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Non-Parametric, Computer-Intensive Statistics: A Primer 

Abstract 

The authors have developed a first course in statistics for engineers based on non-

parametric, computer-intensive (NPCI) statistical methods. These methods do not 

rely on calculus or knowledge of statistical distribution theory, and as such can be 

taught earlier in a curriculum, are more intuitive, are less-recipe driven, and can 

be retained longer than traditional parametric statistics. In this paper, we provide a 

primer on NPCI methods.  Basic NPCI concepts of bootstrapping and permutation 

are described.  These concepts are then applied to confidence interval construction 

and hypothesis testing.  Several examples taken from the course are worked to 

elucidate the methods.  

Introduction 

The authors have developed a new type of entry level statistics course focused on 

non-parametric computer-intensive (NPCI) statistics. NPCI methods do not rely 

on calculus because they do not depend on assumed distribution functions (thus 

non-parametric), instead their theory relies heavily on simple sampling concepts 

and their implementation utilizes computer re-sampling (thus computer-

intensive).  As a first course in statistics, NPCI methods are more useful for many 

students than traditional statistics because the basic theory posits that sampling 

from a sample of observed data mimics sampling from a conceptual (or real) 

population.   

The potential benefits of a NPCI course are threefold.  First, the course can be 

taught earlier in a curriculum than traditional statistics.  Second, the methods are 

more intuitive and therefore stay with students longer.  Finally, more 

sophisticated statistical procedures can be taught and used.  These benefits mean 

that students are better equipped to solve statistical problems later in their careers. 

The benefits of NPCI are being investigated and results are presented elsewhere.  

This paper focuses on the concepts, methods, and applications of NPCI statistics. 

NPCI Concepts 

The theory behind many NPCI methods is not new.  Many of the basic concepts 

have been in the statistics literature since the 1940’s.  However, NPCI methods 
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did not see widespread application until the early 1980’s because the necessary 

computing power was not available.  With the advent of cheap and easy-to-use 

computers, computer intensive methods for realistic data sets became possible. 

The modern emergence of NPCI methods generally began in the late 1970s
1,2

.  

The basic concept of NPCI statistics is that variation of a statistic over repeated 

re-sampling of the sample will mimic variation of the statistic over repeated 

sampling of the population, if that were possible.  In other words, resampling the 

original data is statistically equivalent to going back in time and conducting the 

same experiment again. 

For the purposes of this paper, we introduce two main NPCI techniques; 

bootstrapping and permutation.  Bootstrapping is primarily used to construct 

confidence intervals, while permutation is used to conduct hypothesis tests.  

Bootstrapping relies on sampling with replacement, while permutation relies on 

sampling without replacement.   

To illustrate bootstrapping, consider the following example.  Assume an 

experiment has n experimental units, and that each unit produces one number 

(statistic, e.g., hardness, cycles until breakage, etc.).  Bootstrapping produces a 

pseudo sample by sampling n units and their associated number from the original 

sample.  Bootstrap sampling is done “with replacement”, meaning that the pseudo 

sample units are always drawn from the full sample and may contain duplicate 

units from the original sample.  In this way, multiple different pseudo samples can 

be drawn.  In most cases, these multiple pseudo samples mimic replication of the 

experiment, and thus a statistic computed on pseudo samples will have the same 

variation as the statistic computed on multiple replications of the experiment, if 

that were possible.    

Permutation methods permute units between two or more samples.  For example, 

consider sample A with nA units and sample B with nB units.  Permutation 

combines the two samples and randomly assigns the units into new pseudo A and 

pseudo B samples.  These pseudo A and B samples have exactly the same 

statistical properties, including identical means.  These pseudo samples mimic a 

null hypothesis situation in which the populations have identical means.  

Variation of any statistic that measures the distance between means (such as a t 

statistic) over repeated permutation should mimic variation of the statistic applied 

to the original populations.  
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Applications 

In this section, we expand discussion of the two applications mentioned above, 

confidence interval construction and hypothesis testing, and give some examples. 

Confidence Intervals 

Confidence intervals of any statistic can be computed by generating a large 

number of pseudo samples by bootstrapping.  The statistic in question should be 

computed on all the pseudo samples, plus the original sample.  A confidence 

interval is then the appropriate percentiles of the list of computed statistics.  For 

example, to construct a 95% interval for the mean of a population, we generate 

999 pseudo samples by bootstrapping.  Including the original sample, we have 

1000 means, the variance of which should reflect the variance of the original 

mean.  After sorting, the 25
th

 mean (2.5 percentile) and 975
th

 mean (97.5 

percentile) of this list are pulled to give the 95% confidence interval.   

