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Digital Signal Processing, Theory/Practice, HW/SW 
 

 

Abstract  
 

Digital Signal Processing (DSP) is a course offered by many Electrical and Computer 

Engineering (ECE) programs.  In our school we offer a senior-level, first-year graduate 

course with both lecture and laboratory sections.  Our experience has shown that some 

students consider the subject matter to be too theoretical, relying heavily on mathematical 

concepts and abstraction.   There are several visible applications of DSP including: 

cellular communication systems, digital image processing and biomedical signal 

processing. Authors have incorporated many examples utilizing software packages 

including MATLAB/MATHCAD in the course and also used classroom demonstrations 

to help students visualize some difficult (but important) concepts such as digital filters 

and their design, various signal transformations, convolution, difference equations 

modeling, signals/systems classifications and power spectral estimation as well as 

optimal filters.   

 

In our institution the laboratory section was offered mainly as a software (SW) 

environment (mostly working with matlab/simulink.)  However since Spring 2008 

semester, a hardware (HW) component has been added to the laboratory where students 

work with Texas Instruments TMS 3206713 DSP boards in addition to using software 

packages in implementing some of the DSP algorithms in both hardware and software. In 

addition, the software programming environment of LabVIEW is being considered as 

another tool to be utilized in the laboratory section. Our introductory classes introduce 

students to software tools and this advanced sequence of lecture/laboratory sections 

allows students to apply their knowledge of available tools to an important application 

area within the electrical/computer engineering discipline. One of the authors has 

extensive industrial background and has used up-to-date tools in microelectronics and 

related application areas; another author has several years of experience teaching DSP at 

different schools.  

 

Introduction 

 

At our school we have a one-semester lecture course for both seniors and first-year 

graduate students, and a laboratory section in digital signal processing.  The Oppenheim-

Schafer-Buck textbook
1
 for the graduate course is widely used in many schools. We use 

the book by Proakis and Manolakis
2
 as a text.  The book by McClellan-Schafer-Yoder

3
 is 

an interesting one for signal processing first approach used in some programs. The book 

by Smith
4
 is also available online and students can download it for free. 

 

We will next present DSP theory, course topics, and examples using software packages 

and finally present some conclusions as to the pros and cons of using software tools and 

the usefulness of having a laboratory section or term projects as part of the course 

requirements. 
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Theory 

 

Signal processing is an important subject area in engineering. A signal can be defined as 

a function of one or several variables. For example, f(t) is a one-dimensional signal of the 

variable “t” which can represent time. f(x,y) is a two-dimensional signal (e.g., image) of 

variables x and y.  In digital signal processing we study discrete-time or digital signals 

which can be obtained by sampling a continuous-time signal. For the purpose of 

discussion in this paper we will follow the notation in reference 1 and use x[n] to 

represent a digital signal x(nT) where T = 1/Fs is the sampling period (interval) and Fs is 

the sampling frequency. It is important to distinguish the difference between a discrete-

time signal and a digital one (again for more information we ask readers to consult 

reference 1.)   

 

One important area in DSP is the design/analysis of digital filters, this is also the topic 

which students find usually more mathematically challenging.  Basically a filter is a 

device or system (or algorithm) that will process the input or x to produce output y where 

some characteristic of the input has been altered by the filter.  It is noted that students will 

have a chance to work with actual hardware in the laboratory where “pins” are available 

for x and y. In theory, the so-called input/output (I/O) relation in the time domain is the 

LCCDE (linear, constant-coefficient difference equation) representation of the digital 

filter: 

 

∑
=

N

k 0

aky[n – k] = ∑
=

M

i 0

bix[n – i]     (1) 

 

In the frequency domain one uses the complex (z = e
sT

) frequency variable and finds the 

system (transfer) function H(z) = Y(z)/X(z). One important input function is the impulse 

signal x[n] = į[n], as a matter of fact any signal can be represented as a sum of these 

impulse functions.  When x = į, we call the output impulse response (IR), y[n] = h[n].  

Depending on h[n], digital filters are classified as FIR (finite impulse response) or IIR 

(infinite impulse response).  Knowing h[n] we can find the response to any input by the 

convolution sum: 

 

y[n] = x[n] *h[n] =  Ȉk x[k]h[n – k] , - ∞ ≤ k ≤ ∞   (2)          

 

