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Development and Assessment of a Novel Systems Bioengineering 

Course Integrating Modeling and Experimentation 
 

 

Abstract 

 

Advances in the biomedical sciences are becoming increasingly dependent upon the application 

of rigorous engineering principles to the study of biological systems. Most existing 

bioengineering curricula lack integrative courses that combine systems modeling approaches 

with biological “wet-lab” experimentation. We have thus developed an undergraduate senior 

elective course entitled “Systems Bioengineering Modeling and Experimentation” in the 

Department of Biomedical Engineering at the University of Virginia. The goal of this integrative 

course is to enhance undergraduate preparedness for industry and graduate study in the emerging 

field of Systems Biology by teaching systems concepts and methods in the context of 

experimental techniques. The course covers modeling and experimental approaches spanning 

multiple scales in biology, including subcellular dynamics, cellular networks, and multicellular 

patterning. Modern experimental approaches include live-cell imaging, gene microarrays, and in 

vitro angiogenesis assays. Since the field of Systems Biology is still rapidly evolving and 

currently ill defined, the particular educational benefits gained from the integrative pedagogical 

approach we have taken have not been established previously. To determine the efficacy of this 

course for achieving depth of knowledge and cognitive skills in the systems approach to 

biomedical engineering, we administered a summative assessment instrument to all senior 

undergraduates in the year the course was offered, both who were in enrolled in the course and 

who were not, with time points before and after the course was offered. In this paper, we 

describe the course structure and preliminary assessment from the first offering of this course. 

We also review the educational benefits and challenges associated with teaching systems biology 

concepts: e.g. complexity and simplification strategies, integration of biological information 

across spatial and temporal scales, resolving literature discrepancies in the context of a model, 

and parameter estimation and model validation. Initial assessment results indicate that this course 

provides a successful model for introducing undergraduates both to state-of-the-art techniques 

and to the central systems biology paradigm of iterative cycling between models and 

experiments. 

 

Introduction 

 

The field of biomedical engineering (BME), which is still a young field relative to the more 

“traditional” engineering disciplines, has been responsible for many high-impact biomedical 

advances (both clinically and in basic research) over the past 50-60 years
1
.  However, over the 

last decade the field of BME has been significantly transformed by far-reaching new scientific 

and technological developments.  The human genome has been sequenced
2,3

, the field of 

bioinformatics has generated powerful data annotation and database management tools
4
, 

diagnostic and imaging approaches are evolving at a rapid pace due to advances in molecular 

nanotechnology
5
, and computational power and capabilities are increasing exponentially every 

year.  But the faster the pace of biomedical discovery, the more an integrated “systems 

approach” is needed to provide an accurate and useful context for those discoveries.  It is now 

clear that taking such a “systems approach”—viewing not just the parts, but also the interactions 
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between the parts and the structure of the system as a whole—is going to be necessary for 

making sustainable and significant impacts on human health
6
. 

 

A systems approach to biomedical research requires knowledge of human physiology and 

pathology, in addition to quantitative skills in mathematics and engineering
7
.  More importantly, 

however, it requires the ability to integrate these subjects in a meaningful way
8
.  Biomedical 

engineers, who already receive training in biology/physiology and the quantitative sciences, are 

uniquely poised to learn, apply, and evolve the integrative systems approach, and in so doing, 

further basic medical discovery and innovate new solutions for human health through applied 

research and technology development
6
.  But biomedical engineering curricula nationwide have, 

to date, largely neglected the development of integrative courses that combine experimental and 

systems methodologies in a multi-scale fashion (i.e. subcellular, cellular, and tissue-level).  

While a number of BME undergraduate programs currently offer elective courses in 

bioinformatics, sequence analysis, and/or mathematical modeling in BME, none to our 

knowledge combine “wet-lab” high-throughput data generation with both data analysis and 

integrated large-scale models of biological systems. 

 

We have therefore developed a one-semester undergraduate elective course for upper-level 

biomedical engineers at the University of Virginia that explicitly teaches systems bioengineering 

methodologies and concepts through collaborative and immersive high-throughput wet-lab 

experiments and computational analyses that span the different spatial scales in biology—from 

the DNA-level through the organ-level.  Within both the biotechnology sector and in academia, 

the demand for graduates who possess expertise in the generation of high-throughput data—as 

well as the modeling skills needed to analyze and predict pathological states and identify viable 

therapies—has increased dramatically
9
.  One key objective of this course is thus to prepare BME 

graduates for working in a rapidly evolving and interdisciplinary field that requires not only new 

experimental and computational tools, but also a new “systems” way of thinking and problem-

solving in healthcare and medicine. 

