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Challenges of Teaching Earthquake Engineering to Undergraduates 
 

Abstract 

 

This paper presents a detailed discussion of challenges faced by instructors who teach earthquake 

engineering at the undergraduate level; particularly in an era of increased pressure to limit the 

number of credit hours required to complete a bachelor’s degree in engineering (both civil and 

architectural).  The challenges that we have faced in teaching the subject of earthquake 

engineering include: having only two semester credit hours allotted to the subject, having 

students with limited background in structural dynamics, a lack of a textbook that presents the 

subject matter at an undergraduate level, and the lack of available computational tools that can be 

used to solve the complex mathematics involved even in the simplest of earthquake engineering 

problems.  To address these challenges, the instructors have developed a six topic course outline 

that includes the following: seismology, single-degree-of-freedom (SDOF) dynamic analysis, 

response spectrum analysis in the context of SDOF system analysis, generalized SDOF system 

analysis, multi-degree-of-freedom (MDOF) system analysis, and code based seismic analysis.  

This paper emphasizes the development of computational tools (in MS Excel and Mathcad) for 

Modal Response Spectrum analysis of MDOF systems.  In addition, a commercially available 

computer program (RISA 3D) is used to compare the results.  Discussion of the other five topics 

is included in order to properly place the computational tools in terms of the challenges in 

teaching this course.  The course has been taught twice (once without the use of the tools and a 

second time with the tools).  The course average exam scores on questions related to the six 

aforementioned topics (embedded indicators) and scores of relevant student evaluation questions 

are used to assess the effectiveness of the computation tools.  The tools will be made available 

for other instructors via the internet. 

 

I.  Introduction 

 

Earthquake engineering is widely taught in civil and architectural engineering graduate programs 

around the country.  However, at the undergraduate level, there are few schools that offer a 

course in earthquake (or seismic) engineering; though most graduate programs allow qualified 

undergraduates to enroll in a graduate level course as an elective.  On the other hand, the 

University of the Pacific requires all the undergraduate students in civil engineering to complete 

a course in earthquake engineering.  The motivation for this requirement came from an 

assessment of the program educational objectives; one of which is to develop graduates who are 

capable of professional licensure.  Based on the program’s assessment process, which 

incorporates alumni surveys, performance on the California Civil Professional Engineering 

Special Seismic Principles Examination (henceforth, the seismic portion of the PE exam), the 

program faculty chose to enhance the preparation of all civil engineering graduates in the area of 

earthquake engineering.  However, given the pressures to reduce the number of units required to 

complete a bachelors degree, it was decided that a new course in earthquake engineering would 

essentially be a two-unit semester based course, which is approximately 32 contact hours of 

instruction.  A further challenge is that structural dynamics is not required as a prerequisite, so 

the instructor must present background material in structural dynamics in order to make the 

earthquake engineering principles comprehensible to the average student.  Furthermore, available 

textbooks are either too advanced or dated.  It is in this light that we present the material and 
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learning tools that have been developed for a first course in earthquake engineering for 

undergraduate students. 

 

The course has been taught twice and the instructor has made considerable efforts to improve 

delivery of content in order to ensure that students satisfy the following learning outcomes: 

 

1) Demonstrate a basic understanding of earthquake engineering;  

2) Identify and solve basic structural dynamics problems;  

3) Perform basic equivalent static and dynamic seismic analyses of simple structural systems. 

 

The first objective relates to the student’s ability to operate in the first two cognitive domains of 

Bloom’s Taxonomy (namely, knowledge of seismic engineering terms and comprehension of the 

overall area of earthquake engineering).  The second and third objectives primarily concentrate 

on the next two cognitive domains (namely, application of structural dynamics in earthquake 

engineering and analysis of systems subjected to earthquake loading). 

 

The first time the course was taught, the instructor conducted a detailed survey of online course 

descriptions.  Most courses in the subject were offered at the gradate level, with few exceptions 

particularly in architectural engineering programs that focus on structures, such as Cal Poly San 

Louise Obispo.  In many of the programs, earthquake engineering was presented as a topic in a 

structural dynamics course.  The programs that include a course in earthquake engineering cover 

a balance of seismic analysis and design, with a prerequisite of structural dynamics.  So, a 

decision was made to combine the prerequisite structural dynamics material into the earthquake 

engineering course. 

