
AC 2009-2237: SYNERGIES OF TEACHING ASSEMBLY AND C IN A JUNIOR
MICROPROCESSORS COURSE

Arlen Planting, Boise State University

Sin Ming Loo, Boise State University

© American Society for Engineering Education, 2009

P
age 14.1112.1

1

Synergies of Teaching Assembly and C

in a Junior Microprocessors Course

Abstract

As part of an effort to update its core computer engineering courses, Boise State University has

developed course material to effectively transition students in a Microprocessors course through

both the assembly and C languages. It was found that teaching both languages in the same

course provides benefits not found in teaching them separately. The material has been developed

to promote both a thorough understanding of microprocessors, and greater productivity that

allows students to do more intriguing and relevant projects. The course presents just enough C,

at a very low level and in a specific topic order, to enable the students to better comprehend

microprocessors and how they can control a broad range of devices. The updated

Microprocessors course is currently in its fourth iteration.

Introduction

The C programming language is increasingly being utilized in development of embedded

systems and ultra-small microcontrollers that were previously the domain of assembly language-

only programming. Teaching assembly only in a Microprocessors course does not provide

students the skills they are likely to need in the workplace [1], and the time required to produce

code for each new device in assembly results in the course becoming more software-oriented

rather than focusing on the hardware and devices. However, using the C language only is not

considered practical for teaching microprocessors since assembly is the language of the

processor and thus is necessary for understanding how the microprocessor works. Simply

rewriting device code in C without applying software engineering principles [2] yields poor

quality code that is difficult to maintain and cannot be readily targeted to other platforms.

However, by selectively applying some of the object oriented principles [3] that can be found in

the Linux kernel and device drivers, the C programming language can provide an effective

solution for programming many of these small devices. Principles of layering, data

encapsulation and abstraction can help make the code more readable, maintainable and portable.

It should be noted that the intent is not to write C code as translated assembly, which is hard to

read, hard to maintain and offers little benefit over assembly code. By effectively utilizing the

facilities of the C language, many assembly language routines can be reduced to very small and

elegant solutions. For students lacking the insight into how to write assembly programs but are

proficient at C or Java, compiling a program in C is a method of seeing how a program can be

written in C. Writing code at the lowest level to access devices is generally very tedious in either

language, but by providing appropriate abstractions this code can be isolated in layers to allow

the higher level more freedom to solve problems with less consideration for hardware details.

This also provides for easier retargeting to other platforms.

Consequently, Boise State University (BSU) decided to update its junior level Microprocessors

course by incorporating the C programming language in addition to assembly. It was not

practical - or necessary - to teach the entire C programming language in order to significantly

enhance software skills beyond what is achieved with the assembly language alone. Following a

P
age 14.1112.2

2

heuristic approach, BSU developed course material to transition students in a Microprocessors

course through both assembly and C, and found that overlapping the teaching of both languages

in the same course is more beneficial teaching them separately. The course presents the C

language at a very low level, with selected topics presented in a specific order to enhance

understanding of microprocessors and their ability to control a wide range of devices.

Boise State University has an ABET-accredited electrical engineering program with computer

engineering as an option. Both electrical engineering and computer science students take the

Microprocessors course after they have taken Introduction to Computer Science (basic software

skills and object oriented programming with Java) and Digital Systems (digital logic). The ECE

332/332L Microprocessors course at BSU covers microprocessor architecture, software

development tools, and hardware interfacing with emphasis on 16- and 32-bit microprocessor

systems. Machine and assembly language programming, instruction set, addressing modes,

programming techniques, memory systems, I/O interfacing, and interrupt handling are among the

topics studied with practical applications in data acquisition, control, and interfacing.