 

Prerequisites 

 

Given the topics covered in the Systems Bioengineering Modeling and Experimentation course 

developed at the University of Virginia, it was designed as a senior elective course such that the 

students had sufficient background in computational modeling, systems analysis, and 

experimental biological techniques.  Thus, the prerequisites are a molecular biology laboratory, 

engineering systems analysis (and its prerequisites, including multivariate calculus, differential 

equations, and statistics), and aptitude in computational methods (e.g. Matlab programming) 

necessary to execute the modeling portion of the course.  These requirements are typically 

satisfied by most BME programs by the 3
rd

 or 4
th

 year of study in the undergraduate curricula. 

 

Course Structure 

 

Towards addressing the growing demand for BME graduates who possess the skills and 

understanding required to contribute to the generation and systems analysis of high-throughput 

data, we have established a significant systems bioengineering facet within the undergraduate 

major in Biomedical Engineering at the University of Virginia.  The new systems bioengineering 
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Since there was a wide breadth of material covered in this course, we necessarily had to be very 

selective about the material covered in each module, so that students had an opportunity to gain 

an appreciation for the issues and limitations of the most common modeling and experimental 

approaches at each scale.  Each of the three modules in the course had the following general 

goals in common: 

 

1. Introduce an especially medically relevant problem (in lecture and by assigning review 

papers to read) such that the students learn the motivation/need for a systems approach to 

solving this problem. 

 

2. Lay the theoretical foundation:  In lecture, we reviewed the underlying physical 

principles (linking back to material taught in prerequisite courses), specific modeling 

methodologies to describe these underlying principles, and the theory behind 

experimentally testing such models. 

 

3. Wet-lab experiments: The specific skills required to generate the data needed to properly 

validate a systems model was taught within a hands-on laboratory. 

 

4. Data analysis and integration with the previously discussed model (or just previously 

mentioned rather than discussed, depending on the module).  Students had to link their 

results and analysis to the initially identified medically relevant problem and also suggest 

next steps. 

 

5. Assess students’ ability to synthesize all aspects of the module by having them undergo 

an oral examination explaining their approach, describing their results and analysis, and 

discussing the implications.  Key concepts were also tested on a written final exam at the 

end of the semester covering all three modules.  (See section on “Assessment of Student 

Learning” later in this paper for more specific information and rubrics relating to the oral 

exams and final written exam.) 

 

Rationale and Specific Content of Course Modules 

  

The integrative Systems Bioengineering Modeling and Experimentation course instituted at 

U.Va. was split into three topical modules, each of which covered a different scale and modeling 

framework.  We began the course with a 3-lecture introduction to modeling fundamentals.  Each 

of the three topical modules then lasted 3 weeks each (two 50-minute lectures per week).  

Additionally, Modules 1 and 3 contained two three-hour lab periods, and Module 2 contained 

one lab.  In summary, Module 1 focused on the sub-cellular scale (i.e. DNA/protein), combining 

live-cell fluorescence imaging data with dynamic models of protein transport and cell signaling 

processes.  Module 2 focused on the cellular scale and emphasized network modeling and the 

expression of the genome in the context of this overarching network.  Module 3 covered tissue-

level models that rely on agent-based models, integrating these models with experimental data of 

a microvascular network in the chick embryo (derived from chicken eggs).  Lectures were also 

given at transition points between modules and at the end of the semester to connect the different 

modeling scales and strategies, providing a cohesive picture of the modeling strategies most 

appropriate for the types of biomedical and biological questions that were addressed. 
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and industry have now recognized the need for systems approaches, both computational and 

experimental, for understanding and treating such complex networks.  Recent large-scale 

academic efforts
 
such as the Alliance for Cellular Signaling and the Cell Migration Consortium 

have identified
 
systems modeling as essential for a comprehensive understanding

 
of signaling 

networks and the response to genetic and pharmacological
 
perturbations

11,12
.  Large biotech and 

pharmaceutical companies such as Novartis, Pfizer, and Bayer have now established Systems 

Biology or Modeling departments and are developing dynamic computational models to 

understand the responses of drugs in these complex cellular environments
13

.  Rather than relying 

on test-tube biochemistry where results may be taken out of context, small and large firms alike 

(including Pfizer, Johnson and Johnson, GlaxoSmithKline, Cellomics, Bioseek) are now turning 

to cell-based assays where drugs are tested in the intact cellular environment
14

.  Thus both 

computational and experimental systems approaches are greatly needed to understand complex 

disease mechanisms and identify appropriate therapeutic strategies. 