 

A review of the literature did not yield much information about teaching difficult earthquake 

engineering concepts.  The fundamental approach in published research on undergraduate 

earthquake engineering education has been the development of web-based simulation tools
1
 and 

the development of bench-top physical modeling tools (such as shake tables)
2, 3

.  The main 

objective of both approaches is to provide a conceptual understanding of a wide range of 

earthquake engineering related topics.  One other objective is to use these tools for outreach to 

potential future earthquake engineering students.  The current direction of undergraduate 

earthquake engineering education lacks the substance required for structural seismic design 

practice.  While the web-based simulation and bench-top physical modeling tools are excellent 

approaches to develop intuitive experience in earthquake engineering, and for outreach for the 

discipline, they are not intended to develop confidence in performing practical routine seismic 

design calculations.  The tools discussed in this paper are intended to help students gain 

confidence and understanding in performing practical design calculations. 

 

II.  Overview of the Course 

 

The course is divided into six fundamental topics: 

1) Seismology (terminology, etc.) – covered in one lecture period (two contact hours) 

2) Single-degree-of-freedom (SDOF) dynamic analysis – covered in four lecture periods (eight 
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3) Response spectrum analysis in the context of SDOF system analysis – covered in three lecture 

periods (six contact hours) 

4) Generalized SDOF system analysis – covered in three lecture periods (six contact hours) 

5) Multi-degree-of-freedom (MDOF) system analysis based on the Modal Response Spectrum 

Analysis Method – covered in three lecture periods (six contact hours) 

6) Code based seismic analysis – covered in two lecture periods (four contact hours) 

The material for the first topic was selected based on seismology material covered in the California 

seismic portion of the PE exam
4,5

.  The second topic includes discussions of free and forced, damped 

and un-damped vibrations; with the aim of developing parameters to characterize a system mass, 

stiffness, and damping, which are used to calculate periods, frequencies, and other vibration 

properties. The discussion is primarily focused on the development of parameters that are relevant to 

seismic analysis.  The third topic includes discussion of the computational processes used to develop 

elastic response spectra, which includes discussions of the Newmark-Hall method for developing a 

design response spectrum – both elastic and inelastic spectra.  The fourth topic covers an introduction 

to MDOF building systems (or multistory shear buildings).  It also covers the development of the 

generalized SDOF equation, which is easily completed with the selection of a shape function.  With 

this formulation, the principles learned during the SDOF and response spectrum topics can be applied 

to analyze a multistory building as a SDOF system (i.e., find maximum shear and bending moment 

due to a seismic load).  The process entails computing approximate participation factors and using a 

design response spectrum to get the story displacements, which are then used to obtain lateral story 

seismic forces.  Topic five covers the analysis of a shear building modeled as MDOF system. This is 

conducted using a commercially available program, RISA 3D, which has a “black-box” effect.  This is 

the primary topic covered in this paper.  The sixth and final topic covers the equivalent static methods 

found in the International Building Code (IBC) formulations used to establish seismic loading.  

Coverage of relationships of the IBC based design parameters to the structural dynamics parameters is 

discussed to elucidate the intricate formulations presented in the IBC code. 

Table 1. Average percent examination scores in problems related to the six topics covered in the 

course. 

  year 

  2007 2008 

Seismology topics 84% 76% 

SDOF analysis 97% 89% 

Response spectrum 78% 74% 

Generalized SDOF 81% 71% 

Code analysis 82% 90% 

MDOF analysis 60% 74% 

Total number of students 22 10 

 

Table 1 presents a comparison of the average test scores obtained for the two years the course has 

been taught.  The first year scores are higher in most areas, except for code analysis and MDOF 

system analysis areas.  Note that in the second year, the class was significantly smaller and any 

outliers (two in 2008 vs. one in 2007) would have a larger effect in the results of the second year, 
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which can partially explain the lower scores in 2008.  However, the scores for the last two (and most 

important) topics improved in the second year.  This improvement can be attributed to two things: 1) 

improved coverage of the material as a result of a second time teaching the course and 2) to the use of 

computational tools developed to teach code design calculations and the more complicated MDOF 

system analysis.  In this paper, we concentrate on the computational MDOF system analysis tools.  

