
AC 2009-1683: INCORPORATING PARALLEL COMPUTING IN THE
UNDERGRADUATE COMPUTER SCIENCE CURRICULUM

Afsaneh Minaie, Utah Valley University

Reza Sanati-Mehrizy, Utah Valley State College

© American Society for Engineering Education, 2009

P
age 14.722.1

Incorporating Parallel Computing in the Undergraduate
Computer Science Curriculum

Abstract

Parallel and distributed computing are subjects generally reserved for graduate programs. With
the design of the multi-core architecture, it is essential that parallel design of software be
integrated into the undergraduate computer science curriculum. Parallel programming represents
the next turning point in how software developers write software. This paper will study different
approaches that are used by different institutions of higher education around the world to
integrate parallel computing into their curriculum.

Teaching parallel computing concepts to undergraduate students is not an easy task. Educators
need to prepare their students for the parallel era.

Introduction

A fundamental technique by which computations can be accelerated is parallel computation. The
main reason for executing program instructions in parallel is to complete a computation faster.
However, majority of programs today are incapable of much improvement through parallelism,
since they have written assuming that instructions would be executed sequentially1. Since
sequential computer performance has increased for decades; parallelism has not been a
significant part of programming. Improvements in the sequential performance have been due to
the combination of technological improvements and the incorporation of parallelism into
sequential processors. Hidden parallelism with increasing clock speeds has allowed each
succeeding generation of processor chip to execute programs faster, while maintaining the
delusion of sequential execution1. Given current technologies, sequential program execution is
approaching its maximum speed. To be able to achieve performance improvements, we need
programs that have multiple instruction streams that operate simultaneously. By the advent of
the first multi-core chip in 2005, it was observed that the existing software cannot exploit multi-
chip directly. Programs that cannot exploit multi-core chips do not realize any performance
improvements. Another observation was that most programmers do not know how to write
parallel programs. Programs need to change, and for that to happen, programmers need to learn
how to write parallel programs. Parallel programs need to be scalable. A parallel program is
scalable if it is capable of using progressively more processors. It is important to achieve
scalable parallelism.

Multi-Core Processors

The computer industry is rapidly moving toward multi-core architectures also known as chip
multiprocessors (CMP), where multiple cores can independently execute different threads. The
computing platforms are being designed with microprocessors that have multiple execution cores
on a single chip. It is predicted that the number of cores on a single chip is going to rapidly grow
into tens, or even hundreds, of cores on a single chip. Moore’s law 2 states that the number of
transistors on a single chip should double every eighteen months. As the number of transistors
doubled every eighteen months, so did the speed of the processors. However, after 2003 the
speed of processors didn’t keep up with the increase in number of transistors on the chip. Rather

P
age 14.722.2

than faster CPUs, the computer industry now offers more CPUs per machine through the use of
multi-core processors. As the speed of the processors continue to increase, so do their heat and
power drain. By using multi-core architecture, the speed increases without the traditional
drawbacks of faster processors, which include power consumption and heat dissipation. Multi-
core architectures are used to enhance throughput and power efficiency of processors. Now the
prediction is that the number of cores on a chip would double with each silicon generation3.

This change in computer architecture requires change in programming paradigm. The era of
developers simply waiting for faster processors to save their slow performing applications is
over. For developers to take advantage of this multi-core environment, they must learn to write
software for tightly-coupled shared memory multiprocessor systems. Industry leaders are
challenging the software developers to update their skills in order to effectively develop software
for these new architectures. There is a school of thought that says that software design needs to
keep up with the Moore’s law; that is software should double the level of parallelism that it can
support with every technology generation4.