 

2) Specific modeling concepts covered: 

 

Modeling dynamic biochemical processes: Differential equations are the foundation for dynamic 

analysis in the physical sciences and engineering, where models are based on physical 

conservation laws.  While systems analysis using ordinary and partial differential equations is 

taught in all biomedical engineering curricula and in many other fields (and these approaches are 

prerequisites for the proposed course), several aspects are not typically taught at the 

undergraduate level but are vital to analysis of biological systems.  For example, biology is 

highly nonlinear, and biological parameters and even mechanisms often have a large degree of 

uncertainty
15

.  As a result, purely “bottom-up” approaches often fail, and models must be 

iteratively refined by comparison with experimental data.  In models of complex, heterogeneous 

networks such as gene regulation, it may be difficult to determine which components or 

interactions are most important for a given behavior. Therefore students were taught: 

 

• How to mechanistically model biochemical reaction networks with nonlinear differential 

equations, emphasizing differences from linear systems; 

• How to quantitatively validate models using experimental data and discriminate among 

competing hypotheses/models; 

• Parameter estimation approaches for developing models based on experimental data, 

including measures of uncertainty; and 

• Parameter sensitivity analyses to identify critical components/interactions. 

 

3) Specific experimental skill sets learned: 

 

Fluorescence microscopy approaches, particularly those involving genetically tagged proteins 

like green fluorescent protein (GFP), have revolutionized our ability to quantitatively measure 

biochemical dynamics in intact cells and organisms
5
.  Such cell-based assays based on 

fluorescence imaging of biochemical activity and translocation are used in a variety of drug 

discovery platforms used in firms like Cellomics, BD Biosciences, and Pfizer.  In the proposed 

course, students complemented computational modeling by imaging dynamic subcellular 

responses to drugs.  Students learned: 
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1) Biomedical problem: 

 

The wealth of cell-scale or genomic information necessitates computational approaches that can 

deal with uncertainty in the data and yet provide testable hypotheses of cell physiology.  Multiple 

genomes have been sequenced and annotated, and experimental technologies are providing 

genomic, proteomic, transcriptomic, and other cell-level data sets.  Paralleling the development 

of these experimental technologies are computational methods for analyzing these data sets and 

generating models of cell function.  While dynamics models described above can be particularly 

informative for an evaluation of time courses for signaling and regulatory pathways, such 

parameters are unavailable for large-scale systems.  An analysis of a genome-scale system can 

provide hypotheses for which components to target in a drug discovery program that may be 

further refined with the skills taught in Module 1. 

 

2) Specific modeling concepts covered: 

 

Statistical analysis of gene expression data:  With the gene array data generated in the course, 

the students learned basic principles of statistical analysis of the data, which are widely 

applicable to other technologies.  The students learned to appreciate normalization of the data 

and similarity measures.  The students also analyzed the data with a variety of clustering 

approaches (e.g., K-means, SVD, hierarchical).  We also discussed case studies in which 

pharmaceutical companies and academic laboratories have used such approaches to generate 

medically relevant signatures of disease (e.g. see the recent FDA approved marker of breast 

cancer recurrence comprised of 70 gene expression states
16

). 

 

Topological modeling approaches: Building off the dynamic analysis methods learned in 

Module 1, students appreciated the additional challenges in large-scale modeling efforts for 

which large sets of dynamic parameters are not available.  Students were provided with an 

overview of modeling approaches to study and characterize network topology for studying 

metabolic, regulatory, and signaling networks
17-19

.  Modeling skills derived from linear algebra, 

linear programming, graph theory, and other similar approaches that have been used to study 

properties of such networks were covered within the module. 

 

3) Specific experimental skill sets learned: 

 

Gene expression microarrays have become standard tools in the pharmaceutical industry to probe 

system-wide responses to drug action, among a multitude of other applications
20

.  Students 

isolated RNA from bovine arterial endothelial cells (BAECs) under treatment with TNF!, under 

serum stimulation, and from a control population with no growth factor, and they prepared the 

RNA samples for hybridization.  The Biomolecular Research Facility at U.Va. generated the 

expression profiles using the bovine genome GeneChip arrays (Affymetrix, Inc.).  The students 

were given a tour of the core facility, and the technician who performs the chip processing 

identified the equipment and its respective contribution to the process from isolated RNA to the 

gene expression data that the students analyzed. 

