different from the bipolarized data obtained from the students in the previous 

semesters.  These results indicated that the module approach could be effective. The challenge 

was to make the approach effective to groups of students with a wider range of capabilities. This 

provided the motivation for the development of the proposed framework.  

  

Development of module framework 

 

The authors considered a framework that would require modules arrangement according to levels 

of mastery.  The different levels represent the different curriculum levels.  The objectives for 

each level will be determined by the goals and objectives of the particular curriculum level.  

Each level will have a set of self-contained modules.  Modules at a particular level will address 

one or more of these objectives.  The levels themselves range from the introductory level for the 

freshmen engineering students in basic calculus to the expert level for students enrolled in 
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advanced engineering mathematics courses.  Each module will start with initial problems that 

introduce the concepts through basic ideal examples typically found in textbooks.   Each 

subsequent module in that level will slowly relax unrealistic assumptions, thus increasing the 

number of related variables and ultimately resulting in a problem close to real world application. 

Thus, within a given level, module sets contain modules that vary in complexity and abstraction 

from simple and concrete to complex and highly abstract.   The final module at the expert level 

will be comparable to a capstone course project requiring complex modeling for solving a real-

world application.    

 

One of the pedagogical requirements for module development is that the module be inquiry 

based and introduce problems, and sub problems, by posing questions.  The module will then 

guide students gradually from concrete thinking with the use of visual aids and hands-on 

experiments to mathematical modeling and abstract thinking through its sequence of questions.    

Beginning modules at the lower level may be more concrete than beginning modules at a higher 

level that may start at a higher level of abstraction.  Authors will contribute computational 

expertise to introduce applications through textual-graphic representations. The authors believe 

that the combination of mathematical rigor and visual intuitiveness will facilitate students’ 

comprehension of complicated problems and retention of the underlying mathematical concepts. 

 

Sample module lesson plan 

 

Module 1: Given below is a teacher’s lesson plan for a sample module at the algebra level 

following an inquiry based approach.  This may be considered as an intermediate module at that 

level, that is, neither totally concrete nor highly abstract for that level. 

 

Geosynchronous satellites 
 

This module allows students in a beginning algebra class to apply their algebra and physics 

knowledge to solve a real-world application problem concerning orbiting satellites.  The students 

get to make predictions, model the problem using an algebraic equation, solve the algebraic 

equation, and compare the results among themselves.   

 

Pre-requisite Knowledge 

To be able to effectively use the module students should be able to solve simple linear algebraic 

equations, and should be familiar with the concept of centripetal force and gravitational force.  

[Familiarity with the physics concepts is not absolutely necessary as they can be introduced 

gradually as part of the concrete cases.] 

 

Objectives 

By the end of the module the students should be able to 

1. Identify the geosynchronous satellites from the NASA’s satellite tracker website
12

. 

2. Understand that acceleration due to gravitational force is proportional to mass and 

inversely proportional to the square of the distance between the objects 

3. Apply geometric properties and relationships to the solution of mathematical problems 

involving ratio, proportion and right triangle geometry 
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Introduction 
1. Present J-Track – 3D from NASA’s website that tracks satellites in real-time as shown in 

Fig. 1.1.  

 
Fig. 1.1: Screen shot of NASA’s J-Track 3D 

 

2. Pose part of the problem 
Ask:  

 What do you think those dots are around the earth in the image?   

 

Have the students write down their answers.  Explain to them that those dots are satellites 

that are being tracked in real-time on NASA’s website.   

 Some seem closer to earth and some are farther, why do you think that is so? 

 Is there any pattern to any of the sets of dots? 

Explain the term geosynchronous and ask if the picture shows satellites that exhibit that 

behavior. 

Ask:   

 How far do you think are the geosynchronous satellites from earth’s surface?  

Have the students write down their ideas and reasons for their beliefs. 

3. Present the problem to be solved. 

a. Explain: Period, orbital period, and rotational period with the help of students 

acting as satellites around you, the teacher.  Then explain that geosynchronous 

satellites are satellites whose orbital period around the Earth matches Earth’s 

rotational period.  

b. Ask: Why doesn't a geosynchronous satellite drift off into space?  Or why doesn't 

it crash into the earth? 

Help them understand about forces especially gravitational and centripetal forces 

and then show what happens when the two balance. 

c. Explain: The location of a geosynchronous orbit can be obtained through the 

application of the mathematical formulas involving these two forces. 

