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Optimizing Database Query Learning: A
Generative AI Approach for Semantic

Error Feedback

Abstract

In database education research, numerous common error types and overarching learning hurdles
have been identified among learners, with a predominant focus on syntax errors. However, there
has been a noticeable gap in the study and categorization of semantic errors, which are equally
critical for students’ learning and proficiency in database systems. Our study aims to explore this
gap and contribute to the educational domain by investigating the potential of integrating the
advanced capabilities of a Generative Pre-Trained Transformer (GPT) model with an existing
feedback system to enhance the detection and feedback of semantic errors in student submissions
of SQL queries. We have utilized diverse datasets of student submissions, which were employed
to fine-tune our GPT models. This tailored training process has enabled the models to better
recognize and highlight semantic errors, while simultaneously providing constructive and
meaningful feedback. Preliminary results from our research are highly encouraging,
demonstrating advancements and highlighting the potential of large language models in database
learning. By integrating these state-of-the-art computational tools into the learning environment,
our study lays the groundwork for the creation of intelligent systems that offer nuanced and
context-aware feedback. Such systems have the potential to enhance the educational experience
and support available to students.

1 Introduction

The de facto standard language for managing and querying relational databases is the Structural
Query Language (SQL) [1]. Hence, individuals interacting with databases, including researchers
and developers, find acquiring SQL to be crucial [2, 3]. Its English-like syntax makes it accessible
to beginners without the need for prerequisite programming knowledge [4], serving as a gateway
to lower entry barriers into computing fields for non-Computer Science students. Despite these
advantages, there are still learning challenges for many students studying SQL, prompting the
need for further research [2]. These challenges typically fall into two categories: syntax errors
and semantic errors. Syntax errors occur when a student’s query violates the grammatical rules of
the language, resulting in queries that the database system cannot execute. Semantic errors arise
when a query is syntactically correct but does not produce the expected data result. While there
has been a plethora of research on syntax errors for SQL [5, 6, 7, 8, 9, 10, 11, 12], there is a
relative lack of research on semantic errors for SQL [6, 7, 13, 14], and how students overcome



them. One of the reasons why students might find the semantics component challenging is due to
the limitations of conventional feedback methods. Since syntax errors violate the grammatical
rules of the language, they may be easier to recognize by compilers, and therefore the compiler
may throw errors for the student as useful feedback. This is not the case with semantic errors.
Semantic errors require the student to sift through the data output and verify whether the results
are expected. While auto-graders that compare data results between the student query and
solution query may help with this verification process, they do not adequately address the unique
learning needs of students - they do not give students feedback regarding the source of the logical
error. Other conventional feedback methods may reveal the solution, thereby preventing the
student from going through the problem-solving process.

To address this, we are interested in methodologies that provide semantic error feedback to
students without revealing the solution. In particular, we explore novel approaches utilizing a
Generative AI model to provide semantic error feedback. We use students’ submissions to SQL
homework assignment problems from the Database Systems course available to upper-level
undergraduate and graduate students at the University of Illinois Urbana-Champaign. The dataset
contains a mix of 100 correct and 400 incorrect submissions and underwent an extensive
fine-tuning process with OpenAI’s advanced GPT-3.5-turbo-1106 model [15]. Therefore, our
research questions include:

• RQ1: How can a proof of concept be designed and implemented to assess the feasibility of
utilizing a generative AI model for providing semantic error feedback in educational
settings, ensuring that the system avoids disclosing correct answers while enhancing the
learning experience?

• RQ2: How does the feedback from the fine-tuned GPT model differ in specificity and
relevance compared to standard GPT models in the context of SQL query feedback?

Our research questions aim to evaluate the feasibility and effectiveness of utilizing a Generative
AI model to provide semantic error feedback without revealing the correct solution. We target
precise error detection and insightful feedback to enhance the educational experience by making
it more tailored to each student. The effectiveness of our fine-tuned model was assessed through
comparative analyses with the outputs from the standard ChatGPT model. This validation process
was crucial in establishing the refined model’s advancement and distinction in providing precise
and contextually appropriate feedback for SQL queries.