 

4) Particular insights or general cognitive growth that students experienced in this module: 
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Students learned how genomic data (i.e. transcriptomic, proteomic) are generated, as well as the 

theory underlying such technologies.  They learned to appreciate the computational tools that are 

used to analyze such data.  Students understood how models are built of cell-scale behavior and 

how such genomic data are integrated into these models (Figure 3).  These skill sets are being 

used in the pharmaceutical industry and thus case studies were presented to provide a context 

and motivation for learning such skill sets.
20

 

 

Module #3: Studying multi-cell tissues that are spatially and temporally complex using agent-

based modeling in combination with in vivo experimental manipulations. (Figure 4) 

 

1) Biomedical problem: 

 

There is ample evidence that drug targets identified in cellular and subcellular analyses are not 

always relevant once evaluated in a multicellular context.  Multiple physiological processes are a 

function of the interactions between cells and not simply the interactions between components in 

a cell.  For example, every tissue in the body is dependent on the microvascular system (the 

smallest blood vessels in the body, including the capillaries) to deliver oxygen and nutrients.  In 

healthy tissues, when the demand for oxygen and nutrients changes, or increases as in the case of 

an exercised bicep, the microvascular system can structurally and dynamically adapt (“remodel”) 

by growing (sprouting) new blood vessels to meet the demand of the tissue
21

. These 

microvascular adaptations are necessary for delivering and maintaining an adequate blood 

supply, but when a tissue is diseased or injured, as is the case in a diabetic ulcer or a diseased 

heart, the natural remodeling response of the microcirculation may become compromised.  In 

such pathological settings, an inadequate microvascular remodeling response can actually 

augment and accelerate the disease process—creating a downward spiral of an injured tissue 

unable to obtain enough oxygen and nutrients to repair itself, ultimately causing total tissue death 

that can manifest as a severe and life-threatening event in the organism (e.g. a heart attack).
22

  A 

viable therapeutic strategy, therefore, is to identify treatments (e.g. drugs, therapeutic stem cells, 

targeted gene therapy) aimed at enhancing or inducing microvascular growth and remodeling in 

settings of disease.
23

  However, microvascular growth and remodeling are very complex 

processes that involve many different cell types, cell behaviors, and biochemical and 

biomechanical signals.  Even using our most sophisticated microscopes and imaging software, 

experiments alone do not facilitate the spatial and temporal resolution needed for understanding 

the complexities of microvascular growth and remodeling.  Computational modeling alone is 

incapable of reproducing phenomena that are biologically realistic due to inadequacies in 

parameter estimation.  To make sense of the complexity so that we can identify effective and 

safe targets for therapeutic manipulation, we must develop computational tools in tandem with 

experimental models, because only a dual approach is capable of providing such a systems-level 

analysis of tissues
24

.  Teaching the experimental skills in the same context as teaching those 

skills needed to construct and utilize computational models is, therefore, invaluable to enabling 

students to make advances in computational bioengineering.  In this module we aimed to teach 

students agent-based modeling and the experimental skills necessary to investigate dosing 

regimens of vascular endothelial growth factors (VEGF) in an in vivo model of microvascular 

growth with the goal of designing an effective strategy for therapeutic angiogenesis. 
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• Knowing how to identify empirically-derived rules for agent behaviors and perform 

parameter estimation, when necessary; 

• Appreciating the limitations and caveats of agent-based modeling; 

• Having the ability to use agent-based models to derive new hypotheses and test 

alternative hypotheses. 

 

3) Specific experimental skill sets learned: 

 

The chick chorioallantoic membrane (CAM) assay of microvascular growth and remodeling is 

one of the most widely used experimental models for studying how the microvasculature grows 

and adapts in response to pharmacological manipulation (refer to right-hand panel of Figure 1 

and to Figure 4).
26-28

  It is therefore considered an established method for high-throughput testing 

of drugs designed to stimulate microvascular growth. In this module, the learning outcomes for 

the experimental portion included the following: 

 

• Knowing how to perform the microsurgery required for the CAM assay; 

• Knowing how to deliver drugs in vivo to impact microvascular growth; 

• Knowing how to use intravital microscopy to image the tissue; 

• Knowing how to use image analysis software  (specifically ImageJ) to quantitatively 

assess the amount of microvascular growth and remodeling resulting from the 

pharmacological intervention; 

• Knowing how to use the experimental data to validate predictions of the agent-based 

model and to test hypotheses suggested by the computational model. 