One other item that we used to assess the effectiveness of the tools is the student evaluations; 

particularly the average score on a question regarding the usefulness of supportive materials such as 

programs.  The score for this question went from 3.79/5.0 to 4.0/5.0 (5.0 indicates a high rating and 

1.0 a low rating), or approximately 5% increase. Student comments for this question were positive 

regarding the effectiveness of the tools.  However, these scores are low compared to those from other 

structural engineering classes the authors teach.  This may reflect the fact that this material is more 

difficult to grasp compared to material covered in other structural engineering courses. 

 

III.  Overview of multi-degree-of-freedom (MDOF) system seismic analysis (Modal 

Response Spectrum Analysis Method) 

 

The process for determining the maximum response of a MDOF system to a seismic load based 

on the modal response spectrum analysis can be readily performed using a canned structural 

analysis computer program such as RISA 3D.  Unfortunately, to properly computationally model 

a structural system, engineers must understand the modeling tools.  Also, an engineer who 

understands the steps the program takes in the modeling process is better prepared to resolve 

problems with the results of the analysis.  Therefore, it is imperative for students in any 

earthquake engineering class to understand modal response spectrum analysis.  For 

undergraduates with limited mathematical backgrounds (some have not even been exposed to 

linear algebra) it is important that the mathematical steps are presented in an unadulterated 

fashion.  Before we discuss the programs developed in Mathcad and Excel, we will briefly 

review the steps in the response spectrum analysis method: 

 

1. The mass matrix, [m] is obtained from the given floor weights 

 

2. The stiffness matrix, [k] can be obtained from the column properties for a shear 

building(most undergraduate students are exposed to the stiffness method in a structural 

analysis course so obtaining a stiffness matrix is relatively straight forward) 

 

3. With the stiffness and mass matrices, solve for eigenvalues, ω2
, which are used to determine 

the frequencies, ω, and periods, T, of the system: {φ}([k] – ω2
[m]) = {0}. 

a. Take the determinate of ([k] – ω2
[m]), i.e., det([k] – ω2

[m]) to get eigenvalues 

(in excel, we need to reduce the mass matrix to an identity matrix, so a limitation is that 

all the masses must be equal; the resulting operation is det([k]/m – ω2
[I]).) 

where, 

[I] is the identity matrix 

 

b. With the frequencies (which are the square root of the eigenvalues), we can obtain the 

periods, T = 2π/ω. 
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4. Determine the spectral accelerations matrix from a design response spectrum by selecting the 

appropriate values for each period computed above, [Sa]. 

 

5. With the eigenvalues, we can determine the eigenvectors and mode shapes.  

a. First, substitute each eigenvalue into {φ}([k] – ω2
[m]) = {0} and solve for a {φ} vector 

for each of the eigenvalues.  

b. Then group the eigenvectors into a matrix [EV]. 

c. Finally, normalize each vector by setting the first component to unity to get a second 

matrix [φ], the modal matrix. 

 

6. Normalized the modal matrix to obtain the mode shape matrix, [Φ] = [φ]/([φ]
T
[m][φ])

½
. 

 

7. Obtain the column vector of participation factors for all modes considered,  

{Γ} = [Φ]
T
[m]{1}. 

where, 

{1} is a column vector of ones 

 

8. We can also obtain the specific participation factor associated with each mode shape (the 

contribution of each mode shape to the total response). 

 

9. The displacements associated with each mode shape are obtained as: 

                    [x] = [Φ][Γ][Sd] = [Φ][Γ][Sa][ω2
]

-1
  

where, 

[Γ] = diagonal matrix of participation factors 

[Sd] = diagonal matrix of spectral displacements 

[Sa] = diagonal matrix of spectral accelerations 

[ω2
] = diagonal matrix of squared modal frequencies 

 

10. The resultant maximum displacement at each node is obtained from the square-root-of-the-

sum-of-the-squares (SRSS) of the corresponding row vector: xmaxi = (Σxi
2
)

 ½
 

 

11. The matrix of lateral forces at each node is:  [F] = [k][x] 

 

12. The resultant maximum lateral force at each node is obtained from the square-root-of-the-

sum-of-the-squares of the corresponding row vector: Fmaxi = (ΣFi
2
)

 ½
 

 

13. The column vector of total base shear forces is:  {V} = [F]
T
{1} 

 

14. The maximum base shear force is obtained from SRSS as: Vmax = (ΣVi
2
)

 ½
 

 