An experimental course addressing the usage of the C programming language for embedded

applications was undertaken in Spring 2007 to investigate methods of incorporating the C

language in the electrical engineering curriculum. The experimental course approach included

an accelerated presentation of the C language directed to specific course objectives, and the use

of object oriented principles with low level languages. The teaching philosophy demonstrated by

this model was subsequently used to update the Microprocessors course in Fall 2007. Further

refinements have been made in two subsequent offerings of the course in 2008, and in the current

semester.

Microprocessors Course Approach

In the ECE 332/332L Microprocessors course at BSU, basic microprocessor concepts are first

explored with assembly language then revisited and expanded upon using C. A modern

development platform consisting of an FPGA and a soft core processor with a MIPS-like design

were selected to implement the teaching of the C programming language in addition to assembly

in the updated Microprocessors course. The use of FPGAs in place of traditional instructional

platforms has been an important part of the process of updating the computer engineering

curriculum at BSU [4,5]. For the Microprocessors course, the FPGA is used to instantiate a soft-

core processor. The reconfigurability of the FPGA with soft-core processor allows the instructor

to quickly create different configurations for various labs and projects.

The Altera DE2 was selected as the FPGA development board for updating the Microprocessors

course, with the Nios II processor used for software development on the DE2. The Nios II

microprocessor system contains a processor (with a control unit and general purpose registers)

and attached external memory. The Nios II processor has thirty-two 32-bit general purpose

registers, twenty-two of which are available for general use (the remaining eleven registers are

reserved for a specific purpose).

One of the desirable features of the Altera DE2 with Nios II processor is that it has a RISC

architecture closely approximating MIPS. A RISC microprocessor provides several educational

P
age 14.1112.3

3

advantages. The fixed length instructions for RISC platforms are simpler to learn than the

variable-length instructions for CISC platforms. Since many of the instructions available with

the CISC are not applicable to the basic microprocessors course, the significantly smaller set of

instructions provided for a RISC platform was considered more appropriate for teaching basic

microprocessor concepts. The students will also use RISC in the senior level Computer

Architecture course.

The instruction set for the Nios II platform used for the Microprocessors course is comprised of

just 84 instructions. To further simplify the learning process these instructions were categorized

by task, which effectively reduces the number of core instructions that the students need to learn

to about 20. The remaining instructions represent variations on these core instructions. The

instructions were divided into four basic groups that address the majority of all applications:

instructions that move data from memory to registers (MR), operate on register values placing

results back into a register (RR), move data from registers to memory (RM), and change the flow

(FC) of the instruction sequence.

Once the students have been familiarized with registers, cache, memory, and instructions to

move and manipulate data in assembly language, the course is transitioned to the C language.

Concepts from C such as data structures, unions and bit fields provide capabilities beyond what

is available in assembly. The classic text for C programmers “The C Programming Language”

(K&R) [6] was adapted for use as a reference for this portion of the course. Supplementary

material was necessary since much of the focus of K&R is on algorithms, and instruction on

algorithms in this course is minimal because the focus is on devices. Thus the concepts

presented in K&R were approached in the course from a data viewpoint, e.g. pointers were

treated as another data type. Data types in C were compared to equivalent data types in

assembly.

The synergies from teaching the C language in conjunction with assembly proceed from the use

of C at a low level. In the continuum of programming languages, the C language can span the

gap between a high level language such as Java and the lowest level (assembly) language. This

versatility can confound the students if they do not grasp that the Microprocessors course utilizes

the C language at a low level, just a layer above assembly. Since all students taking

Microprocessors have previously had Java, many of them initially believe there is nothing new to

be learned with C. Those who have also learned the C language often have difficulty learning C

concepts at the lowest level. The challenge for these students is to realize that knowledge of the

C language as a high level language does not necessarily translate to a working knowledge of C

at a low level.

Bit manipulation is one concept that benefits from the introduction of the C language. The

manipulation of bits is generally the realm of hardware devices. The process of bit twiddling

using techniques such as bit shifting and masking has traditionally been done in assembly

language, and moving that code to C does not yield any benefits. However, this process is

reduced to fairly straightforward code in C with the combined usage of bit structures and unions.