 

4) Particular insights or general cognitive growth that students experienced in this module: 

  

Students learned how multi-cell biological phenomena arise from single-cell behavior and 

single-molecule signaling interactions, and the complex dynamic interplay between the spatial 

and temporal scales.  They learned to appreciate how independent behaviors of individuals give 

rise to complex and often unanticipated emergent phenomena, and how, in the microcirculation, 

this paradigm relates to various disease states.  

 

By building their own agent-based model of angiogenesis, students learned how to simplify this 

complex biological process and use a model to ask and answer relevant questions, such as the 

impact of dose response of an exogenously applied growth factor (VEGF). By acquiring their 

own data in the laboratory with the CAM assay and using these data to independently construct 

and subsequently validate the predictions of their model, the students had first-hand experience 

integrating experimental data with computational modeling. In so doing, the students appreciated 

the difference between “data-in” and “data-out” and the necessity of keeping the two data sets 

separate, so as to avoid simple curve fitting and truly make independent predictions with their 

model. This gave them a better appreciation for how the two approaches (experimental and 

computational) unite to accelerate the discovery process and enhance understanding of this 

complex system.  
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Assessment of Student Learning 

 

The Systems Bioengineering Modeling and Experimentation course was offered for the first time 

during the Fall 2008 semester at the University of Virginia within the Department of Biomedical 

Engineering.  Nine students, all in their senior year as undergraduates in the BME major, 

enrolled in the course.  Students worked in teams of three performing both the laboratories and 

the modeling and analysis for each module (three teams total).  The bulk of the grade for each 

student came from three oral “mini-comprehensive” exams and a final written exam. 

 

Oral “mini-comprehensive” exams: The small size of the class (N=9) afforded us the opportunity 

to evaluate the students using an oral exam format.  Each of the three modules concluded with an 

oral midterm exam, which served in lieu of a written midterm or module lab report.  Since 

students in our program already receive extensive experience writing lab reports and giving 

formal presentations in other classes throughout the major, we felt that an oral exam format 

would be the optimal method by which to truly assess each student team’s understanding of the 

module.  These exams, which lasted 45 minutes each, gave the course instructors ample 

opportunity to ask in-depth questions and to especially probe wherever we spotted specific 

deficiencies or errors of understanding.  The oral format also allowed us to help the students 

think through the problem in ways they may not otherwise have been able to do.  Since these 

exams were conducted with each team of three rather than with the individual students, we 

would occasionally target questions to specific students (e.g. if they had been quieter during the 

exam or had earlier revealed a lack of knowledge in any particular area). 

 

We developed a simple rubric for assessing student performance on the oral midterms, rating 

each of them in the following five areas: communication, knowledge, answering questions, 

accomplishment, and learning.  The “communication” score reflected the students’ ability to 

explain what they did in lab and in the post-lab modeling and analysis, as well as how clearly 

and crisply they defined terms and techniques.  “Knowledge” was determined by their command 

of the relevant background information and modeling approaches.  The score for “answering 

questions” reflected not only whether a first answer to a question was correct, but also how well 

the students were able to “think on their feet” when we asked follow-up questions and attempted 

to guide them to a greater understanding of a concept if they were initially deficient.  

“Accomplishment” reflected the overall level of effort and work that went into their modeling 

and analysis over the module (assuming the work was correctly done), and “learning” was an 

overarching score that took into account the students’ ability to synthesize their knowledge and 

the techniques they applied in the module to truly understand not only what they did, but why it 

was important.  All 9 students did well on these oral midterms and demonstrated solid 

understanding of the labs, techniques, and underlying concepts (grades ranging from B to A+). 

 

Final Written Examination: At the end of the semester, enrolled students took a three-hour 

written examination which not only covered all three modules, but also asked the students to 

integrate modeling approaches from among the three scales to demonstrate their appreciation for 

the challenges and possibilities associated with multi-scale modeling of biological systems.  