2 Related Work

Research on SQL learning has explored various types of errors and student challenges. Work by
[13, 16, 14] significantly advance our understanding of semantic and persistent error types in SQL
learning, shedding light on common misconceptions and areas of difficulty for students. The
identification of semantic errors by [13] and the exploration of novices’ mismanagement of query
complexity in [16] highlight key areas for instructional improvement. Further contributions by
[17, 5, 6] provide a comprehensive view of both semantic and syntactic mistakes, reinforcing the
need for targeted teaching strategies to address these frequent and complex errors. These works
underscore the critical role of understanding persistent errors, as discussed in [5, 6]. On the other
hand, research aimed at improving SQL education through student query analysis and



visualization techniques includes studies by [7, 18, 8]. These contributions, along with
[9, 10, 12], suggest innovative methods for simplifying SQL learning and addressing the cognitive
challenges associated with query formulation. Moreover, additional insights from [19, 20, 21]
complement this body of research by highlighting the importance of reducing cognitive load and
improving error comprehension among SQL learners. These efforts collectively contribute to
making SQL more accessible and reducing student errors, significantly impacting SQL education
strategies. However, while these studies identify errors, less attention has been paid to strategies
for overcoming semantic errors in SQL learning.

While much of the prior research on how students learn SQL has extensively examined the error
types and persistent challenges that students encounter during their problem-solving process
[5, 6, 7, 8, 9, 10, 11, 12, 14, 17, 16], there is a relative lack of knowledge in the domain of how
students overcome semantic errors, in particular, for SQL. The limited research in this area tends
to focus on either classification of semantic errors [13], persistent error types which include
logical errors (semantic error, by our definition) [5, 6, 7, 16], or a breakdown of semantic errors
from a large student SQL submission dataset [14]. Other researchers have also examined
methodologies for visualizing students’ SQL queries or their submission process
[19, 20, 21, 22, 18].

Innovative teaching systems like SQL-Tutor and esql have been developed to provide interactive
and personalized learning experiences, focusing on individualized instruction and semantic
feedback [2, 23]. These systems address common SQL misconceptions and anti-patterns by
offering dynamic feedback and visual step-by-step explanations of query execution, distinct from
traditional teaching methods [24, 25]. The proposed Generative AI model aims to extend these
approaches by providing nuanced semantic error feedback without revealing solutions,
encouraging deeper exploration and self-guided learning, representing a novel direction in SQL
education [26, 27].

[28] investigates the effectiveness of peer correction in SQL and NoSQL learning, suggesting it as
a viable alternative to traditional feedback mechanisms. This method indicates a shift towards
collaborative educational strategies, enhancing learning outcomes through peer interactions.
Additionally, [29] and [30] advance this narrative by integrating AI into educational contexts,
notably through multimodal recommendation systems and generative tasks with Large Language
Models (LLMs). These advancements underscore an evolving trend towards AI-enhanced
pedagogies, laying a foundational basis for our work, particularly in the domains of automated
feedback and personalized learning experiences in database education.

In the realm of AI-enhanced education, the integration of Large Language Models (LLMs) and
chatbots has been pivotal, underpinning our approach to semantic error feedback in SQL
education. Kasneci [31] and Oguz [32] underscore the role of tools like ChatGPT in personalizing
learning and serving as educational aids, aligning with our use of a fine-tuned GPT model for
SQL query feedback. Abedi’s [33] exploration into AI tools in specialized education further
supports our model’s customization for SQL learning, emphasizing the need for tailored AI
pedagogical applications. Weyssow [34] and Lai [35] on optimizing LLMs inform our fine-tuning
process, ensuring our model’s effectiveness in educational contexts. Lastly, Fang and Zhang’s
[36] work on efficient concept extraction from pre-trained models mirrors our methodology in
curating a focused SQL query dataset for training, enhancing our model’s capability to identify



semantic errors. These studies collectively guide our integration of GPT into SQL education,
demonstrating the potential of AI to revolutionize learning experiences.

Prior research has identified that semantic and logical errors are persistent and challenging errors
that students encounter when learning SQL [5, 6, 7]. Additionally, these errors can inhibit their
ability to successfully solve SQL questions. However, no work to our knowledge has examined
the feasibility and effectiveness of utilizing a Generative AI model to provide semantic error
feedback. Furthermore, attempts to do so without giving away the correct solution to the student
are unknown. Based on prior work, our aim is twofold: one, we aim to develop a proof of concept
to validate the feasibility and functionality of the proposed features; two, we aim to create a
personalized learning experience for students to better support them through the SQL learning
process.

3 Methodology

Our research focuses on utilizing a dataset from the Fall 2022 semester of the CS 411 - Database
Systems course at the University of Illinois Urbana-Champaign. Our methodology played a
pivotal role in shaping the training framework for our Large Language Model (LLM).