P
age 13.1000.5



d. For the sake of students who are unfamiliar with the mathematical formula for the 

gravitational force, illustrate that the gravitational force is directly proportional to 

the product of the masses of the objects (M and m) and inversely proportional to 

the square of the distance (r) between them, thereby getting 

                          F ∝ 
2

Mm

r
, so F = 

2

GMm

r
where G = gravitational constant 

e. Introduce the equation 

                     (Centripetal)
2

2

m v G M m

r r
= (Gravitational) 

f. Walk through the formula, ensuring that the students understand the following: 

• m = mass of the satellite 

• r = height of the geosynchronous orbit 

• Formula for velocity is Distance / Time (d/t) 

• Distance, d, equals Circumference of the geosynchronous orbit 

• Time equals 1 day (need to convert to hours and then to seconds) 

• G = gravitational constant (6.67 * 10
-11

 N*m
2
/ Kg

2
) 

• M = Mass of Earth (5.976 * 10
24

 Kg) 

g. Ask: Study the equation and decide how this equation can be used to find the 

location of the geosynchronous orbit. 

h. Confirm with the students that the task is to solve for r 

i. Allow the students to work through the solving of r in small groups to determine 

the location of the geosynchronous orbit. 

4. Discuss the results 

Have the students share their results and their procedures. 

 

Exploration 
Clarify as needed for students who still have trouble with the activity.  Walk through the 

following steps. With each step, wait for them to finish from that step before moving onwards. If 

they still are having trouble, show the next step and so on. 

 

 

2m m GM
v

r r r
=  

Canceling out 
m

r
on both sides, we get 

2 GM
v

r
=  

Using 
2 2

1 24*60*60sec

d r r
v

t day

π π
= = =  

 

/ sec
43200

r
v m

π
=  
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Substituting this in 2 GM
v

r
= we get 

( )

2 2

2
43200

r GM

r

π
=  

( )

2 3

2
43200

r
GM

π
=  

2 11 24
3

2 2

*(43200) 6.67*10 *5.976*10 *43200*43200GM
r

π π

−

= =  

 
3 2175.3701*10r =  

3 2175.3701*10 35,786r km= =  

   

Extension 

Semi-synchronous satellites are satellites that have half the orbital period of geosynchronous 

satellites and rotate around the earth twice a day.  Satellites in the Global Positioning System are 

semi-synchronous.  Have the students form small groups and recalculate the height of the semi-

synchronous orbit from the Earth’s surface.   

 

Summary 

Discuss the results with the entire class.  After the students have completed recalculating the 

height of the semi-synchronous orbit, have them share their results with others in class.  Show 

them the satellite tracking website again and have them select a satellite at random and look at 

the satellite information from the pull-down menu as in Fig. 1.2.  Have the students figure out if 

the satellite they selected is a geosynchronous satellite or not. Once the students select a 

     

 
Fig. 1.2: Screen shot of NASA’s J-Track 3D with satellite information for DirectTV 5 
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geosynchronous satellite, have them compare the height that they got for geosynchronous orbit 

from their calculations with the altitude of the orbit of the selected satellite.  Their calculations 

may be a few kilometers off from what is listed in the satellite information.   Ask them why they 

think it is different.  Have them also look at the satellite’s period listed.  Help them understand 

that while they used 1 day = 24 hours for the Earth’s rotation period, the actual rotation period is 

23 hours 56 minutes and 4.0962 seconds. 

 

If the teachers feel that the students need more practice with this topic, then have the students 

select their favorite satellite, a DirectTV, GPS or any telescope, and find the satellite 

information.  Have them use the rotational period information to find the altitude or the altitude 

information to find the period and so on... 

 

Module 2: Given below is the summary of a sample module
 
entitled Ordinary Least Squares 

(OLS) and Error Analysis for GPS 
13,14

 at the differential equations level.  This module can be 

considered as one of the capstone modules at this level.  The summary below is provided, more 

from a content perspective than a teacher’s perspective and shows the incremental transition 

from the naive concrete model to the abstract model which is based on more realistic 

assumptions. 

 

Ordinary Least Squares (OLS) and Error Analysis for GPS  
 

The challenges in navigation have driven human beings to achieve many groundbreaking 

mathematical theories and applications. Today, GPS is capable of locating an object on the earth 

to multi-foot accuracy by using signals from satellites approximately 25 thousand miles above. 

This module uses mathematics pertinent to GPS and guides students from naïve algebraic 

solutions to an iterative algorithm for solving least square problems in incremental complexities. 

Understanding these computational theories and techniques can assist students in adapting those 

techniques to the solution of problems in many other fields so that these solutions achieve high 

measuring and computing accuracy.  