While a few of the exam questions asked students to recall definitions and explain specific 

concepts, most of the exam was very integrative and applied in nature, thus assessing higher-

order cognitive skills identified on Bloom’s Taxonomy
29,30

, specifically analyzing, evaluating, 
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and creating (i.e. synthesis).  For example, on the final exam, students were shown a recently 

published agent-based model of a biological process (and the associated set of “rules” governing 

that model), and they were also given figures showing experimental data generated to validate 

the model.  Students had to evaluate whether or not the model made sense (given the data) and 

how they might improve the model.  Towards addressing the synthesis/creating level on Bloom’s 

Taxonomy, students then had to generate their own “data” (creating labeled figures or realistic 

results and sketching them on the exam paper) and to hypothesize model components (i.e. rules) 

that would account for these data. 

 

Student performance on the final exam varied much more widely than on the oral midterms, 

ranging from 72% to 95% (average of 84%).  Given the difficulty of the exam (both in terms of 

thought required and of sheer length), the instructors were generally pleased with how the 

students met the learning outcomes on Modules 1 and 3.  Six of the nine students 

underperformed on Module 2, leading us to recognize that certain concepts pertaining to high-

throughout experimental techniques and network modeling (especially linking these two topics) 

needed to be given greater attention in the next iteration of the course to be taught in Fall 2009. 

 

Course Assessment 

 

One of our primary goals in assessing the Systems Bioengineering Modeling and 

Experimentation course was to determine the efficacy of this course for achieving not only depth 

of knowledge and cognitive skills in the systems approach to biomedical engineering, but also 

students’ self-perceived abilities and confidence in the field to stimulate their interest in systems 

bioengineering.  Summative assessment instruments were developed and administered both to 

Biomedical Engineering majors who did and who did not take the course during its first offering 

in Fall, 2008. This assessment was conducted at the beginning of the course (August 2008) and 

at the start of the semester following the end of the course (January 2009).  The former served as 

a baseline measure of understanding and comfort level, and the latter tested for retention, since 

having met course objectives by any measure does not necessarily mean that the knowledge or 

skills will be effectively retained for future application.  Those students who did not take the 

course were still subjected to requisite laboratory and computational courses that are part of the 

major program of study in BME.  They therefore constituted an appropriate control group since 

they were exposed to much of the same fundamental knowledge in biology and mathematics, but 

without the fully integrated or contextualized nature of systems bioengineering. 

 

Both survey instruments consisted of the following 14 questions: 

 

1. Suppose that your first job is for a small biotech/pharmaceutical company.  Just a few 

weeks into your job, your supervisor asks you to use an existing computational model to 

identify the best potential drug targets within a metabolic network.  Rate your current 

confidence level at accomplishing this task on a scale of 1-5 (5 being “extremely high 

confidence”). 

2. You are asked to write Matlab code that solves a system of 20 ordinary differential 

equations (ODEs) that are hypothesized to describe the behavior of a well-characterized 

cell signaling network.  Although this particular network has never been mathematically 

modeled before, the specific kinetic parameters have been determined in previous studies.  
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Rate your current confidence level at accomplishing this task on a scale of 1-5 (5 being 

“extremely high confidence”). 

3. In your first year in graduate school, suppose you are asked to use microarray data (total 

of 3,217 genes probed) to detect which genes are up-regulated or down-regulated 

following stimulus with a specific growth factor.  On a scale of 1-5, rate your current 

level of confidence in your ability to apply appropriate statistics toward carrying out this 

task (5 being “extremely high confidence”). 

4. Atherosclerosis is a complex disease that involves fluid flow forces impacting endothelial 

cell adhesion, diffusible circulating chemokines impacting inflammatory cell trafficking, 

smooth muscle cell production of extracellular matrix modulators, and lipoprotein 

metabolism by macrophages and foam cells in the plaque.  Each of these processes 

results in innumerable signaling events that, as an ensemble, cause a plaque to enlarge 

over time.  On a scale of 1-5, rate your confidence level in your ability to integrate these 

diverse processes and signals into a unified model so that you can test the effect of a 

particular chemokine inhibitor on the enlargement of an atherosclerotic plaque (5 being 

“extremely high confidence”). 

5. Are you confident in your ability to break a large modeling problem into smaller, more 

manageable pieces? Rate your current confidence level at accomplishing this task on a 

scale of 1-5 (5 being “extremely high confidence”). 

6. Suppose your supervisor gives you one gene expression (microarray) data set taken from 

cells isolated from a cirrhotic human liver.  Your supervisor then asks you to use this 

data to identify the genes that would be the best targets for a drug that will reverse the 

effects of cirrhosis.  Would you feel comfortable working on this problem using this data? 