3.1 Data Source

Our training dataset is based on an anonymized dataset of student submissions from the Fall 2022
semester of the Database Systems course. The database course is offered at the University of
Illinois Urbana-Champaign in the United States, and students who are enrolled in the course are
generally upper-level undergraduate and graduate students. Students who enroll in the course are
assumed to have prerequisite knowledge of Data Structures and have at least some introductory
programming knowledge.

In particular, our training dataset is a subset of the student submissions from an SQL
programming homework assignment. SQL-related content is covered in the lectures during the
first four weeks of the course. Students have approximately two weeks to complete the homework
assignment, with unlimited attempts and immediate feedback from an auto-grader for each
submission attempt, for all of the problems. The homework assignment consists of 15 problems
over various SQL concepts, including more advanced concepts such as aggregation and correlated
subqueries. The homework assignment is hosted on PrairieLearn [37], an online learning
management system, with autograding capabilities and gives immediate feedback upon each
student’s submission.

Our training dataset consists of 100 “true” (correct) and 400 “false” (incorrect) SQL queries. This
categorization is obtained through the auto-grader results, which correctly identify syntax and
semantic errors. Syntax errors are identified through the compilation process, and semantic errors
are identified by comparing the expected output of the instructor’s solution and the actual output
of the student’s solution. We use this set of 500 queries to fine-tune our model after the data
cleaning and preprocessing take place, as described in our next section.



3.2 Data Cleaning and Preprocessing

In the data cleaning and preprocessing phase, we undertook a meticulous approach to prepare our
dataset for effective model training. The dataset was standardized using a custom Python function
named clean text. This function was designed to remove unnecessary characters and spaces
from the SQL query texts, thus ensuring consistency across the dataset and enhancing the
effectiveness of the model training process. Recognizing the importance of challenging our Large
Language Model’s (LLM) learning capabilities, we intentionally curated a dataset that featured a
higher proportion of incorrect (or ‘false’) SQL queries relative to correct (‘true’) ones. This
composition was chosen to specifically test and refine the model’s ability to discern between
correct and incorrect query submissions.

3.3 Data Selection Process

In the data selection process, we employed custom functions, specifically is true query and
is false query, to categorize the SQL queries into two distinct groups: correct (‘true’) and
incorrect (‘false’). This initial step allowed us to methodically organize the dataset, ensuring that
each query was associated with its respective question number for streamlined dataset structure
and analysis. To achieve an optimal balance for effective LLM fine-tuning, we adopted a selective
approach in determining the proportion of true and false queries within our dataset. This strategic
selection was crucial in challenging the model’s learning and error identification capabilities.
Furthermore, we leveraged the LLM’s feedback mechanism extensively by submitting queries
and evaluating the generated responses. This iterative process was instrumental in significantly
enhancing the model’s accuracy and its ability to provide context-aware feedback, thereby refining
its overall performance in identifying and addressing semantic errors in SQL queries.

3.4 Fine-Tuning Process

3.4.1 Training Dataset Description:

In the fine-tuning process of our model, we utilized a dataset consisting of 500 SQL queries,
divided into 400 correct (true) and 100 incorrect (false) submissions. This structure aims to reflect
the range of student responses typically encountered in educational settings. The data was
formatted following the OpenAI data structure for optimal model training:

• System Message: Directs the AI’s behavior to act as a database instructor. Each entry
embeds the correct SQL query for the specific question, providing a reference for the model
when generating feedback.

• User Content: Contains the SQL query submitted by a student.

• Assistant Message: The feedback provided by the AI. For correct student queries, we
pre-set this as ”Correct query.” For incorrect ones, we use the OpenAI API to generate
specific feedback aimed at guiding the student to understand and rectify their errors.



3.4.2 Training Procedure

We selected the “gpt-3.5-turbo-1106” version from OpenAI, known for its efficiency and
effectiveness in natural language understanding and generation tasks. We formatted our SQL
submissions dataset according to OpenAI’s guidelines. This included structuring each training
example as a dialogue with system, user, and assistant messages. We ensured that the dataset
represented a broad spectrum of SQL query types to improve the model’s learning. Before
initiating the fine-tuning process, the dataset was split into two parts: 70% for training and 30%
for validation. This approach allowed us to train the model on a diverse set of examples while
also evaluating its performance against unseen data to ensure it can generalize well to new SQL
queries. The fine-tuning process was initiated once the dataset was preprocessed and ready. We
continuously monitored the model’s performance throughout the training by observing metrics for
both the training and validation sets. Special attention was paid to loss scores, as they provide
essential insights into the model’s learning and prediction accuracy. Careful monitoring helped us
identify and address signs of overfitting or underfitting, making necessary adjustments to the
training parameters and strategy to optimize learning outcomes.