 

The module is designed to be worth one credit hour, which is approximately 15 class hours. 

Users may freely divide the module into three sub-modules. Each of these submodules may take 

3 to 4 class hours. Since the module also hinges on a final team project, time for that project 

needs to be factored in.   

 

The target students of the module are juniors in engineering or physical sciences majors.  To be 

able to fully utilize the module, students should already have knowledge of the material normally 

covered in a Calculus II course together with partial differentiation. Knowledge of basic matrix 

operations is desirable, but not necessary. Students are expected to be familiar with either 

MATLAB
®

 (preferably), Maple
®

 or Mathematica
®

.  

 

The module is organized according to the Guidebook for Authoring Modules, a document that 

can be downloaded from Capital University's web site.
15

  There is an overall description of the 

problem followed by a brief problem statement, then major steps and questions that guide 

students to pursue solutions to subproblems, problems related to the module, a few similar 

projects that students need to use the OLS method to solve and, lastly, the pedagogical approach 
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together with some observations and hints designed to help instructors deliver the module in the 

most effective way. Due to space constraints, we only provide for the problem statement and 

outline of the three sub-modules here.  

 

1. Problem Statement: How do we determine the position of an object on earth, as accurately as 

possible, using satellite data from GPS?  GPS often requires at least four satellites in detection 

range so that sufficient data are available to position the GPS users. The fundamental 

computational techniques applied in GPS are stochastic processes designed to estimate the 

random errors and regression methods used to minimize the measuring errors. In this module, we 

will learn how to define, mathematically, a model of the GPS and how to use OLS for estimating 

position over time.  

 

2. Sub-Modules:  The major steps are organized as three sub-modules. The first sub-module 

starts with an over view of the GPS such as system architecture, signal structure, receivers and 

measurements and ends up with a naïve algebraic solution under ideal assumptions (Fig. 2.1).  

The second sub-module starts considering time drift and introduces least square optimization. 

Adding time bias to three variables for a spatial position, we need to solve a system of four 

variables. Therefore, we need signals from 4 satellites. Students need to know partial 

differentiation for the linearization of distance formulas. An OLS method to minimize total error 

is used to find solutions. In the third sub-module, we finally reveal the whole truth –  

1. The earth is rotating and communication satellites rotate around the earth twice a day.  

2. More than 4 satellites are used in real GPS computation models because over specified 

systems result in improved accuracy,  

3. Users often move and therefore, their velocities must be considered. 

Therefore, students need to learn position transformation from a rotating frame to an inertial 

frame. Matrix representation and basic matrix operations have to be introduced to be able to 

implement a computationally efficient algorithm. This algorithm is referred to as a linear, 

minimum-error variance, sequential state estimation algorithm (see Fig. 2.3).  A model that 

represents major error sources is illustrated in Fig. 2.4.  

 

 
Fig. 2.1: Naïve solution                                           Fig.2.2: Solution to Inertia Frame 
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Fig. 2.3: Iterative Computation Model                  Fig. 2.4: Error Model  

 

 

For further investigation: 

 

Students are now in a position to consider problems such as determining ionospherical and 

tropospherical delay, detecting multipath errors, seeking an algorithm to find the optimum 

geometrical configuration of satellites, etc.  

 

Students may also find the following questions intriguing:  

 

Since 4 satellites are sufficient to determine the location, is it possible to pick the best four in the 

sky to reduce the computational complexity and provide best estimation?  

We can typically detect signals from 5 to 6 satellites simultaneously, how many of them 

should we use to attain the most accurate position estimate?  

If theoretic answers to these questions are beyond our reach, can we use good simulations to find 

empirical answers to these problems? 

 

Conclusion: 
 

There is a tremendous amount of work still to be done.  The framework has to be completed as it 

is missing the explicit definitions of levels as well as methods of assessment and promotion from 

one level to the next.  Once the framework is complete the task of generating modules for each 

level begins.  Specifications for each module have to be developed and implemented.  Software 

engineering methodologies need to be employed so that requirements do not increase 

uncontrollably with time and that the project stays within the scope and budget.  The modules 

will have to be tested and data collected concerning their effectiveness at the different levels.  

The modules will be made available to teachers both at the college level and at high school and 

we will document feedback and tally results.  Like software, module sets will need to be 

maintained and kept relevant. 

 

The authors believe that use of these modules will enhance student comprehension, abstraction, 

and problem solving skills in mathematics and its related fields. 
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