
AC 2009-2188: A CREATIVELY ENGAGING INTRODUCTORY COURSE IN
COMPUTER SCIENCE THAT GENTLY MOTIVATES EXPLORATION OF
ADVANCED MATHEMATICAL CONCEPTS

Eric Freudenthal, University of Texas, El Paso
Eric Freudenthal is an Assistant Professor of computer science at the Universtity of Texas at El
Paso.

Mary Kay Roy, University of Texas, El Paso
Mary "Kay" Roy is on the adjunct faculty of computer science at the Universtity of Texas at El
Paso.

Alexandria Ogrey, University of Texas, El Paso
Alexandria N. Ogrey is a B.S. candidate studying computer science at the Universtity of Texas at
El Paso.

Ann Gates, University of Texas, El Paso
Ann Q. Gates is a Professor of computer science at the University of Texas at El Paso.

© American Society for Engineering Education, 2009

P
age 14.22.1

A Creatively Engaging Introductory Course in Computer Science that

Gently Motivates Exploration of Mathematical Concepts

Abstract

We describe reforms to a highly engaging algorithm-centric introductory course in media

programming offered to pre-engineering students at the University of Texas at El Paso, an urban

Hispanic-serving institution (HSI) as part of a required entering students program.

In order to become eligible to attend the introductory programming course that begins the

computer science degree plan at UTEP (“CS-1”), a large fraction of incoming freshmen must

attend several semesters of preparatory “pre calculus” math courses. Most of these students will

have limited if any prior exposure to programming or engineering. The initial implementation of

our course was intended solely to provide an engaging first experience with programming, and

followed Mark Guzdial’s “Media Computation” curriculum. Dr. Guzdial’s curriculum has

successfully engaged Liberal Arts students in programming through the creation of aesthetically

motivated multimedia projects. Attendees in pre-engineering and pre-professional programs

reported lack of interest in these aesthetically- focused projects and requested more practical

projects and assignments. The course has been modified to focus more on the design of

algorithms in a manner that exposes foundational mathematical concepts.

Introduction

This paper describes the retargeting of an engaging media programming course developed by

Mark Guzdial at Georgia Tech and was originally intended for liberal arts students.
1
 Our course,

informally titled "Multimedia Exposed," primarily targets freshmen intending to study

engineering or computer science. Although the objectives and approaches of the reformed

course are quite different from Guzdial's, the evolution was not expected or intended, but instead

was the result of a series of incremental reforms motivated by our observations of student

interests and needs.

The first variant of this course was offered in Fall 2007. It was taught by Computer Science

faculty in consultation with staff of the University's career guidance center. Early results have

been very promising. Many students intending to study enginerering and computation find the

course both enjoyable and engaging, and appear to be highly motivated towards continuing in

this direction. We are conducting a longitudinal study to determine the effectiveness of this

course in improving student success in CS and Engineering.

In order to engage a large number of freshmen, the course is incorporated into a required first

semester "University Studies" program designed to teach skills necessary for academic success

and to provide career guidance. Students attending this course are provided an accessible early

exposure to simple dynamic systems simulations in a manner that includes both programming

and mathematical modeling. Students’ reactions to these experiences support the course’s

career guidance components - which provide opportunities for students to adjust their choice of

major early in their academic careers.
 P

age 14.22.2

In the original design of the course, Guzdial stated that he expected the students taking the

course would become competent in modifying code, but not u\unlikely to become professional

programmers.
1
 Guzdial selected media computation because intended students of this course

were more likely to use computers for communication than for computation.
2
 Since one of the

benefits the students would receive from learning programming from a programming course is

the development of problem-solving skills, we feel that our adaptations contribute to this

objective.

Much of Guzdial's course initially examines the manipulation of entire raster images. By relying

on opaque pixel iterators that enumerate all pixels without regard to location, Guzdial’s course

delays exposure to Cartesian coordinates and avoids the need for nested row-column iteration.

As a result, enumeration and pixel-access mechanisms taught in early labs were ill-suited for

projects that generate numerically sequential values.

While teaching Guzdial's multimedia programming course in its original form for two semesters,

we observed that even non-engineering students were already comfortable with Cartesian

coordinates. We modified the graphical library to include a new "Raster" class which provides

only random-access row-column accessor functions that conveniently represent coordinates and

Red-Green-Blue pixel contents as Python tuples.