Parallel computing is not a new concept and has been extensively studied for many years. It has
always offered the potential for scalable high performance computing but not achieved enough
drive to get considerable exploitation in a mainstream application. Parallel computing is used in
a wide range of fields, such as bioinformatics, economics, astrophysics, weather forecasting, and
robotics. As parallel computers become larger and faster, it becomes possible to solve problems
that previously took too long to run. In the past, parallel programmers have been limited to a
small community of computer scientists working in research departments of large companies,
universities, or national labs. Therefore, the undergraduate curricula of the majority of computer
science departments did not include any parallel computing courses. Some programs offered
parallel computing as an advanced elective course. With the design of the multi-core
architecture, undergraduate computer science students will likely spend their entire career
working on multiprocessor machines. Teaching parallel computing concepts to undergraduate
students is not an easy task. To prepare our students for parallel programming, it is essential
that parallel design of software be integrated into the undergraduate Computer Science
curriculum. Parallel programming represents the next turning point in how software developers
write software9. In the Computer Science Curriculum 2008 (An interim revision of CS 2001),
within Recent Trends section, there is a section on the growing relevance of concurrency which
says that

“The development of multi-core processors has been a significant recent architectural
development. To exploit this fully, software needs to exhibit concurrent behavior; this places
greater emphasis on the principles, techniques and technologies of concurrency.

Some have expressed the view that all major future processor developments will include
concurrent features, and with even greater emphasis on the concurrency elements. Such a view
implies the increased emphasis on currency will not be a passing fashion but rather it represents a
fundamental shift towards greater attention to concurrency matters.

The increased ubiquitous nature of computing and computers represents a further factor in
heightening the relevance of this topic and again there is every indication that this will only gain

P
age 14.722.3

further momentum in the future. It is expected that these observations will have implications for
many knowledge areas in the future curriculum guidelines.” It is vital that parallel computing
concepts be integrated into undergraduate computer science curriculum. Educators need to
prepare their students for the parallel era.

Parallel Computing Courses in China

A majority of universities in China have integrated parallel computing concepts into their
curriculum7. These universities have taken two different approaches for integrating parallel
concepts in to their programs. One approach has been to offer a new course on parallel
processing. The other approach has been to alter the content of an existing course. Following is
a list of traditional courses that have been altered to introduce mutli-core processing concepts:

• Computer Organization
• Computer Architecture
• Operating System
• Pervasive Computing
• Embedded Systems
• Real Time Systems
• Undergraduate Research Courses

Table 1 lists universities in China that have altered their traditional courses to include the multi-
core experience for their students. From this data, it can be seen that Computer Architecture,
Computer Organization, Operating Systems, and Embedded Systems are courses that have been
modified.

Universities Computer

Organization
Computer
Architecture

Operating
System

Embedded
Systems

Programming Real
Time

Research
Course

Dalian
University

 X

 X

 X

East China
National
University

 X

 X

Shanghai Jiao
Tong University

 X

 X

Zhejiang
University

 X

 X

 X

Xi’an
University of
Technology

 X

 X

 X

 X

Northeastern
University

 X

Tsinghua
University

 X

 X

Beihang
University

 X

 X

Beijing
University

 X

 X

Lanzhou
University

 X

Fudan
university

 X

 X

 X

Southeastern
University

 X

University of

P
age 14.722.4

Science and
Technology of
China

 X

 X

Hauzhong
University

 X

Beijing Institute
of Technology

 X

Tongji
University

 X

Nankai
University

 X

 Table 1: Universities in China and the Traditional Courses that were altered7

Parallel Computing Courses in United States

The University of Wisconsin – Eau Claire

The approach which is taken at the University of Wisconsin – Eau Claire in order to prepare their
students for the parallel Computing experience is to give them practice with the concepts behind
parallel processing early and integrating them into their existing courses5. They have integrated
parallel computing concepts into three of their courses: CS1, CS2, and Algorithm. In CS1, they
focus on the decomposition step, and in CS2, they begin to introduce a bit more orchestration of
concurrent processes. Their Algorithm class is taken in the sophomore year. They present more
complex issues in parallelism in this course. The approach that they have taken is to introduce
the parallel programming concepts slowly through three of their courses.