The introduction of the constructs of pointers, structures and unions thus can reduce the tedium

of dealing with the signals of connected hardware devices. Since bit structures can be platform-

dependent, their usage is best restricted to lower platform-dependent layers.

P
age 14.1112.4

4

Teaching C in addition to assembly provides advantages that would not be provided by simply

replacing assembly language with C. In either language, working at the device level requires

becoming familiar with the processor and the address space. The concept of pointers must also

be learned in either case (though pointers in assembly languages may not be recognized as such

in the same context as C). Pointers are the most difficult concept to learn in C. Teaching the

concepts of pointers in assembly first, observing the instructions involved, and then translating

that knowledge to implementation in C simplifies understanding the concept of pointers in C.

Once pointers have been learned in assembly, the only differences that need to be learned in C

are syntactic. Pointers are the primary reason that C can replace assembly language for device

level code.

Other synergies between the assembly and C languages are observed in relation to understanding

registers, processor architecture, and processor address space. In all processors, data

manipulation is accomplished at the register level. That fact is completely apparent in assembly,

whereas the C language abstracts away the concept of registers and makes it appear that

everything is done in memory. Therefore, the introduction of the register keyword in C is

difficult to understand until one becomes familiar with the concept of registers in assembly.

Doing low (device) level microprocessor development in C is difficult to do without a good

understanding of the processor architecture and the processor address space (including the

program, data, stack and devices). It can be argued that understanding the assembler for a

processor before trying to do work with C is a definite advantage, which is why overlapping the

instruction of both assembly and C languages provides synergism.

Integration of Assembly and C

Teaching both assembly and C in the same course can be effectively accomplished only by

integrating selected topics into a unified whole directed toward achieving the course goals.

Choices must be made as to which topics to present and in what context and order, and the

presentation needs to be coordinated to provide a seamless transition between the two languages.

In order to accomplish this, assembly is presented from a different perspective than is

traditionally used, with emphasis on how to interface assembly and C. Assembly is taught using

an object oriented approach focused more on utilizing the instructions than on the details of the

instructions. The concept of abstraction is introduced in assembly, and the C language is

subsequently presented as a means to further abstract assembly. The subset of the C language

used in the course was selected for manipulating bits in order to control devices found in small

microprocessor systems.

In addition to basic microprocessor concepts typically covered in assembly (e.g. memory usage,

addressing, strings, etc.), several topics more traditionally addressed in C are included in the

assembly portion of the course. Modularization, usage of functions, and the abstraction process

are foundational concepts that are introduced early in the course. Though one may question the

need for these advanced concepts in assembly, learning them at an early stage provides the

framework for development of well-designed code that is appropriately layered with meaningful

abstractions and appropriate usage of data encapsulation.

P
age 14.1112.5

5

When the Microprocessors course was first updated, pointers were introduced after basics of the

C programming language had been presented. As the course has evolved, teaching of the

concept of pointers has been moved progressively earlier in the course until now it is introduced

early in the assembly portion. The word ‘pointers’ is purposely used when discussing addresses

to familiarize the students with the underlying mechanism for how a pointer is utilized by

addressing. Early and repeated exposure to pointers reinforces understanding of the concept so

the students are more comfortable with pointers when they appear in the C language portion of

the course.

On the other hand, introduction of several topics was considered more suitable for the C

language. Though structures can be taught using assembly, they are much easier to understand

and utilize in C. For that reason, structures, unions and bit fields are not introduced until the C

portion of the course. The C compiler can be considered as the ultimate macro processor,

providing abstractions beyond what can be easily done by macros and functions in assembly.

The compiler will generate the code for bit fields in assembly, eliminating the need for the

students to hand write the code. The culmination of these topics involves combining bit fields

and unions to easily manipulate the signals of externally attached devices.