This permitted the course to begin with an immediate exposure to nested loops, a topic that is

difficult for many students to master in CS-1. In contrast, when introduced to nested looping in

this 'natural' context, students expressed no confusion and they were self-motivated to

experiment with adjustments to ranges and strides. Furthermore, students were not intimidated

by these explicit uses of tuples to represent RGB triples and more quickly designed and

constructed novel algorithms using these natural and compact abstractions than the cohorts of

students who first learned the object-oriented interface. This early and solid understanding of

Cartesian pixel accessors enabled us to refocus the course from media manipulation to the use of

a raster to plot and investigate mathematical functions and dynamic systems.

Table 1: Alternate implementations of a function examined in the first day's lecture that

converts dark pixels to green..

Initial AWT interface using
opaque "distance" function

Initial AWT interface with explicit
range comparison

Modified Raster interface with
explicit range comparison

def changeKimL():
 file = r"\F:\KimPossible.jpg"
 i = makePicture(file)
 green= makeColor(0, 255, 0)
 black = makeColor(0, 0, 0
)
 for px in i.getPixels():
 c = px.getColor()
 if distance(c, black) < 50.0:
 px.setColor (green)
 show (image)

def changeKimM():
 file = r"\F:\KimPossible.jpg"
 i = makePicture(file)
 green= makeColor(0, 255, 0)

 for px in i.getPixels():
 r = px.getRed()
 g = px.getGreen()
 b = px.getBlue()
 if(r<40 and g<40 and b<40):
 px.setColor (green)
 show (image)

 def changeKimR():
 file = r"\F:\KimPossible.jpg"
 p = Raster(file)
 green = (0, 255, 0)

 cols,rows = r.widthHeight()
 for x in range (cols):
 for y in range (rows):
 r,g,b = p.getRGB((x,y))
 if r<40 and g<40 and b<40:
 p.setRGB((x,y), green)
 p.repaint()

P
age 14.22.3

Table 1 includes three versions of essentially the same function used in an initial programming

exercise for all of our courses and approximates an early exercise in Guzdial's media

programming text. These functions read a JPEG image of a familiar cartoon character who is

wearing a black shirt and shoes, and then dramatically recolor all of the black pixels to green.

Object oriented programming techniques are important. It is also important that programming

techniques in early courses should be chosen to minimize cognitive load while maximizing

pedagogical value. We observe that object oriented (OO) features that have been widely adopted

by the software development community to manage software comprehensibility can instead

obscure the simple algorithm being implemented and impede student creativity. The functions in

the left and middle columns reference the heavily OO “AWT” toolkit employed throughout

Guzdial's book. Like the early examples in Guzdial's book, ChangeKimL (in the left column) is

compact and expressive only because it uses AWT's opaque pixel iterator getPixels() and

Guzdial's opaque color-distance function distance(), which computes Euclidean distance
*
. We

also observe that understanding of this function requires that students learn the relationship

between the numeric representation of colors as R-G-B triples, and a Color object’s interfaces,

which are constructed using a function called makeColor().

Mechanisms should be exposed only when they teach generalizable techniques or deepen

understanding. The distance and color-object interfaces referenced by ChangeKimL draw

student attention away from algorithm design but provide few, if any, pedagogical benefits. In

contrast, students had little trouble understanding the code and spontaneously experimented with

alternate decision criteria when working with ChangeKimM (in the middle column), a variant

also written using AWT that exposes students to tuples, as well as Boolean and relational

operators.

We subsequently developed an alternate Raster interface which is used by ChangeKimR (in the

right column). Raster provides only random column-row addressing, and exploits Python’s

incorporation of tuples as a first class data type. Raster uses tuples to encode location (column,

row) and color (red, green, blue). As a result, ChangeKimR’s doubly nested iteration is

explicit, and colors are painlessly packed and unpacked. Like the other two functions, first-day

students experience little trouble developing an intuitive understanding of ChangeKimR, and are

highly motivated and able to modify it to recolor other objects within the cartoon image.

 Furthermore, the techniques used for iteration and pixel access in ChangeKimR are directly

transferrable to future projects in mathematics and dynamic systems.

As illustrated by ChangeKimR, programs written using the new Raster interface are compact and

expressive. Our Raster class's constructor’s parameters can specify either the name of a JPEG

image file or the dimensions and initial color of a blank canvas. Pixels are always represented as

3-tuples and referenced using 2-tuples of column-row coordinates. This helps to reinforce the

mental model that students form of the Raster image as a whole, and facilitates iterative

processing of pixels through explicit numerical iteration. In order to facilitate projects that plot

*
 The distance function (Euclidean distance) is examined in a later chapter of Guzdial's text. However, few

students attending the course are engaged by an examination of the mathematical analysis of this metric in this

context.

