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Teaching control volume selection to avoid entropy accounting 

‘bottlenecks’ in second law analyses. 
     

Abstract 

 

      Application of the first law is invariably reduced to identifying energy departures from, 

and arrivals to, assorted discrete control volumes. Because, by the nature of the first law, 

energy is conserved, problems reduce to simple accounting exercises, only occasionally upset 

by the presence of energy generation terms (e.g. nuclear or possibly chemical reactions.) 

When such terms do arise they are usually well defined and located in discrete control 

volumes so that including them in the overall energy balance is generally straightforward. 

      When one wishes to instruct in the application of the second law, the accounting exercise 

and the definition of the control volume has to be undertaken with great care, as unlike 

energy, entropy is actually generated during transportation and transition processes, within 

the control volumes. It is not unusual therefore, for entropy generation terms to be allocated 

to the surrounding ‘environmental control volume’, as mixing, conduction, convection and 

radiation etc. These can of course occur well outside of the original problem focused control 

volume which has invariably been defined by simple consideration of the ensuing first law 

energy analysis and obvious geometry features. The ‘bottleneck’ referred to in the title of the 

paper is descriptive of what happens to the vast majority of Thermodynamics courses at this 

point. Students having obtained a solid understanding of the first law and its applications do 

not progress through to the same level of understanding with the second law. The vast 

majority learning to use the second law almost on autopilot without a real feel as to what the 

property is telling us. 

     The paper presents an analysis therefore of a simple hot water pipe to show specific issues 

and areas of confusion with second law control volume selection. It concludes emphasizing 

the importance of consistently listing assumptions both for the student solving, and the 

instructor setting an assignment. In summary, this paper highlights and gives an example of 

novel teaching methods that have been successfully used by the authors to overcome this 

‘bottleneck’ in thermodynamic instruction.  

 

Introduction 

 

    Foley [1] derived the property entropy from consideration of a simple orifice plate in a 

pipe. This derivation was unique in that the entropy term derived did not arise from any heat 

transfer. Instead, an uncontrolled expansion was used, and as such the concept of ‘bad 

energy’ as the numerator in the expression for entropy was introduced.  

     While teaching a class an interesting discussion was raised as to where exactly entropy is 

generated in a heat transfer process, a brief discussion in Cengel & Boles [2] while touching 

on the topic did not answer the legitimate concerns raised by students. This was the 

motivation for this paper in which the focus has changed back to a heat transfer numerator in 

the entropy expression as the source of the ‘bad energy’. (Unrecoverable energy transfer is 

another way of considering this term.) There is no subtle reason for this other than this turns 

out to be the easiest energy transfer to be considered in the example used, and is consistent 
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with the initial heat transfer problem that raised the issue. As in the earlier paper a simple 

pipe is used to demonstrate the points.  

 

The hot water pipe. 

 

   To illustrate the problem with second law analysis a simple hot water pipe is shown with a 

dotted line signifying the control volume for the system .( Figure 1) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Simple pipe model for second law consideration. 

 

Application of the energy accounting equation as described by Foley [3], gives : 

 

                                                              .                        (1)                                                                                                

 

Which for a steady flow, no work situation simplifies to : 

                                                                                     

                                                                                                                 .                          (2)                               

 

This is usually as far as we need to go in most practical problems, and hence any issues of 

entropy do not arise. However there is much to be learned by considering the entropy 

accounting equation for this case. 

 i.e.  

                                                                                                                 .                (3) 

                                                                                                          

 

Again, assuming a steady state condition has arisen, this reduces to: 

 

                                .                              (4)                 

   

Where 1S&   is the rate of entropy transport out of the control volume by virtue of the heat 

transfer 1Q&  previously calculated in the energy equation (2). genS&  is the entropy generated 

Q1 :  Heat loss from Pipe 

 

Water out at Temperature  T2 
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within the control volume, and the s1 and s2 values are the specific entropies of the mass 

entering and exiting through the pipe. 