This process results in the maximum story displacements, maximum story forces, and maximum 

base shear.  Note that ASCE 76 allows other methods for combining response parameters, such as 

the complete quadratic combination (CQC).  This particular method along with the SRSS is also 

included in RISA 3D as a method for combining the contribution from each mode. 
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IV.  Analysis Tools 

 

To demonstrate the use of the analysis tools, we solve a simple two-degree-of-freedom shear 

building example.  Figure 1 shows the frame used in the analysis, which we assume to have rigid 

beams.  This problem is solved in the workbook by Williams
4
.  The response spectrum is also 

given in Figure 1.  Given that the beams are assumed to be rigid, we can model the shear 

building as a two degree-of-freedom system.  The hand-calculations solution is rather tedious 

and most of our undergraduate students are not equipped with the mathematical skills to carry 

out the eigen solution. 

 

In the initial offering of the course in 2007, it was decided that RISA 3D would be used to 

conduct a modal response spectrum analysis.  All students taking the course had utilized RISA 

3D as a tool for analysis of beams and frames in a first course in structural analysis.  Therefore, 

the only new material students would have to learn would be carrying out dynamic analysis of 

similar beams and frames.  This is a straight forward feature in RISA.  However, the procedure 

for defining a response spectrum and performing a full modal response spectrum analysis is 

much more complicated.  The students expressed frustration since results from the software were 

inconsistent with the results of hand calculations presented in class.  The fundamental problem 

was the approach RISA takes to normalize eigenvalues and eigenvectors.  

 

 

 

 

 

 

 

 
Figure 1. Two story shear building frame and Response Spectra for Loma Prieta 

Eathquake
4
 

 

In the most recent offering of the course, a MS Excel spreadsheet was developed so that the 

students could be guided by well-defined steps and calculations in the analysis process.  Table 2 

depicts the spreadsheet calculations for the problem given in Figure 1.  The main challenge in 

developing the spreadsheet was getting a macro that can solve for eigenvalues and eigenvectors.  

15 ft 

0.25

0.85

1.160.48
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Fortunately, there is such a macro in the form of a plug-in7.  This MS Excel plug-in gives a pull 

down menu with several mathematical operations one of which is solving for the eigenvalues and 

another for eigenvectors, see the parts of Table 2 that are shaded in yellow.  With the eigenvalues 

and vectors, the remaining matrix operations can be performed following Excel’s standard 

matrix operations and implementing the steps outlined in Section III. 

 

Students were more receptive to experimenting with RISA 3-D after studying the modal response 

spectrum analysis implemented in a spreadsheet and modifying the spreadsheet to accommodate a 

three-degree-of-freedom system.  Following the presentation of the spreadsheet, students used RISA 

3-D to conduct an analysis of a multi-bay, multi-story frame.  Overall, the experience was very 

educational to both the students and the instructor.  

 

After the topic had been covered with MS Excel, a decision was made to develop further tools using 

Mathcad.  Mathcad was chosen as an option since many of the equations that are displayed in 

symbolic format are also simultaneously processing calculations.  Perhaps equally important is the 

ability to easily provide text and explanations during the calculation process.  In addition, built-in 

functions are readily available to solve for eigenvalues and eigenvectors in the software.  This will 

be used the next time the course is taught.  The students will be allowed to choose between Excel 

and Mathcad.  In Appendix A, we present the new Mathcad formulation.  A comparison of the 

results from hand calculations, RISA, Excel, and Mathcad are shown in Table 3.  While the periods 

determined by all methods are identical; RISA deviates for all other results.  This is reasonable given 

that we have modeled the frame slightly more accurately in RISA (essentially as a system of flexible 

columns and rigid beams as shown in Figure 1). In all cases, the difference is rather small. Also, 

RISA does not compute the equivalent story forces, which are not needed since the program gives 

the internal forces and moments for each member; which must still be computed by hand 

calculations in Excel, Mathcad, or other software! 
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Table 2. Spreadsheet Modal Response Spectrum Analysis
4       

k (k/in) = 20   0.4 0  1    

W(k) = 154.4   
[m] =

0 0.4  
{1} = 

1    

m(K-sec
2
/in) = 0.4   96.6 0  29.289 0  

h (in) =  180   
[Sa] =

0 328.4  
[ω2

] = 
0 170.71  

            

Stiffness matrix for 2 DOF system Eigenvals, λ    sqrts of λ   ω (rad/sec)  T (sec) 