P
age 14.22.4

mathematical functions, raster’s origin is located in the lower-left corner, and thus column-row

addressing directly mimics x-y coordinates within the first quadrant of a Cartesian plane.

This use of random pixel accessors and numeric iteration is suitable both for problems that

traverse all pixels and those that instead traverse a numerical series. This enables knowledge

learned in early labs to be more easily transferred to subsequent projects. As a result, students

can focus on conceptual exploration rather than linguistic constructs. In contrast, students

attending the original course were confused when one method of iteration was used in early labs,

and then another was introduced to solve slightly different problems at a later point. As

illustrated above, our avoidance of opaque functions seems to elicit curiosity from students, and

we find that even non-STEM students are well prepared and motivated to investigate "distance"

metrics as a lab exercise which provides well-motivated practice with arithmetic, relational, and

Boolean operators.

Focus on Algorithm Design

The primary mode of instruction in Guzdial's course is the presentation of detailed "recipes"

provided within the text that are translated into functions. As illustrated in Table 1, the object-

oriented graphical library provided to students is sufficiently complex that this translation is a

non-trivial task. Furthermore, we find that the resulting code expansion can obscure the

underlying algorithm. Since the modification and design of trivial algorithms that manipulate

easily- understood systems appears to be well within all of our students' capabilities, and because

algorithm design is one of Computer Science's primary forms of intrinsic creativity, we prefer to

focus student attention on the design of algorithms rather than the application of linguistic

constructs. From a teaching perspective, it seems preferable for students to (1) select a specific

goal derived from a general range of possibilities, (2) design the algorithm, and (3) implement

the steps for themselves.

A very wide range of students is engaged by Multimedia Exposed's short and dramatic

imperative programs. Groups of students ranging in ages from middle-school to college who

never previously programmed have been able to understand and modify simple imperative

programs that directly examine and selectively manipulate the values stored within every pixel,

even when exposure is limited to a single 45 minute session. While these students are surely not

prepared to independently construct new programs, they are able to understand the goal of the

program; the steps of the algorithm; the general flow of the lines of code; and the logical

statements forming the criteria for changing a pixel's color. Students become deeply engaged in

manipulating this concrete application of relational operators, logical operators, and color values

themselves to select and apply color changes, and few require any assistance from the instructor.

We suspect that the ability to directly observe the results of program execution enables students

to quickly detect and correct misconceptions.

Relationship to Traditional CS-1 Courses and Extension to Mathematics

Multimedia Exposed’s early use of standard programming constructs has made the integration of

image manipulation with more traditional programming assignments in this course very smooth.

Students learn many of the same basic programming skills as in a conventional first-semester

P
age 14.22.5

programming course, including the use of variables, assignment statements, function definitions,

and iterative and control-flow structures. These concepts are applied consistently from project to

project so that the programming skills are not tied to multimedia processing alone but are instead

universally applicable.

Students gain understandings of advanced concepts surprisingly quickly. For example, during

the third week of class, all students in a non-engineering section of Multimedia Exposed

provided correct answers to a quiz focused on the manipulation of nested for- loop's range and

stride.

As reported previously
0,2

 many students enrolled in technical and STEM programs lose interest

in media manipulation solely motivated by aesthetic creatively and desire projects relevant to

their anticipated careers.

Many of the students in STEM programs attending our course are freshmen, who are likely to

spend their first three semesters in preparatory math courses prior to attending their first major's

course. For these groups, our course focus shifts to an exploration of mathematics and the

modeling of physical systems.

Extension to Mathematics and Physics

In response to student demands for increased technical depth and relevance to engineering

curriculum, and to expand the set of graphical tools available for students to understand and

apply, we added several new modules that examined algorithms that generate lines and curves.

These projects were later expanded to include the examination of dynamic systems that model

familiar physical phenomena. The approaches described below were motivated by our

instructor’s observations that non-engineering students had a strong aversion to explicit

mathematical inquiry: Students were engaged by such projects only when (1) the project’s

connection to “mathematics” was initially obscured and (2) the distance between well-

understood concepts and the project was narrow.

Numerous studies, including one conducted on students attending Multimedia Exposed and other

pre-major’s introductory courses at similar Hispanic-serving institutions
5
, indicate that students

entering college have low confidence in their ability to understand higher math and physics.

This low confidence can intimidate students choosing math-intensive academic programs such as

Computer Science and other STEM disciplines, and may reduce students’ ability to sustain

motivation in such programs.

Fortunately, an entry-level programming course is well-positioned to increase student confidence

and competence in basic mathematics through the construction and examination of simple

programs. Such programs provide concrete examples of familiar concepts which can be

explored first through direct modeling that illuminates and motivates mathematical abstraction.