Another way of finding the output is to use the principle of superposition (assuming 

digital filters to be linear time-invariant systems), y[n] = yh[n] + yp[n], where yh 

represents the homogeneous response and yp is the particular (forcing) response. Other 

terminologies used for the total response include transient and steady state response or 

zero-input and zero-state response (see chapter 2 of reference 2).  Solutions of LCCDEs 

in both time and frequency domains are discussed and compared. It is shown that there is 

almost equal amount of work involved in solving the given equation in the time domain 

or using the z-transform approach.  In the transform method one needs to use inverse 

transformation to find the total response. There may or may not be initial conditions 

present (ICs). Solutions can also be obtained using the FILTER command in MATLAB. 
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Design of analog filters is a mature subject, in the design of IIR digital filters one needs 

to start with these analog filters first. There are a lot of materials that can be covered as 

part of analog filter design, passive/active filters, classical filters (e.g., Butterworth, 

Chebyshev, Elliptic, Bessel). Because of time restraint a lot of these topics cannot be 

covered (or in the texts they are briefly covered in the appendices), so basic results are 

presented then course continues with the design of FIR/IIR digital filters. It is important 

to note that graduate students taking the course can select a topic and work on it as a term 

project so they can extend on the materials covered in the class. 

 

Course Topics 

 

The main topics covered in the course include: course introduction & overview, discrete-

time signals and systems, time/frequency domain representations, linear, time-invariant 

systems, LCCDEs, eigenvalue (transfer function), frequency selective (ideal) filters, 

Fourier transform representation, discrete-time random signals, z-transform and its 

application in DSP, inverse transform, one-sided, two-sided (bilateral) transforms, 

solutions of LCCDEs using the z-transform, Nyquist sampling theorem, reconstruction, 

aliasing distortion, periodic (impulse) ideal sampling, frequency response of LTI systems, 

implementation and structures of digital filters, block diagram representation, signal flow 

graphs, cascade/parallel and direct forms, design of digital filters, IIR, ARMA systems, 

classical (continuous-time) filters and approximations (Butterworth, Chebyshev, etc), 

impulse (or step) invariance, bilinear transformation, backward/forward difference 

approximations, design of FIR filters, MA systems, windowing & truncations, frequency 

sampling method, computer-aided design methods, digital differentiators, Hilbert 

transforms, comb filters, discrete Fourier transforms, DCT, FFT and other algorithms. In 

addition there are homework assignments, class exams, final exam and computer 

assignments (using matlab and/or mathcad.)   

 

Class Examples 

 

Example 1. When studying systems in time/frequency domain, the following IIR system 

can be used as an example to compare solutions obtained by the two methods. 

 

6y[n] – 5y[n-1] + y[n-2] = x[n] , x[n] = (2)
n 

u[n] , y[-1] = y[-2] = 0 

 

In the time domain, the total response is obtained by the sum of homogeneous and 

particular response. After applying zero initial conditions one obtains 

 

y[n] = yh[n] + yp[n] = C1(0.5)
n
 + C2(1/3)

n
 + C3(2)

n
 = -(0.5)

n 
+ 0.4(1/3)

n 
+ 1.6(2)

n
, n ≥ 0. 

 

In the z-domain the solution is obtained by transforming the LCCDE and solving for the 

transfer (system) function: 

 

H(z) = Y(z)/X(z) = 6z
2
/(6z

2
 -5z +1), Y(z) = X(z)H(z) = z

3
/[(z - 0.5)(z - 1/3)(z - 2)]. 
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Using partial fraction expansion, the inverse transform gives the same answer as y[n] 

above. Here we discuss the reason why it is important to understand signals/systems in 

both time and frequency domain. Later in designing IIR filters they can, for example, 

design different filters based on their pole/zero location an obvious characteristic evident 

in the frequency domain. 

 

At the same time students can use MATLAB solution to compare it to the analytical 

formulation presented above. 

 

>> n=0:1:10; B=[1]; A=[1, -5/6, 1/6]; x=2.^n; y=filter(B,A,x) 

y =   1.0e+003 *   Columns 1 through 10 0.0010    0.0028    0.0062    0.0127    0.0255    

0.0512    0.1024    0.2048    0.4096    0.8192   Column 11  1.683

 
Example 2.  Design a digital lowpass prototype filter using bilinear transformation (with 

pre-warping) and Chebyshev-I analog filter which has 0.5 dB ripple in the passband,   

0 Hz to 3.5 kHz. The minimum attenuation should be 38 dB for frequencies greater than 

4.0 kHz. Assume a sampling frequency of 10 kHz. 

 

Using the mapping from s-plane to the z-plane (as formulated by the famous bilinear 

transformation), students are able to design the required analog filter and transform it to 

obtain the transfer function of the digital filter. We present a MATHCAD simulation 

here. 
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Example 3. (See reference 7.) In designing FIR filter one approach is to use truncation 

(windowing) and finite delay of the ideal (desired) impulse response function. For the 

ideal digital lowpass filter given as Hd(Ȧ) = 1 for – Ȧc≤ Ȧ ≤ Ȧc, one gets the desired 

impulse response 

 

hd[n] = [Ȧc/ʌ] Sa (Ȧcn), -∞ < n < ∞; where sampling function is defined as  

Sa(x)=(sin x)/x. 