3 -1 0.5858   0.7654 /sqrt(k/m) 5.41   1.16 
[k] = 

-1 1 
x k/m 

3.4142   1.8478 /sqrt(k/m) 13.07   0.48 
            

 eigen vectors normalized eigen vectors  [EV] x [NOR]    

0.3827 0.9239 2.6131 0 1 1 1 2.4142 
[EV] = 

0.9239 -0.383 
[NOR] = 

0 1.0824
[φ] =

2.4142 -0.414 
[φ]

T 
=

1 -0.414 
            

   sqrt([φ]
T
x[m]x[φ])       

2.7314 -6E-17  1.6527 0       
 [φ]

T
x[m]x[φ]= 

-6E-17 0.4686  0 0.6846       
            

[φ]/sqrt([φ]
T
x[m]x[φ])  [[Φ]

T 
x [m]]x{1}       

0.6051 1.4608  0.8263   
[Φ] = 

1.4608 -0.605  
{Γ} =

0.3423
These are the participation factors 

  
            

Displacements:    [[Φ] x [Γ]] x [Sa]       

0.8263 0  48.3 164.2       
[Γ] = 

0 0.3423  116.61 -68.01       
            

 [[Φ] x [Γ]] x [Sa]/[ω
2
] xmax=sqrt(Σxi

2
)       

1.6491 0.9619 1.9091       
displ, [x] = 

3.9812 -0.398 
max displ at each 

node by SRSS 4.0011       
            

Lateral forces:           

 [k] x [x]  Fmax=sqrt(ΣFi
2
)       

19.32 65.68 68.463       
 [F] = 

46.643 -27.21 
max force at each 

node by SRSS 53.997       

Base Shears vector:         

 ([F]
T
 x {1})

T
  Vmax=sqrt(ΣVi

2
)    

 {V} = 65.963 38.474 max V by SRSS = 76.363      

indicates 
that we do: 

Matrix plug-in, then pull macros menu down, then click on eigen-solving, follow directions to do eigenvalues 

then eigenvectors. 

indicates 
that we do: 

Matrix operations, so after entering = MMULT(B28:F32,H28:L32), select an appropriate range ??:?? starting 

with the formula cell. Press F2, and then press CTRL+SHIFT+ ENTER.  

            

            

            

            

            

            

            

            

            

            

            

            

1st mode 2nd mode
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Table 3. Comparison of calculation results using, RISA, Excel, and Mathcad. 

  
Hand 
cals 

RISA Excel MathCAD 

1
st
 mode 1.16 1.16 1.16 1.16 

Period (sec) 
2

nd
 mode 0.48 0.48 0.48 0.48 

1
st
 level 1.90 2.01 1.91 1.91 Max. Displs based on 

SRSS method, (in) 2
nd

 level 4.00 4.14 4.00 4.00 

1
st
 level 68.41 - 68.46 68.40 Max. forces based on 

SRSS method, (kips) 2
nd

 level 53.99 - 54.00 53.94 

Max. base shear based on SRSS (kips) 76.35 80.40 76.36 76.29 

 

V.  Observations 
 

From a pedagogical perspective, hand calculations can demonstrate in detail the fundamental steps 

needed to complete a modal response spectrum analysis; however, they do not facilitate the ability to 

compare and contrast structural systems with varying properties (i.e. stiffness, weights, degrees of 

freedom, etc.)  On the other hand, commercially available structural analysis software, such as RISA 

3D, allows students to evaluate the performance of various structural systems with practically any 

number of degrees of freedom.  However, it is possible for students to easily lose sight of 

fundamental seismic design principles (i.e. learning outcomes) in the pursuit of complexity and 

increasing expertise with a particular brand of software. 

 

We believe that the use of computational software, such as MS Excel and Mathcad, in earthquake 

engineering courses provides a learning tool that negotiates a valuable middle ground between hand 

calculations and commercial structural analysis software.  More importantly it allows students to 

gain a fundamental understanding of the analytical process while affording the flexibility for 

students to examine and to evaluate structural systems by asking and answering questions such as: 

(1) how does increasing the stiffness of each story by 20% influence the maximum displacements 

and forces on the structural system?, (2) how does increasing the story height of the first floor alter 

design requirements?, (3) what aspects of a structural system can one alter to reduce the maximum 

base shear? 