For example, Table 2 presents a sequence of assignments that incrementally examine (1) the

drawing of lines, (2) the introduction of slope and (3) acceleration, and finally (4) bounce and

exponential decay. Similar to the approach presented in Kalman’s Elementary Mathematical

Models,
4
 integration of linear summation to quadratics is initially presented through more

familiar summation approaches.

P
age 14.22.6

Table 2. Successive projects drawing lines, curves (parabolae), and ballistic simulation.
def horiz():
 numCols, numRows = 100,100

 img = Raster((numCols, numRows))

 row = 90

 slope = 0
 for col in range(numCols):
 row += slope

 img.setRGB((col, row), green)

def down():

 numCols, numRows = 100,100
 img = Raster((numCols, numRows))

 row = 90
 slope = -2
 for col in range(numCols):

 img.setRGB((col, row), green)
 row += slope

def parabola():

 numCols, numRows = 100,100

 img = Raster((numCols, numRows))

 row = 90 # initial position and slope

 slope = 0

 rate = -.1 # acceleration

 for col in range(numCols):

 img.setRGB((col, row), green)

 row += slope

 slope += rate

def bounce():

 numCols, numRows = 100,100

 img = Raster((numCols, numRows))

 row = 90 # initial pos, slope, and accel

 slope = 0

 rate = -.2

 decay = .8 # decay at each bounce

 for col in range(numCols):

 img.setRGB((col, row), green)

 if (row <= 0 and slope < 0):

 slope *= -decay

 row += slope

 slope += rate

Mathematical analyses of slope, y-intercept, linear sums, and quadratic closed-form

representations occur only after students are familiar with the graphical subsystem, and have

examined and described each dynamic property. Even then, analysis begins with discussion of

observations and analysis that confirms and reinforces student understandings. Finally, each of

these now familiar dynamic systems are reduced to closed form, first using geometric, and then

algebraic representations

Thus, the simple programs that simulate familiar dynamic phenomena effectively become

accessible and concrete “manipulatives” that limit the amount of abstraction exposed at each

P
age 14.22.7

stage of exploration. The final example provides an intuitively understandable concrete

explanation of the familiar phenomenon of ballistic motion which is elusive to many students

completing a course of college-level physics.
3

Variants of Multimedia Exposed

The course has been presented to groups that vary widely according to major, academic

experience, and mathematical background. Some sections are composed primarily of cohorts

from pre-engineering and pre-science, while others are composed of mixed, primarily non-

technical majors. One version of the course focuses only on programming, while another

integrates programming into a freshman survival-skills course that reviews study, presentation,

and analysis skills. Furthermore, a “one-shot” teaser has been presented multiple times to

incoming freshmen and middle-schoolers attending a summer camp hosted by our university.

Pre-engineers

Pre-engineers and pre-science students are generally segregated into math-centric sections of

Multimedia Exposed. In these sections, some students enjoy their multimedia manipulations but

quickly demonstrate eagerness to move beyond basic projects. One bored student asked "is that

all there is?" after constructing a complex function that produced multiple color changes in an

image. As illustrated above, we are able to move quickly through a progression of mathematical

functions from lines to parabolas that model familiar physical phenomena.

Non-engineers

While pre-engineering students tended to show greater interest in graphing of mathematical

functions as the level of math increased and the functions became more complex (Ex: linear to

quadratic), it was harder to engage non-majors. Non-majors gamely experimented with isolated

linear functions to create colorful grid patterns with offsets. However, when faced with the

prospect of a progression to quadratics (by name), the attitude expressed by one kinesiology

major "No more math, please!" This same group of students who initially objected to quadratics

was enthusiastically engaged by a subsequent project examining the same concepts framed as a

kinesiology problem. That same student explained concepts to others in the class unfamiliar with

the technical aspects of the problem. We now actively map problems into contexts relevant to

students attending the course and defer math terminology until it is useful for explaining intuitive

understandings students already possess.

P
age 14.22.8

One-shot “Teasers” for Middle-Schoolers

A range of middle- and high-school students (including at least one Girl Scout troop)

participating in community outreach programs sponsored by UTEP have attended our forty-five

minute to two- hour short courses intended to motivate interest in programming through

examination and extension of the algorithm presented in Table 1. It is interesting that, while

students generally participate enthusiastically, their teachers will frequently decline to work on

their own project. Those who have been coaxed to participate indicated surprise about their high

level of enjoyment.