 

Obviously this filter has ∞ duration (it is also non-causal.)  The solution will be to use 

windowing and finite delay.  We will illustrate this design method by designing a digital 

FIR differentiator (not an easy analog design or IIR.) For ideal digital differentiator, the 

desired impulse response is given by 

 

hd[n] = cos(ʌn)/n, -∞ < n < ∞ with hd[0] = 0.  

 

We use MATHCAD simulation below to show a couple of typical designs using Hanning 

and Kaiser windows. For Kaiser window with shape parameter ȕ = 5, we use the paper by 

Blachman and Mousavinezhad
5
 to evaluate the zeroth-order modified Bessel function of 

the first kind: 

                                                                    _                                           

I0(x) ≈ 1/6 + (1/3) cosh(x/2) + (1/3) cosh(√3 x/2) + (1/6) cosh(x). 
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An important DSP implementation consideration is the filter coefficient quantization 

effect.  The filter coefficients of the digital filter determined by a filter design package 

such as MATLAB are usually represented using the floating-point format. When 

implementing a digital filter, the filter coefficients have to be quantized for a given fixed-

point processor. Therefore, the performance of the fixed-point digital filter will be 

different from its design specification.  

 

The coefficient quantization effects become more significant when tighter specifications 

are used, especially for IIR filters. Coefficient quantization can cause serious problems if 

the poles of designed IIR filters are too close to the unit circle. This is because those 

poles may move outside the unit circle due to coefficient quantization, resulting in an 

unstable implementation. Such undesirable effects are far more pronounced in high-order 

systems. 

 

The coefficient quantization is also affected by the structures used for the implementation 

of digital filters. For example, the direct-form implementation of IIR filters is more 

sensitive to coefficient quantization than the cascade structure consisting of sections of 

first- or second-order IIR filters
6
.   Real-time DSP application examples on an unstable 

system that results from coefficient quantization errors are provided in class and in 

laboratory. For the laboratory, we found reference 8 to be very useful. 

 

Laboratory Experiments 

 

In addition to DSP laboratory section, the EE Department at our school has a VLSI 

facility where seniors and graduate students can design circuits for applications such as 

 

  

 

wk n( )

I0 β 1
n

2

10000
−⋅

⎛
⎜
⎝

⎞
⎟
⎠

I0 β( ):= β 5:=

Hk ω( ) 2− j⋅

n

hd n( ) wk n( )⋅ sin n ω⋅( )⋅( )∑⎡⎢
⎣

⎤
⎥
⎦

⋅:=

I0 x( )
1

6

1

3
cosh

x

2

⎛⎜
⎝

⎞⎟
⎠

⋅+
1

3
cosh 3

x

2
⋅⎛⎜

⎝
⎞⎟
⎠

⋅+
1

6 cosh x( )⋅
+:=

0 1 2 3 4
0

1

2

3

4

Hk ω( )

ω

0 1 2 3 4
0

1

2

3

4

H ω( )

ω

P
age 14.491.8



DSP, digital imaging and biomedical signal processing. First time the hardware was 

introduced in the laboratory (Spring 2008), experiments included: DSP Overview and 

Introduction to DSP Hardware; Basic DSP Functions, A/D, D/A, Sampling, Simple 

Filters, Frequency Response, z-transform, z-plane; Audio Processing; FFT, Spectral 

Analysis; Digital Filters, FIR, IIR; Adaptive Filters, Noise Cancellation. LabVIEW can 

also be used in the laboratory part of the course
9
, we are considering this software for 

future use in the experiments. 

 

Conclusions 
 

Balancing theory and practice is important in many engineering subjects, especially those 

that have a lot of mathematical concepts and abstractions. The study of digital signal 

processing and its applications is vital to the curriculum of electrical and computer 

engineering.  Within the related courses, we have provided students with software 

packages for DSP demonstration and simulations, and with hardware/software platforms 

for DSP implementation on small projects and in the laboratory.  These tools have proved 

to be interesting and useful for the students to grasp fundamental knowledge in DSP.  We 

have shown some actual classroom examples and homework assignments in both theory 

and practice.  A laboratory component in digital signal processing is highly 

recommended for senior and first-year graduate classes. We recommend offering classes 

in DSP at both undergraduate and graduate level with emphasis on class projects and 

laboratory hands-on experience.  We believe that it is important to introduce modern 

tools and software packages at the right time, right place. The enrollment in the DSP 

course has increased since the introduction of hardware in the laboratory.  
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