 

VI.  Conclusions 

 

Modal response spectrum analysis is a powerful tool for analyzing structures that may be subject 

to relatively high seismic loads; although it is readily available as an analysis tool in commercial 

structural analysis software, it is important for the engineering student to understand the 

fundamental steps.  The spreadsheet and Mathcad programs presented in this paper are useful 

tools in helping students develop the skills necessary to implement the method, and understand 

the process involved in modern seismic analysis and design. These tools can be used to perform 

the arithmetic-intense calculations of the modal response spectrum analysis, and allow students 

to efficiently solve complex problems that would be otherwise prohibitively time-consuming. 

This is particularly challenging in a course of limited scope and class time.  Furthermore, one of 

the outcomes in criterion 3 of ABET EC2000 is to demonstrate “the students’ ability to use 

techniques, skills and tools in engineering practice”.  Our analysis tools allow instructors to 

assign problems that are more realistic without increasing the demand in students’ time.  It also 
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gives the students a sense of confidence in solving rather complex structural analysis problems 

without using a “black box” type computer software.  

 

A further goal of this paper is to begin a dialog with other educators (as well as engineers who 

routinely take advantage of the capability of commercially available seismic loading analysis 

programs) to advance the discipline of earthquake engineering education in a direction of 

developing abilities of undergraduate students to perform practical routine seismic design 

calculations; consistent with current accreditation standards. 
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Appendix A.  Mathcad Modal Response Spectrum Analysis

EARTHQUAKE ENGINEERING:  TWO STORY SHEAR BUILDING

PROBLEM STATEMENT.  A two story shear building with given properties and a damping ratio of

five percent is located on a rock site near the source of the Loma Prieta earthquake.  Determine

the lateral forces, displacements, and base shear.

GIVEN:

Column stiffness, k 20
kip

in
:= Height of each story, h 15ft:=

Weight of each floor, W 154.4kip:= Mass of each floor, m
W

g
0.4 kip

s
2

in
⋅⋅=:=

FIND:  Apply matrix methods and seismic principles to determine lateral forces and

displacements.  Calculate maximum displacements, lateral forces, and base shear.

APPROACH: Solve the eigenvalue problem to determine natural frequencies and mode shapes.

Use natural periods to determine spectral acceleration from response spectrum curves.

Calculate participation factors, corresponding lateral forces and displacements. As well as the

maximum lateral forces and displacements.

1) The mass matrix is obtained from the given floor weights.

Mass matrix, M
m

0

0

m

⎛
⎜
⎝

⎞
⎟
⎠

0.4

0

0

0.4

⎛
⎜
⎝

⎞
⎟
⎠

kip
s
2

in
⋅⋅=:=

2)  The stiffness matrix is obtained from the column properties of the shear building.

Stiffness matrix, K
3

1−

1−

1

⎛
⎜
⎝

⎞
⎟
⎠

k⋅
60

20−

20−

20

⎛
⎜
⎝

⎞
⎟
⎠

kip

in
⋅=:=

3) Calculate natural frequencies and mode shapes from the eigenvalue problem.

Eigenvalue equation, K λn M⋅−( ) φ⋅ 0=

where  Ȝn are eigenvalues; Ȧn, are circular natural frequencies and Ȝn= Ȧn
2.  The eigenvalues are

determined from the frequency determinant shown below.

K λn M⋅− 0=

Note:  the command "eigenvals" solves for

the  eigenvalues and "sort" orders the result

from lowest to highest values.
λn sort eigenvals K M

1−
⋅( )( ) 29.296

170.75

⎛
⎜
⎝

⎞
⎟
⎠

rad

s
2

⋅=:=

The circular natural frequencies and periods for the two modes of vibration,

ωn λn

5.413

13.067

⎛
⎜
⎝

⎞
⎟
⎠

rad

s
⋅=:= Tn

2π

ωn

1.161

0.481

⎛
⎜
⎝

⎞
⎟
⎠

s=:=

4)  Determine spectral accelerations from the design response spectrum.

Using the response spectrum and natural periods, Tn, spectral accelerations are determined,

Sa
1 1, 

0.25g 96.522
in

s
2

⋅=:= Sa
2 2, 

0.85g 328.175
in

s
2

⋅=:= Sa

96.522

0

0

328.175

⎛
⎜
⎝

⎞
⎟
⎠

in

s
2

⋅= P
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5) Determine mode shapes by substituting eigenvalues into the eigenvalue equation.

e.g. K λn
1

M⋅−⎛
⎝

⎞
⎠
φ

1〈 〉
⋅ 0= solving for ĳ<1> will yield the first mode shape.