Lessons learned

We observe that all students who have attended Multimedia Exposed were already familiar and

comfortable with the 2-d Cartesian coordinate system used to model the Raster object. However,

it was interesting to observe that previous graphing experience in four quadrants did not assist

pre-engineering majors in determining how to translate or scale parabolic functions "out of the

corner." They realized that the lower left-hand corner marked the origin, but it took a second day

to get them to think through the problem and make the connection between other terms in the

function and resulting orientation of the parabola on the image. Once they did, parabolae of all

colors, sizes, and orientations appeared on various colored backgrounds, so diverse, in fact, that

one student named their resulting composite image "ParabolasGoneWild." From this experience,

we realized that we needed to explicitly draw the Raster image within the larger Cartesian

framework more often, and provide some intermediate practice on the effect of additional

function terms on the resulting graph.

Future Work

We plan to integrate simulations that model and plot the dynamic behavior of physical systems

such as ballistics and oscillating springs over time. Model code has been written that does not

reference any trigonometric functions. Furthermore, the programs are remarkably short –

typically the loops contain four or less simple arithmetic and assignment statements. Informal

demonstrations to students with no experience with calculus indicate that these systems may be

readily accessible to students attending Multimedia Exposed. It is interesting to see that upper-

division computer science students also are fascinated by these simple programs that provide

concrete examples of familiar theory. They indicate that these programming models are more

concrete and intuitively understandable than the calculus-based physics course they attended

years earlier. We are establishing collaboration with physics and math educators to investigate

how explicitly programmed summation-based simulations might augment courses that introduce

integration and its application.

Evaluation of the course is ongoing. In coordination with the Computing Alliance of Hispanic

Serving Institutions, we are investigating the effect of Multimedia Exposed on academic success

in subsequent STEM coursework and changes to student attitudes toward math and physics.

As described above, there are indications that students attending this media- and increasingly

math-centric course are developing strong programming skills. Competenc of students

P
age 14.22.9

completing this course will be compared with that of students completing the traditional first

semester major’s course.

We are considering the creation of a CartesianRaster class whose origin is centered in order to

facilitate exploration of functions with negative values. One potential approach is to use this

project to motivate and introduce object-oriented programming through the definition of this

derived class.

Finally, we are adapting and refining this approach as a vehicle for teaching algorithms. One of

the main ideas is to present algorithms as general methods that students can use and adapt to

solve related problems of interest. A key step is the stripping out complex layers of background

information that are not needed to understand the underlying principles. We find that by

teaching algorithmic schemas to solve “purified” problems, students can follow the reasoning far

more easily and can sometimes develop the computational idea themselves. Then the layered

elaborations can be introduced step-by-step to extend the basic computational method to solve

the more complex problems that are studied in traditional textbooks.
6

Conclusions

We observe benefits to limiting the imposition of strongly object oriented constructs to those

which simplify the range of projects that students build. Furthermore, there is evidence that

simple student programming exercises that explicitly implement and evaluate mathematical

systems through summation appear to be more intuitively understandable to many students than

presentations that solely reference integration.

Acknowledgement

This report is based on work supported by the National Science Foundation through grants CNS-

0540592 and DUE-0717877. Any opinions, findings, and conclusions or recommendations

expressed in the paper are those of the authors and do not necessarily reflect the views of the

NSF.

References

0
Eric Freudenthal, Mary K. Roy, Alexandria Ogrey, Sherri Terrell, Olga Kosheleva, Pilar Gonzalez, and Ann Gates,

Work in Progress - Initial Evaluation of an Introductory Course in Programming that Assists in Career

Choices, Proc Frontiers in Education, 2008.

1
Design Process for a Non-Majors Computing Course, Proc.36th ACM Technical Symposium on Computer Science

Education (SIGCSE), ACM, 2005.
2
Mark Guzdial, Narrating Data Structures: The Role of Context in CS2, The Journal of Educational Resources in

Computing (JERIC), ACM, 2008.
3
David Hestenes, Malcolm Wells, and Gregg Swackhamer, Force Concept Inventory, The Physics Teacher, Vol. 30,

March 1992, 141-158.
4
Dan Kalman, Elementary Mathematical Models, Mathematical Association of America (Press), 1997.

5
Heather Thiry, Lecia Barker, and Sarah Hug, CAHSI Evaluation Progress Report, The Computing Alliance for

Hispanic Serving Institutions, 2009, http://cahsi.cs.utep.edu/Portals/0/2008InterimEvaluationReport.pdf.
6
Alan Siegel and Eric Freudenthal, Experiments in teaching an engaging and demystifying introduction to

algorithms: Installment 1: Huffman Codes, UTEP Computer Science Technical Report UTEP-CS-09-12

P
age 14.22.10