3.4.3 Model Monitoring and Adjustments

We monitored the model’s training and validation losses to ensure efficient learning and
generalization. The training process showed the training loss decreasing from 1.3308 to 0.8091,
indicating learning from the training data. Concurrently, validation loss reduced to 0.7207,
suggesting good generalization to new queries. Adjustments were made as needed to prevent
overfitting or underfitting, ensuring the model’s effectiveness in real-world applications.

Figure 1: Training and Validation Losses over Steps

As shown in Figure 1, the training and validation loss values decreased over time, indicating that
the model was learning and improving from the SQL queries. However, we carefully monitored
for any signs of overfitting - where the training loss continues to decrease while the validation
loss starts to increase. Upon observing such signs, we would make necessary adjustments to the
training parameters.



3.4.4 Hyperparameters

For the fine-tuning of our model, we used the following hyperparameters:

• Learning Rate Multiplier: Set at 2 to facilitate rapid learning while maintaining stability
in the model’s updates.

• Batch Size: Set to 1, allowing for detailed, instance-by-instance learning and feedback.

• Epochs: Set at 3, sufficient for the model to learn from the data without overfitting.

We initiated the fine-tuning of GPT-3.5-turbo-1106 to precisely identify and correct semantic
errors in SQL queries. This precision was achieved by designing system messages that defined
expected model behaviors, guiding its learning. Our model is different from a pre-trained
ChatGPT model, as it has been optimized specifically for the task of analyzing SQL queries. We
have adjusted key hyperparameters: setting training epochs to 3 to effectively learn without
overfitting or underfitting, a batch size of 1 for nuanced learning, and a learning rate multiplier of
2 to balance knowledge retention and new insights acquisition. Our training approach involves
providing explicit examples of correct and incorrect SQL queries, diverging from the typical
unsupervised method. This ensured relevant feedback aligned with our educational goals,
enhancing its utility. Additionally, we adjusted the model’s temperature to control creativity and
setting the token length for a shorter and concise feedback.

1 {
2 "messages": [
3 {"role": "system", "content": "You are a database instructor assisting students in

identifying errors in their SQL queries without providing the exact answer. Only provide a
max 50 words feedback dont talk about anything else. True Query: <true query>"},

4 {"role": "user", "content": "<SQL Query from student>"},
5 {"role": "assistant", "content": "<Feedback generated by the model in the preparation phase>"

}
6 ]
7 }

Listing 1: Format of the Training Data for Fine-tuning the AI Model.

The system message provides the instructions for the AI and sets the road map on how the model
should behave in a specific interaction. The User role represents inputs from the user. The
Assistant role is to respond to the user’s input and shaped by the instructions given in the system
message.

4 Results

4.1 Model Architecture and Educational Customization

The architecture of our fine-tuned AI model is specifically designed to process SQL queries in an
educational setting. Central to its design is a system instructed to function as a database
instructor, with the guiding principle encapsulated in our system message: “You are a database
instructor assisting students in identifying errors in their SQL queries without providing the exact
answer. Only provide a max 50 words feedback don’t talk about anything else.” This directive
informed the development of algorithms capable of detecting semantic errors in SQL queries



while strategically avoiding the disclosure of direct answers, thus promoting learning through
discovery and critical thinking.

4.2 Preliminary Testing - Feedback Mechanism

During the preliminary testing phase, the model demonstrated a high level of accuracy in
identifying and addressing semantic errors in SQL queries. Below are specific examples
showcasing this:

4.2.1 Incorrect Joins:

The database in question involves student enrollments, where each student is enrolled in various
courses, and scores are awarded based on their performance. The objective of the SQL query is to
retrieve courses with an average score above 80, alongside the scores of students who scored
more than 85 in those courses. The provided query attempts to join the Students and Enrollments
tables to calculate the average course score and then filter those courses and students meeting
specific criteria.

