
AC 2009-2001: A SOFTWARE PROCESS ENGINEERING COURSE

J. Scott Hawker, Rochester Institute of Technology
Dr. Hawker graduated with a B.S. and M.S. in Electrical Engineering from Texas Tech
University in Lubbock, Texas, in 1981 and 1982, respectively. He graduated with a Ph.D. in
Electrical Engineering from Lehigh University in Bethlehem, Pennsylvania, in 1990. He has over
15 years of industry experience developing large-scale, multi-agent information and control
systems for diverse applications including manufacturing, combat pilot decision support and
mission management, robotics, and surveillance. In these areas, he developed and applied
technologies including distributed, component-based software architectures, software and systems
engineering process models, intelligent control, the semantic web, and real-time artificial
intelligence. In 1999, Dr. Hawker joined the Computer Science Department at the University of
Alabama as an Assistant Professor focusing on software engineering, and in 2004 he moved to
the Software Engineering Department at RIT. Dr. Hawker is also co-director of the Laboratory
for Environmental Computing and Decision Making, which focuses on modeling and
understanding the impact of freight transportation and automotive industry activities and public
policies. Dr. Hawker is a member of the ASEE, IEEE, IEEE Computer Society, and the
International Environmental Modeling and Software Society.

© American Society for Engineering Education, 2009

P
age 14.107.1

A Software Process Engineering Course

Introduction

As software product organizations evolve, the roles within the organizations evolve. From the

generic ―programmer‖ or ―developer‖ role there evolves distinct roles for the separate but related

specializations and practices of requirements development, solution design, implementation, test,

etc. Even if these distinct roles are carried out by the same person in a given product

development team, the activities, techniques, and artifacts for the roles are separately identified

and addressed. As the organization matures, additional roles and specializations are separated

out and addressed, such as project management, architecture design, and quality assurance.

We are now seeing an additional, distinct role in maturing software development organizations:

Software Process Engineer. In some organizations, the task of defining the software process

(process engineering) and tracking its execution is the responsibility of the project manager. In

other organizations, a quality assurance organization defines a process for a project, and the

project manager tracks its execution. Regardless of the organization or person assigned the role,

though, it has become useful to separate the activities of process engineering from the other

activities of project managers and quality assurance. For example, project managers are

responsible for defining and tracking project milestones, schedules, budgets, risks, etc. Quality

assurance is responsible for product verification and validation. The responsibilities of defining,

assessing, and improving the software engineering process activities performed by all roles

(managers, assurance, developers, etc.) is distinct enough from other project management and

quality assurance tasks that is should be separately and clearly identified as a specific set of

activities and deliverables. Even if a given individual performs all or part of multiple roles that

include both product and process engineering, they should have concepts, methods, and guidance

for how to perform the process engineering activities effectively.

As software engineering educators, we need to provide opportunities for our students to learn

and practice this software process engineering role and to understand its relationship to other

project roles. This paper describes the development of a course on software process engineering

as part of a graduate software engineering curriculum, plus our initial experiences teaching the

course. We just completed teaching the course the second time, and have identified some

successes and opportunities for improvement. This paper describes the course and possible

improvements.

In the following sections, we first define the software process engineering role and describe how

we model software engineering processes. We then describe the course objectives and the

overall approach for meeting those objectives. We then outline the course structure and content

and provide observations on the issues and opportunities of various elements of the course. We

conclude with an overall assessment and suggestions for on-going improvement.

The Software Process Engineering Role: A Process Designer

A software process engineer defines, for one or more software development projects,

P
age 14.107.2

P
age 14.107.3

The IEEE Standard for Developing a Software Project Life Cycle Process
8
 also encourage a

separation of the process lifecycle of activities from the methods, tools, guidance, and other

process content for how to perform the activities (the method content is called Organizational

Process Assets in the standard). The course includes this IEEE standard as an alternative and

complementary method to SPEM for describing and designing software engineering processes.