Longwood University

In CS1 and CS2, parallel paradigms are mentioned and demonstrated with use of the threads
library; however, no actual assignments are given. In their CS3 (Data Structures) class they look
at parallel versions of some algorithms. They offer a separate course dedicated to parallel
programming using PVM and MPI6.

Table 2 provides a study of parallel computing course offerings of selected universities in the
world. In the United States, course offerings of seventeen universities were studied. From this
study it can be seen that universities are using four models to integrate parallel computing into
their computer science curriculum:

1. Offering an undergraduate course on Parallel Computing
2. Offering a graduate course on Parallel Computing
3. Integrating parallel Computing concepts into their traditional courses
4. Combining model 1, 2, and 3

From the table it can be seen that Massachusetts Institute of Technology is using model 4 and
they are offering an undergraduate course, a graduate course, and have integrated parallel
concepts in their traditional courses. On the other hand the majority of liberal art schools do not
use any of these models and parallel computing concepts are not being taught in their
undergraduate computer science programs.

P
age 14.722.5

Universities Undergraduate Parallel

Computing Course
Graduate parallel Computing
Course

Parallel Computing Concepts
as a Module in other Classes

Massachusetts Institute of
Technology

Applied parallel Computing Theory of parallel Systems
Theory of Parallel Hardware

6-827 Multithreaded Parallelism:
Languages and Compilers
6-884 Complex Digital Systems

Berkeley No Parallel Processors
CS267 Application of Parallel
Computers

252 – Graduate Computer
Architecture
266 – Introduction to System
Performance

Harvard No 262 – Introduction to Distributed
Computing
CS 355, 356 – Computational
Complexity

CS 246 – Advanced Computer
Architecture
CS260r – Topics in Computer
Systems

Stanford No CS 212- Computer Architecture
and Organization
CS312A: Advanced Processor
Architecture
CS240D: Distributed Storage
Systems
CS321- Information Processing
for Sensor Networks

University of Utah No CS 6230 High Performance
Parallel Computing

Carnegie Melon University 85-419 Introduction to Parallel
Distributed Processing

 15-740 Computer Architecture
18-741 Advanced Computer
Architecture
15-845- Mobile and pervasive
Computing
15-745 – Optimizing Compilers
for Modern Architecture

United States Military
Academy

No No

India Institute of Technology No Yes
University of California Davis CSE160-Introduction to Parallel

Computing
CSE225- High Performance
Distributed Computing
CSE240B – parallel Computer
Architecture
CSE 260 – Parallel Computation
CSE 261 – Parallel and
Distributed Computation

University of Pennsylvania CIS 434 – Into. To Parallel and
Distributed Programming

 CIS 371 – Computer
Organization and Design

Purdue University No CS 52500 – Parallel Computing
University of North Carolina at
Chapel Hill

No COMP 633 – Parallel and
Distributed Computing

John Hopkins University 600.320 – Parallel Programming 600.420- Parallel Programming
Polytechnic University CS 3254 –

Introduction to Parallel and
Distributed Systems
CS 342 – Algorithms for Parallel
and Distributed Systems

CS 6273 – Performance
Evaluation of Computer Systems

University of Illinois at
Urbana-Champaign

420 – Parallel Programming:
Science and Engineering

Sharif University of
Technology, Iran

40-647 – Parallel Processing

Tsinghua University, China Introduction to parallel
Programming

 Advanced Computer Architecture

Peking University, China Parallel Programming
University of Science and
Technology of China

Parallel Computing Computer Architecture
Operating System

Northwestern Polytechical
University, China

Parallel Computing Distributed Computing System

Harbin Institute of Technology, Distribution System

P
age 14.722.6

China
National University of
Deference, China

Multicore and Multicore
Programming

Zhejiang University, China Parallel Computing and
Multicore Programming

Multicore Computing Computer organization
Computer Architecture
Operating System

East China Normal University Intel Multicore Technology
Shanghai Jiao Tong University,
China