Student Query:
1 SELECT e.CRN,
2 (SELECT SUM(Score * Credits)/SUM(Credits)
3 FROM Enrollments e2
4 WHERE e.CRN = e2.CRN) AS CourseAvgScore,
5 s.NetId,
6 e.Score
7 FROM Students s
8 JOIN Enrollments e ON s.ID = e.CourseID -- Error: Incorrect JOIN condition, should be based on a

valid relational key
9 WHERE (SELECT SUM(Score * Credits)/SUM(Credits)

10 FROM Enrollments e2
11 WHERE e.CRN = e2.CRN) >= 80
12 AND e.Score > 85
13 ORDER BY e.CRN DESC, e.Score DESC;

Instructor Query:
1 SELECT e.CRN,
2 (SELECT SUM(Score * Credits)/SUM(Credits)
3 FROM Enrollments e2
4 WHERE e.CRN = e2.CRN) AS CourseAvgScore,
5 s.NetId,
6 e.Score
7 FROM Students s
8 JOIN Enrollments e ON s.NetId = e.NetId
9 WHERE (SELECT SUM(Score * Credits)/SUM(Credits)

10 FROM Enrollments e2
11 WHERE e.CRN = e2.CRN) >= 80
12 AND e.Score > 85
13 ORDER BY e.CRN DESC, e.Score DESC;

Correct Approach and Student Misconception

The correct approach of this SQL query emphasizes maintaining the structural goal of calculating
course average scores and selecting specific records, with a focus on correcting the join
conditions for precise data correlation and retrieval. Unlike the student queries, which might



misalign the Students and Enrollments tables due to a misunderstanding of the appropriate
columns for joining, the correct query ensures that the join condition matches the relevant
columns. This precision facilitates the accurate extraction of data, thereby addressing a common
student misconception regarding join conditions. By rectifying this essential aspect, we provide a
feedback that can help students to understand the significance of proper query construction and
the impact of join conditions on the query’s accuracy.

Model Feedback:

“Check the JOIN condition; it seems like you’re trying to join Students and Enrollments on
mismatched columns (ID and CourseID). Also, ensure that the subquery for CourseAvgScore is
correctly correlated with the outer query. The correlation should be on student or enrollment
identifier.”

Explanation:

The feedback identifies the semantic error in the JOIN condition, where ‘Students’ and
‘Enrollments’ tables are incorrectly joined on mismatched columns (student ID vs. course ID).
This guidance prompts the learner to reassess and correct the JOIN logic in their query.
Additionally, the model advises checking the subquery for ‘CourseAvgScore’ to ensure it is
properly correlated with the outer query, which is crucial for accurate computation of the average
score.

4.2.2 Logical Error in WHERE Clause:

The following database keeps track of customer purchases, including details about customers, the
products they buy, and the prices of those products. The goal of the SQL query is to find
customers with specific purchasing patterns, such as those who prefer a certain brand, and
summarize their spending and product choices. The student query aims to filter records from a
database that combines customer and product information, specifically targeting customers whose
names start with ‘C’ and who have purchased ‘Google’ brand products. However, it incorrectly
applies mutually exclusive conditions in the WHERE clause, leading to a logical conflict that
prevents the query from returning valid results.

Student Query:
1 SELECT c.CustomerId, c.FirstName, c.LastName, p.BrandName, AVG(Price) as average_price,
2 Count(PurchaseId) as device_count
3 FROM Purchases pur
4 NATURAL JOIN Customers c
5 NATURAL JOIN Products p
6 WHERE c.LastName = ’Smith’ AND c.LastName LIKE ’C%’ AND p.BrandName = ’Google’ -- Error:

Contradictory conditions in WHERE clause
7 GROUP BY c.CustomerId
8 ORDER BY c.CustomerId;

Instructor Query:
1 SELECT c.CustomerId, c.FirstName, c.LastName, p.BrandName, AVG(Price) as average_price,
2 Count(PurchaseId) as device_count
3 FROM Purchases pur



4 NATURAL JOIN Customers c
5 NATURAL JOIN Products p
6 WHERE c.LastName LIKE ’C%’ AND p.BrandName = ’Google’
7 GROUP BY c.CustomerId
8 ORDER BY c.CustomerId;

Correct Approach and Student Misconception

The key to fixing the student’s SQL error is refining the WHERE clause to filter records
accurately, avoiding any illogical conditions. The mistake was in trying to meet impossible
criteria, like finding customers whose last names both start with ‘C’ and exactly match ‘Smith’.
To rectify this, the corrected query targets customers whose last names start with ‘C’ and who
bought ‘Google’ products. This correction clarifies the use of logical conditions in SQL, steering
students away from contradictory criteria. It showcases the importance of correctly applying SQL
operators to ensure queries fetch the intended data.