This confidence interval estimation method works regardless of the underlying 

distribution of the statistic.  This means, for example, that the exact same 

procedure can be used to construct confidence intervals for complicated statistics 

that are not normally distributed.  For example, it is easy to compute the 95% 

confidence interval of the standard deviation or the median.  Instead of computing 

1000 means, we compute 1000 standard deviations or medians.  The 25
th

 and 

975
th

 values in these sorted lists then form 95% confidence intervals for the true 

value of their respective statistic in the population. A more complex application is 

determining a 95% confidence interval for a regression coefficient.  In this case, 

1000 sets of data are generated (typically by bootstrapping residuals) and 1,000 

regressions are carried out.  The pseudo coefficients are then sorted and the 

middle 95% are taken as the 95% confidence interval.  Numerical examples of 

confidence interval construction for means and for regression coefficients are 

given later. 

Hypothesis Testing 

Based on the principle of permutation, NPCI statistics can also be used to test 

hypotheses.  If two samples were drawn from the same population (as opposed to 

being drawn from two distinct populations), the units in each sample could be 

interchanged with no change in the statistical distance between the two samples.  

For example, if we have two samples, Sample A and Sample B, then under the 

null hypothesis of no difference in the underlying means we could exchange units 

from A and B and the t-statistic of the two samples will change only by chance (or 

at random). 
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The strategy of a two-sample permutation test is to construct a large number of 

permuted samples.  To do this, the units from A and B are randomly distributed to 

pseudo samples A and B with the constraint that the number of units in A and B 

are the same as the original samples.  In this technique, unlike bootstrapping, 

there is no possibility for units to be used more than once.  Once a pseudo pair of 

A and B samples are obtained, a regular t-statistic is computed.  This procedure is 

then repeated a large number of times and the original t-statistic is compared to 

the distribution of t-statistics computed on the pseudo sample pairs.  If Samples A 

and B were from the same population (no difference), then the original t-statistic 

should be indistinguishable from the pseudo t-statistics.  However, if Samples A 

and B were from different populations (statistically different means), then the 

original t-statistic should be large in magnitude when compared to all the pseudo 

t-statistics.  In fact, the percentile of the original t-statistic when combined with 

the pseudo t-statistics is the p-value.  For example, if we generate 999 pseudo A 

and B samples and the original t-statistic is the 4
th

 largest in magnitude from the 

list of 1000 t-statistics, then the p-value is 0.004.  Numerical examples of one and 

two sided hypothesis tests on means of date are presented later. 

Implementation and Examples 

The basic concepts and applications of boot-strapping and permutation methods 

are relatively straight-forward and intuitive.  The main difficulty with the method 

lies in implementation.  For boot-strapping methods, practitioners must be able to 

accomplish the following tasks: 

≠ Construct a large number of samples by sampling with replacement 

≠ Apply a statistic to a large number of samples 

≠ Sort a large number of statistics according to some criteria 

≠ Select a given percentile of the statistic 

For two-sample permutation testing, practitioners must be able to accomplish the 

following tasks: 

≠ Construct a large number of sample pairs with permutation 

≠ Compute the t-statistic for a large number of sample pairs 

≠ Sort a large number of t-statistics  P
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≠ Find a percentile of the original t-statistic 

Because of the large number of pseudo-samples or pseudo-sample-pairs, the 

above tasks are usually done on a computer.  For illustration purposes, it is 

possible to do a few sample iterations by hand, but hand computation is not 

practical for real world applications.  Being able to do these tasks on a computer 

requires basic competence in computer programming or spreadsheet use.  To aid 

application, the authors have implemented bootstrap and permutation routines in 

Excel, Mathcad, MATLAB, and R.   

Example 1: Confidence Interval for the Mean and Standard 

Deviation 

This example comes from a Junior-level Civil and Architectural Engineering 

experimental laboratory course.  The students collected 10 hardness readings
3
 and 

were asked to compute the mean, mode, median, standard deviation, 95% 

confidence interval for the mean, and a 95% confidence interval for the standard 

deviation of the data.  A typical set of readings is shown in Table 1. 

Table 1. Rockwell hardness readings (HRB). 

91 93 93 93 93 93 94 94 93 94 

 

The students constructed the 95% confidence interval of the mean and standard 

deviation using bootstrapping techniques in R.  The instructor provided an 

example in R to calculate the 95% confidence interval for the mean of a data set.  