Multicore Systems and
Programming

 Computer Organization
Operating Systems

Southeastern University, China Multicore Technology and
Multicore Programming

 Computer Architecture

South China University of
Technology

Multicore Software Design

Wuhan University, China Multicore Architecture and
Programming

Sun Yat-sen University, China Multicore Technology and
Optimize Programming

Northeastern University, China Multicore Programming Computer Organization
University of Karlsruhe,
Germany

 Multicore Software Engineering

Georgia Tech University Distributed &Parallel Systems
Frederick University, Cyprus ACOE401 – parallel Processing
University of Wisconsin – Eau
Claire

 CS1
CS2
Algorithm

Longwood University

parallel programming using PVM
and MPI

 CS1
CS2
CS3

Utah Valley University No No No
IONA School of Arts and
Science

No No

Grove City College No
Quinnipiac University No
Shenkar College10, Israel Introduction to Parallel

Computing

 Table 2: A Survey of Universities with Regard to Parallel Computing Offerings

Summary and Conclusion

Integration of parallel programming concepts in the undergraduate computer science curriculum
has started in many universities worldwide. For example, at Shenkar College of Engineering and
Design in Israel, a new course called Introduction to Parallel Computing has been developed.
The university is developing an advanced course on the topic10. A majority of universities in
China have integrated parallel concepts into their curriculum7. In the United Sates, there are
some universities that are offering an undergraduate course on parallel computing; however, the
majority of liberal arts universities have not integrated the parallel processing concepts in their
curriculums yet.

When should the parallel computing concepts be introduced into the computer science
curriculum? Some computer scientists believe that because of the complexity of parallel
computing, it should be introduced as early as CS1. They believe that the concepts should be
introduced slowly as modules in different traditional courses. By introducing the parallel
computing concepts early in the program, students always have a parallel option as a solution to
problems that they want to solve. Some believe that it should be offered as a senior level
required course. The second option might be harder to implement since adding a new course to

P
age 14.722.7

the curriculum is not an easy task, as often times eliminating another course would be necessary.
Offering it as an elective course is not a good option either since every student is not going to get
this experience. It seems that adding the concepts slowly as modules to existing courses is a
good solution for integrating the parallel computing concepts into the computer science
curriculum.

As the computing industry rapidly moves toward multi-core and parallel processing
architectures, tomorrow’s computer scientists must be educated on the tools and methodologies
for parallel computing. As educators, teaching parallel hardware and software today is vital to
giving our students the tools they need to build tomorrow’s hardware and software. It is crucial
that parallel and distributed computing topics be integrated into computer science curricula.

References:

[1] Lin, Calvin and Lawrence Snyder, “Principles of Parallel Programming”. Pearson
 Publishing Company, 2008.

[2] Moore, G.,” Cramming more Components onto Integrated Circuits”. Electronics 38, 8, 1995.

[3] Brin, S., and L. Page, “The Anaotomy of a Large Scale Hypertexual Web Search Engine”.
 Technical Report, Stanford University, 1997.

[4] Fried, I. Intel: Software Needs to Heed Moor’s Law”. CNET News, May 2006.

[5] Ernst, Daniel and Daniel E. Stevenson, “Concurrent CS: Preparing Students for a Multicore
 World”. ITiCSE’08, June 30 – July 2, 2008, Madrid, Spain.

[6] Graham, Integrating Parallel Programming Techniques into Traditional Computer Science
 Curricula, SIGSCE Bulletin, Volume 39, Number 4, December 2007.

[7] Chen, Tianzhou, and Qingsong Shi, “Multicore Challenge in Pervasive Computing
 Education, The 3rd International Conference on Grid and Pervasive Computing, IEEE, 2008.

 [8] http://www.acm.org/education/curricula-recommendations , CS2008 Curriculum Update (draft), Accessed on
 January 30, 2009.

[9] Marowka, A. “Parallel Computing on Any Desktop”, Communication of ACM, Vol. 50, no. 9, pp. 74-78.

[10] Marowka, Ami, “Think parallel: Teaching parallel Programming Today, IEEE distributed Systems Online,
 accessed on January 12, 2009.

P
age 14.722.8