Model Feedback:

Check the WHERE clause for conflicting conditions on LastName. Also, ensure that the
aggregate functions in the SELECT clause are used correctly and that the GROUP BY clause
matches the non-aggregated columns. Consider the logic of the conditions and the intended result
set.

Explanation:

This feedback highlights the logical inconsistency in the WHERE clause, where the conditions
for ‘c.LastName’ are mutually exclusive and cannot be true simultaneously. It guides the learner
to reevaluate and correct the WHERE clause logic, emphasizing the importance of ensuring
logical consistency in query conditions for meaningful and accurate results. Moreover, our model
is designed to provide semantic feedback for advanced SQL topics, including GROUPING,
STORED PROCEDURES, and TRIGGERS, showcasing its capability to support a wide range of
SQL educational needs.

4.3 Specificity and Relevance of Feedback

In this section, we conduct a comparative analysis between the feedback provided by our
fine-tuned AI model and standard GPT models. The focus is on evaluating the specificity and
relevance of the feedback for each model in response to the same set of SQL queries.

4.3.1 Example 1: Incorrect SQL Procedure

The intent behind the SQL procedure is to dynamically calculate customer discounts based on
their total purchase prices. This process, streamlined for clarity, encompasses several key
operations: firstly, assessing the total expenditure of each customer; secondly, assigning discount
rates proportional to these expenditure levels; thirdly, generating a new table specifically for
recording these discounts; and finally, systematically updating this table with the calculated
discounts for every customer. (Code not included due to page limit constraints.)



4.3.2 Example 2: Misuse of GROUP BY

This SQL example attempts to calculate the average grade and total course count for students,
specifically focusing on courses with either 3 or 4 credits. However, there’s a fundamental misuse
of the GROUP BY clause. Instead of grouping results by a unique identifier (in this case, NetId
which represents each student), the query mistakenly tries to group by avg grade, a calculated
value. This approach is incorrect because GROUP BY should be used with columns that have the
same values in multiple rows, serving as a basis for aggregation, not with the result of an
aggregated function like an average grade.

1 SELECT NetId, COUNT(CRN) AS course_count,
2 ROUND((SUM(Score) / COUNT(CRN)), 2) AS avg_grade
3 FROM Students
4 JOIN (SELECT * FROM Enrollments WHERE Credits = 3 OR Credits = 4)
5 USING (NetId)
6 GROUP BY avg_grade
7 ORDER BY NetId;

4.3.3 Example 3: Misuse of Trigger for Inserting Rows

The SQL trigger DrinkTrig is designed to run after a new insertion in the Enrollments
table, aiming to grant extra credits to students exceeding a certain credit threshold. However, the
implementation faces issues with accurately aggregating credits per student and potentially
misuses the old keyword, intended for use in triggers dealing with updates or deletions rather
than insertions.

1 CREATE TRIGGER DrinkTrig AFTER INSERT ON Enrollments
2 FOR EACH ROW
3 BEGIN
4 SET @creds =(SELECT SUM(Credits) AS total_creds FROM Enrollments GROUP BY NetId);
5 IF @creds >= 50 THEN
6 INSERT INTO Enrollments(NetId, CRN, Credits, Score) VALUES(old.NetId, old.CRN, old.

Credits, old.Score + 10);
7 END IF;
8 END;

4.3.4 Example 4: Correct Query

This SQL query calculates each student’s course count and the average grade for courses worth 3
or 4 credits, grouping the results by ‘NetId’. It demonstrates the correct application of
aggregation functions and the ‘GROUP BY’ clause to organize and summarize enrollment data
efficiently.

1 SELECT
2 NetId,
3 COUNT(CRN) AS course_count,
4 ROUND(AVG(Score), 2) AS avg_grade
5 FROM
6 Enrollments
7 WHERE
8 Credits = 3 OR Credits = 4
9 GROUP BY

10 NetId;



4.3.5 Comparative Feedback Analysis

Table 1 presents the results of our comparative feedback analysis. We provide detailed
discussions for each example in the table below.

Query Reference Fine-Tuned Model Feedback GPT 3.5 Feedback
Example 1 Check the cursor query for the cor-

rect use of JOIN and the conditions
for selecting purchases. Also, en-
sure that the pId variable is assigned
the correct value from the cursor.
Review the logic for setting the sale
variable based on pId.

The query has an error in the cur-
sor declaration. It should filter pur-
chases with positive prices, not neg-
ative prices.

Example 2 Check the GROUP BY clause;
it should only include the non-
aggregated columns. Also, ensure
that the column aliases are used cor-
rectly in the GROUP BY and OR-
DER BY clauses.