7. Suppose you are asked to teach/mentor a biological modeling approach to someone who 

already has a solid background in mathematics, cell biology, and physiology.  You must 

provide your “student” with the known mechanisms of a particular disease (with which 

you yourself are already very familiar), and then teach this person to determine the 

appropriate length scale at which to model the disease process (e.g. cellular, molecular, 

tissue, etc.) and to identify functional modules in which to compartmentalize the model. 

Rate your current confidence level at accomplishing this task on a scale of 1-5 (5 being 

“extremely high confidence”). 

8. Would you feel comfortable picking up a book(s), researching journals, and integrating 

information across multiple length scales to set up a modeling problem with which you 

have a strong interest and knowledge of the underlying system? Rate your current 

confidence level at accomplishing this task on a scale of 1-5 (5 being “extremely high 

confidence”). 

9. Suppose you have data on ~100 different components that are identified for the 

progression of prostate cancer.  You know that the capabilities of your computational 

resources limit you to no more than 20 components.  Thus, you have to decide how you 

draw your system boundary such that the smaller subsystem is going to best address the 

question of interest. Rate your current confidence level at accomplishing this task on a 

scale of 1-5 (5 being “extremely high confidence”). 

10. Do you want to seek a job where you perform the following skills?  In other words, which 

of the following skill sets would you prefer to use your future career? 

 

a. Computer modeling 
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b. Experimental analysis 

c. High-throughput data analysis 

d. Integrating heterogeneous datasets 

e. None of these 

 

Rank-order the skills that you would be most interesting in using in your future career.  

Fill in numbers 10-14 with one of the letters above, where 10 is your top preference, and 

14 is your lowest preference. 

 

In the second round of the survey given January 2009, two questions were added: 

 

15. How much does your Capstone project involve computational systems modeling and/or 

analysis?  Rate your answer on a scale of 1-5 (5 being extensive, 1 being none). 

16. How do you feel that your ability to build and/or validate computational models has 

changed since last August?  Rate your answer on a scale of 1-5 (5 being greatly 

improved, 1 being gotten much worse). 

 

For the results presented questions 10-14, 1!5 corresponds to “very low preference” to “very 

high preference” for a job involving the skill in question.  (All other scores are as indicated on 

the survey questions.)  Table 1 below summarizes the weighted averages of the scores for all 14 

questions in Round 1 and all 16 questions in Round 2 of the survey.  In both surveys, the results 

were split into two populations: students who were enrolled (or who had already taken, in the 

case of the 2009 survey) the Systems Bioengineering Modeling and Experimentation Course.  

Results were compared between students enrolled in the course (i.e. just before taking the course 

and after completing it), although given the smaller sample sizes, only one question (Q7) showed 

a statistically significant difference (Wilcoxon P < 0.05).  In fact, this score, pertaining to the 

students’ comfort level in teaching someone else how to build a model, actually decreased after 

taking the course.  We believe that this difference is likely due to a greater appreciation of what 

is required to properly build a model and thus student overconfidence before taking the class.  

The second column of P-values (right-most column of Table 1) corresponds to the difference in 

the “after” survey only (i.e. January) between students who had taken the course and those who 

had not.  Dark gray shading reflects a Wilcoxon P < 0.01, and lighter shading P < 0.05. 

 

Students who took the course showed significantly higher comfort levels compared to those who 

did not take the course in ability to use a computational model to test drug targets in a metabolic 

network (even though all of them learn the basics of metabolic network analysis in a core course 

in the junior year), solving systems of ODEs (also covered in a core course in the curriculum), 

applying statistics to high-throughput data (even though they have all taken probability and 

statistics), and confidence in setting up a model form the literature and teaching someone else 

with a mathematics background how to do the same.  However, given the small sample size of 

students who enrolled in the course and completed the survey (N=8), we must be cautious in 

drawing strong conclusions.  Given the high scores on most of these questions given by the 

students enrolled in the course before the course actually started (first column of the table), it is 

evident that students with a strong interest and self-perceived aptitude in modeling self-selected 

to enroll in the course.  Students who took the systems course were also much more likely to use 

modeling extensively in their senior Capstone projects. 
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Students (N=9) also completed anonymous course evaluations at the conclusion of the semester 

in December 2008.  These evaluations were extremely positive, with the students rating the 

following on a 5-point Likert scale: “This course was challenging.” ! 4.56; “I learned a great 

deal in this course.” ! 4.89; and “Overall, this was a worthwhile course.” ! 4.89.  Specific 

open-ended comments included: 

 

• “I really enjoyed this class! Although it is a lot of work, but I was definitely learning a lot 

and would highly recommend it to everyone! Please try to keep this course for the 

future!” 