Tools such as EPF Composer, which uses SPEM as its underlying tool metamodel, can help

manage the libraries of reusable method content and support the assembly of the content into a

specific delivery process that is published as a web site that is readily available to the project

teams. Using such tools, process engineers and project managers can rapidly select, tailor, and

assemble processes specific to the needs of a given project. They can also grow and evolve the

method content as new and improved methods become available.

Making the Process Explicit: Software Process Models

The students in our software engineering graduate program have some professional experience

executing a software process, usually in the role of developers. They have an intuitive, but

sometimes vague, understanding of the various roles in a project and the lifecycle flow of

activities in a project. Some have taken a course on software process or project management, so

they may have some understanding of the various lifecycle process models (delivery processes).

In order to provide a common understanding for all students and to enable concrete discussions

and comparisons of process designs, the first part of the course is devoted to software process

modeling concepts. This section describes and gives example models of that portion of the

course content. The teaching approach leverages the student’s understanding of using UML to
model systems, in general, and in particular makes parallels between software product models in

UML and software process models in UML.

Figure 1 is a UML diagram that illustrates the relationships between roles, activities, and work

products in a software engineering process, and Figure 2 is the same diagram, using the SPEM

UML stereotype notation.

Role

WorkProduct

Activity0..*

1

Performs

1

0..*

Responsible For Output

0..*

0..*

Produces

0..*

Input
0..*

Uses

Figure 1. The relationships between roles, activities, and work products

P
age 14.107.4

P
age 14.107.5

Figure 4. Work breakdown structure for an iteration in a Unified Process Elaboration phase

Figures 5 and 6 show some model views of a reusable process component named ―Develop

Solution Increment.‖ In an incremental development process, this component would be
instantiated multiple times, but with different input and output work products, or with work

products in different states of completion. Figure 5 captures the collection of activities and their

associated input and output work products. Figure 6 uses a UML activity diagram to capture the

flow of activities from task to task.

Figure 5. A reusable process component: ―Develop Solution Increment‖

P
age 14.107.6

Figure 6. An activity diagram showing the flow of activities for ―Develop Solution Increment‖

Software Process Engineering Course Description

Our overall goal of the Software Process Engineering course is to equip students with the

concepts and skills to be able to design processes to meet the specific needs of a given project or

projects in a software development organization. They need to have the abilities to begin to

design processes with the scope and depth of OpenUP and similar processes. We seek to give

them a survey-level familiarity with various software lifecycle models, software engineering

principles, and specific practices. We emphasize over-arching process principles such as

incremental development, a balance of formality and agility, and the importance of addressing

quality and risk throughout the process. We choose a specific process (OpenUP) that gives a

concrete process that meets the balance of discipline and agility that is common in today’s
software engineering processes. We provide them some basic methods to assess the

appropriateness and maturity of a given process and to select process improvements that address

specific process deficiencies. Through team projects, the students use a process engineering

toolset and library (EPF Composer and OpenUP, Scrum, and other EPF libraries) to design a

process for a specific need.

P
age 14.107.7

P
age 14.107.8

P
age 14.107.9

students became somewhat adept at designing and analyzing processes, and they were able to

assess the processes (or lack of processes) used in their work and academic project experiences

and identify and justify process changes. Indeed, some students were eager to incorporate their

learning into their work practices, and one expressed an interest in seeking a job as a process

engineer.

There are a number of opportunities for course improvement. Some deficiencies and suggested

changes that can inform course improvement are summarized below.

Process concepts, in general, are abstract to some students who are more focused on and

experienced with product concepts (requirements, design, implementation, test). Process

engineering (process design, as opposed to participating in a role in process execution) is one

further step removed in abstraction from the hands-on product development that the students are

most familiar with. It is important to provide concrete, practical examples of and hands-on

experience applying the process and process engineering concepts. In particular, it is difficult for

the students to make concrete the requirements of processes and to create and defend process

designs. The students are able to model and explain existing processes, but they have difficulty

specifying the needs of and designing processes. This is consistent with the difficulty of many

software engineering students to perform product requirements and design activities compared to

their strengths in product implementation and test activities.