The input query has an error in the
GROUP BY clause. It should group
by ‘NetId,’ not ‘avg grade’.

Example 3 Check the use of aggregate func-
tions in the trigger and ensure they
are being used correctly within the
context of the trigger logic. Also,
review the use of the INSERT state-
ment within the trigger and consider
how it may affect the data consis-
tency and the triggers own opera-
tion.

The input query has several issues.
It should use “New” instead of
“old” in the INSERT statement, and
the SELECT SUM(Credits) should
be for the specific “New.NetId” in-
stead of grouping by NetId. Also,
the trigger should be defined as
“BEFORE INSERT,” not “AFTER
INSERT.”

Example 4 Correct query The input query is almost cor-
rect, but it’s missing the alias
“AS course count” for the
COUNT(CRN) column in the
SELECT clause.

Table 1: Comparative Feedback Analysis

Example 1: The fine-tuned model provides a detailed and instructive critique of the SQL
procedure, addressing the use of joins and the logic of variable assignments within the cursor. It
encourages the user to critically examine the correctness of variable use and the overall logic flow,
fostering a deeper understanding of SQL procedures. In comparison, the GPT 3.5 model’s
feedback is precise and identifies the exact issue with the cursor declaration, guiding the user to
the right correction. However, by pinpointing the error so explicitly, it may diminish the learning
experience by providing the solution outright rather than encouraging the learner to explore and
understand the underlying principles.

Example 2: The fine-tuned model’s feedback adeptly nudges the user to reconsider the GROUP
BY clause, aligning with best practices for SQL. It promotes exploration and self-correction by
suggesting a reevaluation of the GROUP BY and ORDER BY clauses without giving away the
exact fix.

On the other hand, the GPT 3.5 model specifies the error in the GROUP BY clause, offering a



straightforward correction. This direct approach, while helpful for immediate problem resolution,
could potentially shortcut the learning process by revealing the answer.

Example 3: The fine-tuned model’s feedback carefully directs the user to consider various aspects
of the trigger’s logic, such as the use of aggregate functions and the implications of performing
inserts within the trigger. This guidance is structured to provoke thoughtful analysis without
directly providing the solution, thereby encouraging a deeper learning experience. On the other
hand, the GPT 3.5 model exhibits a clear understanding of the trigger’s issues by identifying the
specific errors. However, by giving direct corrections, it could inadvertently reveal the answers.
While this direct approach can be useful for expediently fixing errors, it may limit the opportunity
for users to learn by working through the problem-solving process on their own.

Example 4: The fine-tuned model’s affirmation of the query as correct demonstrates its capability
to validate SQL queries accurately, which is essential for providing reliable feedback. It indicates
the model’s nuanced understanding of SQL syntax and semantics. In contrast, the GPT 3.5
model’s feedback mistakenly identifies a non-existent error, suggesting that the query is missing
an alias for the COUNT(CRN) column. This not only indicates a lapse in the model’s query
interpretation but also points to the potential for providing misleading feedback. While the GPT
3.5 model has the capacity to understand and analyze SQL statements, this example shows that
even with good comprehension, there’s a risk of providing incorrect feedback that could misguide
learners. In response to potential concerns about our model’s consistency across different SQL
queries, it’s important to note our model is designed with a robust validation and continuous
learning framework. This framework ensures it learns from a diverse range of SQL queries,
reducing the likelihood of repeating the misinterpretations identified in the GPT 3.5 model’s
feedback. Our model’s understanding of SQL syntax and semantics is ongoing, aiming to
enhance its reliability in providing accurate and constructive feedback.

5 Discussion

In our discovery of incorporating generative AI models for educational use, our research has
focused on two significant questions. The first, RQ1, examines the design and implementation of
a proof of concept to assess the feasibility of using a generative AI model for providing semantic
error feedback. Our findings indicate that by meticulously adjusting and taking a thorough
approach to training data variation, generative AI can effectively detect SQL errors. The model
has been able to identify and respond to a wide variety of SQL query errors without providing
direct solutions, thus promoting a deeper, exploratory learning process. This aligns with
educational methods that prioritize the growth of problem-solving skills over memorization.