• “Oral tests were a great idea, I am thankful I had an opportunity to get more practice 

presenting.” 

• “This was a very interesting and fun course. I enjoyed learning about new technologies 

and real applications of systems modeling, and the integrated laboratory experience was 

very beneficial. … Overall, it was a great class, and I feel like I learned many valuable, 

practical skills. All of the instructors were very knowledgeable, and it was good to get to 

talk to them in more of a 1 on 1 setting. I would strongly encourage that this course be 

offered again next year.” 

• “Although this course required a lot of work both in the lab and at home, I though it was 

a great course with very interesting subject matter.  I would definitely recommend it to 

future classes.” 

• “Overall, one of the best courses I have taken at the University.” 

 

The students appreciated the small class size and discussion-driven seminar style of many of the 

lectures, and they also appreciated the oral midterm exams.  However, there were two main 

critiques of the course: 1) Students felt that the course could have used greater cohesion and 

linking of the various scales of modeling approaches.  They agreed that we attempted to do this 

in the closing lectures, but they would have appreciated more linkages between intracellular, 

network, and multicellular modeling throughout the course.  2) Students would have appreciated 

more regular assignments to keep them on task, rather than just the three oral midterms and the 

final exam.  They suggested short weekly homework problems or progress reports to achieve this 

purpose. 

 

Conclusions and Future Directions 

 

Overall, the first iteration of the Systems Bioengineering Modeling and Experimentation course 

taught at the University of Virginia was very successful based upon assessment of student 

learning throughout the semester, assessment of student confidence levels relative to the rest of 

the senior class (who did not take the elective), and anonymous student course evaluations.  

However, at this point it is difficult to draw strong comparative conclusions about the efficacy of 

the course because of the small sample size of the students who enrolled in the course (N=9) and 

who participated in the surveys (N=6 and N=8).  It is also possible that students think that they 

possess more aptitude than they actually do, particularly before taking the course (thus leading to 

potentially inflated scores among those students in the August survey).  A refined survey 

instrument that tests actual knowledge may better elucidate any real effect the course has relative 

to the rest of the students. 
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In future iterations of the course, we will add lectures interspersed throughout the semester to 

better link the three modules conceptually and to help the students see how a true multi-scale 

biological model can be generated.  There are also numerous tweaks to the experimental 

protocols to optimize both the quality of the results and the efficiency of the labs that we will 

institute in the next offering of the course.  For example, in Module 3, we neglected to include 

enough time points measuring the vascular growth in the CAM assay to properly validate the 

agent-based model.  We will also have to optimize some of the drug doses and time points in 

Modules 1 and 2 to see a greater response and achieve cleaner results. 

 

In conclusion, we developed the Systems Bioengineering Modeling and Experimentation Course 

at U.Va. to teach our undergraduates about this rapidly emerging field within biomedical 

engineering.  Industry is also becoming increasingly aware of the importance of systems biology 

as a field, and especially the process of using experimental data to iteratively build a model that 

has predictive value.  Numerous biotechnology and pharmaceutical companies appreciate that 

most biological systems—and the interaction of therapeutics with those systems—can only be 

understood within the context of complex systems.
31

  However, we also recognize that BME is a 

broad field, and many students have interests in areas such as medical imaging, biomechanics, 

instrumentation, and tissue engineering.  Thus, we have decided not to make this course a core 

part of the curriculum yet, particularly given the advanced level of the elective.  But many 

aspects of the course are portable, such that if other programs wanted to adopt portions of the 

course (with or without the laboratory component) to their curriculum (whether in core courses 

or in electives), they would be able to do so.  For instance, a molecular bioengineering course 

could use the Module 1 material in modeling signaling protein translocation into the nucleus in 

conjunction with relevant lecture material, or a smaller school with limited resources could adopt 

the computational aspects of one or more of the modules while using publicly available data, 

thereby obviating the need for the associated laboratories.  The course described in this paper 

thus provides a starting point for using a module-based approach to teach the key concepts and 

approaches in systems biology. 
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