φ
1〈 〉

eigenvec K M
1−

⋅ λn
1

, ⎛⎜
⎝

⎞⎟
⎠

:= Note:  the command "eigenvec" solves for eigenvectors

or modeshapes corresponding to the calculated

eigenvalue, Ȝn.

φ
2〈 〉

eigenvec K M
1−

⋅ λn
2

, ⎛⎜
⎝

⎞⎟
⎠

:=

The resulting matrix of eigenvectors, φ
0.383

0.924

0.924−

0.383

⎛
⎜
⎝

⎞
⎟
⎠

=

The matrix of relative modeshapes is determined by setting the first components of the

modeshape factors to unity.

Note:  the "unity" function sets the first components

of  the mode shape factors to unity and outputs a

matrix of relative mode shapes.
φ unity φ( )

1

2.414

1

0.414−
⎛
⎜
⎝

⎞
⎟
⎠

=:=

6) Determine the mass normalized modal matrix, ĭ, from Φ
i j, 

φ
i j, 

M
i j, ∑ φ

i j, ( )2
=

Note: the "sqrt" function calculates

the square root of each component

of a m x n matrix and returns an m

x n matrix.

Φ φ sqrt φ
T

M⋅ φ⋅( )( ) 1−
⋅

0.605

1.461

1.461

0.605−
⎛
⎜
⎝

⎞
⎟
⎠

in

kip s
2

⋅
⋅=:=

7) Define a column vector of participation factors as follows: 

where, ī, is a column vector of participation factors for

all mode shapes considered, and, ĭ, is the normalized

modal matrix
Γ Φ

T
M⋅

1

1

⎛
⎜
⎝

⎞
⎟
⎠

⋅
0.826

0.342

⎛
⎜
⎝

⎞
⎟
⎠

kip s
2

⋅

in
⋅=:=

8) The participation factors can be associated with each mode shape

Placing each component of the n x 1 column

vector of participation factors into an n x n

diagonal matrix .
Γdiag diag Γ( )

0.826

0

0

0.342

⎛
⎜
⎝

⎞
⎟
⎠

kip s
2

⋅

in
⋅=:=

9) Determine the matrix of maximum node displacements for each mode.  This is

represented symbolically as,

x Φ Γ⋅ Sd⋅= Φ Γ⋅ Sa⋅ ω
2( ) 1−

⋅= Φ Γ⋅ Sa⋅ λn( ) 1−
⋅=

In order to conduct the appropriate matrix algebra, expand the m x 1 column vector of

eigenvalues into a m x m diagonal matrix of eigenvalues,

λdiag diag λn( )
29.296

0

0

170.75

⎛
⎜
⎝

⎞
⎟
⎠

rad

s
2

⋅=:=

Matrix of maximum node displacements x Φ Γdiag⋅ Sa⋅ λdiag
1−

⋅
1.647

3.977

0.961

0.398−
⎛
⎜
⎝

⎞
⎟
⎠

in⋅=:=

P
age 14.312.13



10) Calculate the maximum displacement at each node from SRSS of the row vector.

Note:  The "SRSS" function calculates the

square-root-of-sum-squares of each row in a m x n matrix

and returns a m x 1 vector.
xmax SRSS x( )

1.907

3.997

⎛
⎜
⎝

⎞
⎟
⎠

in⋅=:=

11 + 12) Determine the matrix of lateral forces associated with each mode and resultant

maximum lateral force at each node from SRSS

F K x⋅
19.3

46.594

65.62

27.181−
⎛
⎜
⎝

⎞
⎟
⎠

kip⋅=:=
Fmax SRSS F( )

68.399

53.943

⎛
⎜
⎝

⎞
⎟
⎠

kip⋅=:=

13) Determine the column vector of total base shear forces, V = FT{1}, maximum base shear

from SRSS.

V F
T 1

1

⎛
⎜
⎝

⎞
⎟
⎠

⋅
65.894

38.439

⎛
⎜
⎝

⎞
⎟
⎠

kip⋅=:= Vmax SRSS V
T( ) 76.287( ) kip⋅=:=
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