The project work uses Eclipse Process Framework (EPF) Composer and some of the associated

content libraries to build the process models and deliver them as a web site to guide process

execution by product engineers. EPF Composer is somewhat immature and unstable, and there

is not a good deal of documentation on the tool. The IBM Rational Method Composer (RMC)

product, which is based on an earlier version of EPF Composer, is also available. However

content from RMC and EPF are not interoperable. Further, EPF does not work well for

concurrent development and integration of multiple team members working on the same project.

Since EPF Composer is based on the Eclipse platform, the students underestimated the scope and

complexity of the tool—they thought it would be easy because they ―knew Eclipse,‖ but more as
a Java development environment than as a process engineering environment. The course may

need to spend more time allowing the students to become familiar with the tools rather than

expecting the students to read and follow the available tutorials and help systems. At the end of

the project, though, the students did recognize the need and value in process modeling tools for

capturing and presenting the scope and detail of a software process.

Now that there are process libraries available from the EPF open source project, there is an

opportunity to do a comparison and contrast between different process models, including

comparison of process lifecycles and understanding the range of methods for performing

software engineering activities. Adding this comparison and contrast activity to the course

would help to provide concrete examples of process models and how they are represented in EPF

Composer, and it would help the students evaluate alternate process designs, hopefully helping

them to become better process designers.

P
age 14.107.10

The students sometimes felt that their process models were somewhat disconnected from the real

world. They did not have sufficient experience in performing the various activities of product

development to be able to know how to assess a process and identify process improvement

opportunities. Case studies of process execution using various process models, plus case studies

of process assessment and improvement, would help make the process engineering more

relevant.

Conclusion

Overall, the software process engineering course has been a moderate success. It gives the

students a foundation in process concepts and gives them tools to model and analyze process

designs. It gives them a catalog of process content—practices, principles, methods, etc.—that

can be applied in a wide range of process life-cycle models and project settings. The course does

not give the students a complete knowledge and experience that would enable them to be a lead

process engineer for an organization, but it does give them the knowledge and experience that

they can be more adept at performing product engineering roles within a number of different

process styles, and it gives them some abilities to identify and implement process improvement

efforts. The course also gives them some fundamental knowledge and skills in process design

that, with further experience, could set them on a career path that includes a role as a process

engineer.

Bibliography

1. Leon. J. Osterweil. ―Software Processes are Software Too,‖ Proceedings of the Ninth International Conference

of Software Engineering, pages 2-13, Monterey, CA, March 1987.

2. Leon. J. Osterweil. ―Software Processes are Software Too, Revisited: An Invited Talk on the Most Influential

Paper of ICSE 9,‖ Proceedings of the Ninth International Conference of Software Engineering, pages 540-548,

Boston, MA, 1997.

3. Object Management Group, Software and Systems Process Engineering Meta-Model Version 2.0, OMG

Document Number: formal/2008-04-01, April 2008, http://www.omg.org/spec/SPEM/2.0/PDF, accessed 2009-

02-06.

4. Ricardo Balduino, ―Introduction to OpenUP (Open Unified Process),‖ August, 2007,
http://www.eclipse.org/epf/general/OpenUP.pdf, accessed 2009-02-06.

5. Philippe Kruchten, The Rational Unified Process: An Introduction, Addison Wesley, 2003.

6. Eclipse Foundation, ―Eclipse Process Framework Project,‖ http://www.eclipse.org/epf/, accessed 2009-02-06.

7. Peter Haumer, ―Eclipse Process Framework Composer,‖ April 2007,
http://www.eclipse.org/epf/general/EPFComposerOverviewPart1.pdf and

 http://www.eclipse.org/epf/general/EPFComposerOverviewPart2.pdf, accessed 2009-02-06.

8. IEEE Computer Society Software Engineering Standards Committee, Standard for Developing a Software

Project Life Cycle Process (IEEE-STD-1074-2006), March, 2006.

9. The materials are used under the Eclipse Public License V1.0. OpenUP downloads are available at

http://www.eclipse.org/epf/downloads/openup/openup_downloads.php, accessed 2009-02-06.

10. Per Kroll and Bruce MacIsaac, Agility and Discipline Made Easy: Practices from OpenUP and RUP, Addison-

Wesley, 2006.

P
age 14.107.11