Specifically, the fine-tuning process involved critical adjustments to the model’s parameters,
including temperature settings and learning rate multipliers, to optimize its performance for
educational tasks. By adjusting the temperature, we controlled the model’s creativity, ensuring its
responses were informative yet concise, directly supporting the learning process without
unnecessary information. Additionally, fine-tuning the learning rate multiplier allowed us to
balance the model’s ability to learn from our specific dataset against retaining its pre-trained
knowledge, ensuring it remained versatile yet effective at identifying semantic errors specific to
SQL queries. In addressing RQ2, our comparative analysis has shown that the fine-tuned GPT



model offers a superior level of specificity and relevance in feedback when compared to standard
GPT models. By adjusting model parameters such as temperature we have refined the model’s
output to deliver feedback that is both contextually precise and educationally valuable. The
fine-tuned model adheres to the system message’s directive, effectively avoiding the disclosure of
correct answers. This balance between providing guidance and fostering independent learning is
where the fine-tuned model’s feedback mechanism truly excels. The fine-tuned model has been
shown to comprehend the nuances of SQL queries. Its feedback is designed to guide learners
towards identifying their semantic errors and encourages the development of their analytical
skills. In contrast, the standard GPT model, while generally accurate, it tends to hallucinate by
generating responses based on its vast training data that can sometimes be contextually irrelevant
or misleading. This unpredictability can accidentally disrupt the learning process by providing
solutions that are either too revealing or diverge from the educational objectives.

The implications of these findings are significant. They suggest that generative AI can play a
pivotal role in educational settings, particularly in disciplines that require complex
problem-solving skills such as computer science and database management. By utilizing AI as an
intelligent assistant, educators can offer customized feedback at scale, potentially revolutionizing
the way feedback is provided and consumed in learning environments.

6 Limitations

Since our study is based on data collected from the University of Illinois Urbana-Champaign, a
large public university with a highly-ranked Computer Science department, the students and their
data may influence the fine-tuning process and therefore the generalizability of our findings. For
this purpose, data from other universities or institutions should be collected and incorporated into
the fine-tuning process.

As with many other AI models, our fine-tuned model’s effectiveness is dependent upon a quality
and diverse training dataset. For example, if the training dataset lacks variety or contains biases, it
may limit the model’s ability to provide accurate and unbiased feedback. This then emphasizes
the importance of the data selection process, to ensure variety and a lack of biases.

Furthermore, overcoming the perceived generality of LLMs, particularly with complex SQL
queries, is challenging; despite the intelligence of the system, there could be instances where the
LLM fails to fully grasp the intricacies of advanced SQL queries. Users might view the feedback
from LLMs as too generic, influenced by their previous experiences with standard chatbots that
are known for providing generalized responses. Also, the system may not recognize semantically
correct but structurally highly different queries as correct. This phenomenon is partially
attributable to the multiplicity of valid approaches for solving a given SQL problem.

7 Future Work

Future research based on this study could aim to enhance the training dataset with a greater
variety of SQL queries and scenarios to improve the model’s ability to provide more concise
feedback. There is also the opportunity to advance the model’s ability to understand and provide
feedback on more complex SQL queries. Personalization of feedback, tailored to individual



learning styles and progress, is another promising area for development. Additionally,
implementing continual learning and updating mechanisms would ensure that the model remains
current with evolving SQL standards and practices. Finally, quantitative and qualitative studies to
extensively test the model in real-world educational settings are crucial to validate its practical
effectiveness and impact on students’ learning; qualitative studies are also necessary to help
gather comprehensive user feedback for further refinement.

Following thorough testing to validate its efficacy in enhancing student learning outcomes, we
plan to integrate the model into online assessments conducted via widely used online learning
management systems, such as PrairieLearn [37]. This strategic integration is intended to optimize
the model’s effectiveness in providing support throughout students’ SQL learning journey.

8 Conclusions

Our study has demonstrated the significant potential of using a fine-tuned Generative AI model to
provide semantic error feedback in SQL learning. The incorporation of this advanced technology
into educational tools represents a substantial step forward in showcasing the challenges students
face when learning SQL. The model’s ability to provide precise, context-aware feedback
enhances the overall learning experience. The study’s findings offer promising insights into the
integration of AI in education, particularly in specialized domains like database management.
While the fine-tuned AI model has shown considerable effectiveness in providing feedback, the
study also acknowledges limitations such as data dependency and the potential perception of
feedback generality. These limitations highlight areas for future improvement and research.
Future work will focus on enriching the training dataset, which is a crucial step in improving the
model’s understanding. The ultimate goal is to create an intelligent, dynamic learning
environment that delivers to diverse educational needs and continually evolves to meet the
challenges of teaching SQL and other complex subjects.
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