The students used this script to compute the 95% confidence interval of the mean 

then altered the script to compute the 95% confidence interval of the standard 

deviation.  The original sample and five pseudo samples are shown in Table 2. 

Table 2. Original hardness data with five pseudo samples. 

Sample Data Mean Standard 

Deviation 

Original 

Sample 

91 93 93 93 93 93 94 94 93 94 93.1 0.876 

Pseudo 

Sample 1 

93 93 94 93 94 94 93 94 93 91 93.2 0.919 

Pseudo 

Sample 2 

93 94 93 93 93 94 93 93 93 94 93.3 0.483 

Pseudo 

Sample 3 

94 94 93 93 94 93 93 93 93 93 93.3 0.483 

Pseudo 

Sample 4 

94 93 93 93 94 93 94 93 91 93 93.1 0.876 

Pseudo 

Sample 5 

93 94 93 91 93 94 94 94 93 94 93.3 0.949 
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This process was repeated for 999 pseudo samples for a total of 1000 samples.  

The students then took the 25
th

 and 975
th

 ordered mean and standard deviations to 

construct the 95% confidence intervals. The 95% confidence interval for the mean 

was 83.6 to 92.5 HRB, and the 95% confidence interval of the standard deviation 

was 0.316 to 1.252 HRB.  In this case, computing a traditional 95% confidence 

interval for the mean is relatively simple for anyone with at least 1 course in 

statistics; however, computing a traditional parametric 95% confidence interval 

for the standard deviation is difficult even for graduate students in statistics.  The 

students in this lab easily modified the script to do this because the jump from 

confidence intervals of means to confidence interval of standard deviations was 

based on basic transparent sampling principals. 

Example 2: Confidence Interval of Non-Linear Regression 

Coefficients 

A Civil Engineering M.S. student studied concrete creep over a period of one 

year.  Creep is the phenomenon where concrete continues to deform over time 

under constant load
4
.  Upon loading, concrete experiences an instantaneous strain 

called elastic strain.  Over time, the strain increases, even with no additional load.  

This additional strain due to load is called creep strain.  The ratio of creep strain 

to instantaneous strain is called the creep coefficient.  Thus, a creep coefficient of 

2 means that an additional deformation of double the initial deformation has taken 

place; that is, the total deformation has tripled (the original deformation plus 

double the initial deformation).   

The M.S. student obtained 5 concrete cylinders, placed the same load on all 

cylinders, and measured deformation daily for a 1 week, weekly for 1 month, and 

monthly for 1 year.  The measured creep coefficients for all 5 units are plotted 

versus age of concrete in Figure 1 along with the best fitting creep equation 

(below). 
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Figure 1. Creep coefficient vs. concrete age for 5 cylinders under constant load.  Solid line is the best 

fitting standard equation for creep.  Confidence intervals (dashed line) were determined by the 

bootstrap method described in the text.  

The standard equation for modeling creep is
5
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The best fit line in Figure 1 was constructed by minimizing the sum of the 

squared residuals (method of least squares) of the data from all five samples by 

varying D, {, and Vu. 

In this case, residuals around the fitted line are not independent of time under load 

or sample unit.  Thus, true sample size is not total number of measurements, but 

total number of cylinders (i.e., 5), and individual residuals cannot be 

bootstrapped.  Instead, all data from the five cylinders were bootstrapped.  That is, 

a random sample with replacement was taken from the set (1,2,3,4,5) and data 
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from the corresponding units was chosen for the pseudo sample.  For example, if 

the random sample was (1,3,1,4,5),  data from cylinder one was taken twice, and 

data from cylinders 3, 4, and 5 were taken once.  The coefficients D, {, and Vu 

were then re-computed on the pseudo sample using the least-squares method in  

Excel (via Solver).  The original sample and five pseudo samples are shown in 

Table 3 

Table 3.  Original creep sample and five pseudo samples. 