 

    Problems arise here as although the drop in entropy of the water is easily computed from : 

 

                                      

                                                                                                             .  (5) 

 

 

    The other two terms are not as straightforward. We have no value of genS&  and as for 1S&  we 

have the situation were heat lost along the pipe varies with x, as shown below in figure 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Variable heat transfer along a pipe. 

 

Unlike the inlet and outlet cross sectional area, where constant temperature can be assumed 

to be a reasonable approximation, the temperature across the surface boundary is not 

constant. To find 1S&  and hence genS&  therefore requires integration along the pipe: 

 

                                                                                                       

                                                                                                             .  (6) 

 

The problem is compounded as not only must the temperature distribution and the local heat 

transfer be formulated, but we must also clearly define our control volume. Does it include 

the pipe or does it include some of the outer boundary layer? Is there convection, radiation, 

or conduction along the pipe etc? All in all, the problem expands immeasurably compared to 

the simple energy equation. 

            As a proverbial ‘wrench in the works’ even if the above is computed, there has been 

no allowance for the subsequent entropy generation in the surroundings as the heat 

transferred from the pipe dissipates into the ambient. 

 

   To make progress in this problem the recommended solution is to simply calculate the 1S&  

term as follows :- 
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                                                                                                                    .  (7) 

 

 

    The rationale being that all the heat transfer ultimately ends up as energy stored at the 

ambient temperature, TA. This logic appears sound and the resulting genS&  for the process can 

now be calculated from equation (4). 

   The problem with this approach is that it is now very easy to assign all of the entropy 

generation to the original control volume, as this is still the only one that has been defined. 

This is incorrect and to avoid this it is useful to encourage the application of a different 

control volume for the entropy accounting exercise. 

i.e. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Heat diffusion from an expanding control volume. 

 

   At the boundary of this control volume the temperature difference has diminished so much 

that in the limit the heat is being transferred at the ambient temperature Ta and no entropy 

generation is taking place in the surroundings. (i.e. External to the control volume shown.) 
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Application of the accounting equation to the surroundings gives :- 

 

 

 

 

 

 

 

       (8) 

 

 

Application of the accounting equation to the control volume itself now gives :- 

 

 

    (9) 

 

 

And as the control volume is still in steady state , CVS& = 0  and hence :- 

 

 

 

    (10) 

 

 

 

This is the same as SURRS& , which should of course be no surprise. While the answer is no 

different from that which would be arrived at with the initial assumption of all the heat 

transfer occurring at ambient temperature, it is important that the second control volume, 

although somewhat arbitrarily drawn, highlights that there is physically something different 

occurring here. Indeed, the paradox is that the boundary is so defined that if all the heat 

transfer does occur at ambient where there is effectively no temperature gradient, then there 

should in fact be no heat transfer. There is an argument therefore to say that all the entropy 

generated, and indeed the energy in the heat transferred, is stored in the arbitrary control 

volume. If this was so then the logical explanation is that in order to maintain the effective 

zero temperature gradient at the control volume boundary, the control volume would have to 

continually grow.  See figure 4  below. 

            Luckily for us, the surroundings are expansive enough to cope, although with the 

advent of global warming, some may argue that as engineers we are too quick to make this 

assumption, and that our atmosphere and oceans are not the infinite reservoirs we take them 

to be. 
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Figure 4.  Zero temperature gradient expanding control volume.. 

Conclusion 

 

   Although a simple hot water pipe is used, the complexities and subtleties of entropy 

accounting are clearly highlighted. Taking some of the modeling assumptions to the extreme 

illustrates some of the paradoxes that are frequently overlooked. i.e. Assuming that all the 

heat transfer out of our system ultimately gets transferred to the surroundings at ambient 

temperature where no temperature gradient and hence no heat transfer should occur ?  

        The usefulness of the examples shown are in reinforcing a comprehension of entropy 

accounting and most importantly that the control volume suitable for an energy accounting 

analysis is not necessarily the optimum control volume for an entropy accounting analysis. 

Although the above discussions of entropy and 2
nd

 law control volume selection are generally 

well received the author still sees the projection of a physical meaning to entropy as one of 

the greatest challenges in Thermodynamic instruction. 
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