Sample Units D { Vu 

Original Sample 1 1 2 3 4 5 19.8 0.640 1.66 

Pseudo Sample 1 1 3 1 4 5 18.9 0.644 1.53 

Pseudo Sample 2 4 2 3 5 4 19.8 0.629 1.73 

Pseudo Sample 3 5 3 4 2 2 19.9 0.650 1.70 

Pseudo Sample 4 5 3 1 1 1 19.9 0.641 1.55 

Pseudo Sample 5 4 3 3 5 5 18.5 0.630 1.62 

 

Re-sampling cylinders and re-fitting was repeated 999 times to produce a set of 

1000 values of D, {, and Vu.   To compute a confidence interval for a particular 

age (say, t = 250), the set of 1000 coefficients were used to calculate 1000 creep 

coefficients for that age and these values were sorted.  The creep values 

corresponding to the 25
th

 and 975
th

 values from this list of 1000 were then used as 

the lower and upper endpoints of the 95% confidence interval for that age.   This 

process was repeated for all observed ages, and the lower and upper endpoints 

were connected in the graph.  

Primary interest in this problem was eventual creep in the distant future.  From 

the functional form of the standard creep equation, eventual creep is estimated by 

the value of Vu.  The lower and upper endpoints of a 95% confidence interval for 

the real eventual creep were constructed as the 25
th

 and 975
th

 value of Vu from the 

list of 1000 values.  

 Computing equivalent confidence intervals for this problem using traditional 

parametric statistical methods is challenging, even for graduate students (and 

some professors) in statistics, due to the non-linear form of the equation and 

dependencies in the residuals.  Although challenging via parametric methods, 

accurate confidence intervals for the coefficients of the creep equation were 

accessible to undergraduates and others who understand how the experiment was 

run, the basics of sampling, and how to program a computer to do the replications.   

Example 3: Hypothesis Testing 

The students in a Junior-level engineering laboratory course were instructed to 

determine if the number of cycles to break a paper clip when bent 90 degrees was 
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different than the number of cycles until breakage when the clip was bent 135 

degrees.  The students had complete freedom in choosing how many units they 

wanted to test, developing a hypothesis, and testing the hypothesis.  Some 

students tested their hypothesis with a parametric t-test and others with a 2-sample 

permutation test.  The data from a student who opted for the permutation test is 

shown in Table 4.  Data are given for angles other than 90 and 135 degrees 

because the students were also required to develop an expression relating cycles 

until failure to angle of bend. 

Table 4. Paper clip experiment data. 

Cycles to Failure 
Specimen ID 

45 Degree 90 Degree 135 Degree 180 Degree 

1 86 10 8 4 

2 55 8 6 4 

3 61 19 14 4 

4 82 16 9 3 

5 68 16 8 4 

6 71 25 6 3 

7 56 17 10 3 

8 89 15 10 3 

9 91 17 12 6 

10 107 16 6 6 

 

In this example, the student broke 10 paper clips in Sample A (90 degree bend) 

and 10 paper clips in Sample B (135 degree bend).  The original t-statistic for the 

data was 4.14.  The student then made 999 pseudo pairs of samples by permuting 

the 20 combined values among the samples and computed 999 additional t-

statistics.  The original t was the largest of the 1000 t’s, so the p-value was 0.001.  

Thus the student rejected the hypothesis that the two angles had the same number 

of cycles to failure.  Many other students opted to do a parametric two-sample t-

test because Excel has a built-in function for this test.  The parametric t’s p-value 

of 0.0009 was similar to the permutation t’s p-value in this case.  The parametric 

two-sample t-test, however, is not technically correct because the responses 

(cycles until failure) were counts and they violated the assumption of normality.  

Had this student only tested 1, 2 or 3 paper clips in each sample the parametric 

and permutation p-values would likely have lead to different conclusions. The 

permutation test was the correct test in this case.  
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Conclusion 

In this paper, we presented two concepts for non-parametric computer-intensive 

statistics – bootstrapping and permutation.  The concepts are used for two 

applications: confidence intervals and hypothesis testing.  Three examples using 

NPCI statistics were presented: constructing a confidence intervals for the mean 

and for the standard deviation of a data set, constructing confidence intervals for a 

non-linear regression, and a hypothesis test. 

These methods require knowledge of experimental methods, basic 

sampling theory, and rudimentary programming skills to conduct.  They do not 

require calculus or knowledge of any statistical distribution theory for random 

variables.  As such, these methods can be taught earlier in a curriculum.  

Furthermore, some of these analyses are difficult or impossible for 

undergraduates (and others) using traditional parametric methods.  The computer 

intensive methods are intuitive and a course based on them is less recipe-oriented 

than traditional first courses in statistics.  Because such a course is less recipe-

oriented, the methods will likely be retained longer outside the first statistical 

course.  If the methods are retained and internalized by students, they will be 

equipped to tackle a wide range of real-world problems in their careers.  
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