Supplementary Examples

Some of the primary course materials developed for the Microprocessors course involve

examples to help students understand the workings of the processor in the transition from

assembly to C. The Nios II incorporates a compiler that internally translates C code to assembly,

in either an un-optimized or optimized format. The un-optimized assembler code generated is

most useful for debugging purposes, while the optimized code provides an example of efficient

coding. During the learning process, the optimization feature should be turned off since the

effects on the code when working with optimizing compilers can easily confuse novices. If a

programmer needs to produce highly optimized code, starting from scratch in assembly can be

daunting; it is better to start with C, look at the optimized assembly and start from there.

Several examples of classic cases provided to the students are included in this section, including

1) sum of integer array, 2) call by value methodology, 3) bit manipulation, and 4) pointers. The

examples illustrate that compiled C, if optimized, can be virtually the same as efficient code

written in assembly. Understanding assembly and seeing the results of the compiler optimization

of C code can ultimately help the students develop better solutions that result in a significant

reduction in code.

Sum of Integer Array

To facilitate the comparison between C and assembly, we start with a relatively simple algorithm

that can be easily coded in both languages. The problem chosen is to write a function that is

passed an array of integers and a count of numbers passed, and returns the sum of those integers.

Figure 1 shows a high-level routine written in C that will call the sum function. We then write

the code to solve this problem separately in C and assembly, and compare the code produced by

the C compiler to the code written in assembly. The results illustrate how the C compiler deals

with registers and memory. To get a better feel for how the C compiler abstracts the concept of

P
age 14.1112.6

6

registers, the generated machine code is first done without optimization followed by observing

the code generated when optimizations are enabled.

#include <stdio.h>

#include "sum.h"

int main()

{

 int Values[] = {3,2,7,9,4};

 int nbr;

 nbr = sum(sizeof(Values)/sizeof(Values[0]), Values);

 printf("Sum: %d\n", nbr);

 return 0;

}

Figure 1. Calling sum routine in C

Figure 2 shows efficient assembly language code to solve the problem. Note that this solution

allocates no memory; the only memory it accesses is the array of integers passed. Since the

memory access is minimal, the assembly code is highly efficient. Figure 3 displays the resulting

code from the view of the debugger which is disassembling the machine code.

sum.s

.text.text.text.text

Register usage:

r2: sum (return value)
r3: temp value
r4: passed count
r5: passed pointer to values

.global.global.global.global sum
sum:sum:sum:sum:

 mov r2,r0 # initialize sum

 for:for:for:for:

 beq r4,r0,for_end
 ldw r3,0(r5) # get next value
 add r2,r2,r3 # add to sum
 addi r5,r5,4 # position to next value
 subi r4,r4,1 # decrement count
 br for

 for_end:for_end:for_end:for_end:

 ret # return with sum in r2

.data.data.data.data

.end

Figure 2. Implementation of sum routine in assembly

P
age 14.1112.7

7

0x00020270 <sum>: mov r2,zero

0x00020274 <for>: beq r4,zero,0x2028c <for_end>
0x00020278 <for+4>: ldw r3,0(r5)
0x0002027c <for+8>: add r2,r2,r3
0x00020280 <for+12>: addi r5,r5,4
0x00020284 <for+16>: addi r4,r4,-1
0x00020288 <for+20>: br 0x20274 <for>

0x0002028c <for_end>: ret

Figure 3. Disassembled memory snapshot for sum.s

Code is then written in C (Figure 4) to solve the same problem. (Note the usage of register hints

to the compiler.) Figure 5 displays the resulting un-optimized assembly code produced by the

debugger’s disassembler. Because the un-optimized compilation is an abstraction of variables,

the variable values are associated with memory rather than registers. This results in a large

number of data movements between memory and registers. When optimization is enabled

(Figure 6), virtually all extraneous movement of data between registers and memory is

eliminated. Optimization reduces the code by approximately 65% in this case.

#include#include#include#include "sum.h"

intintintint sum(intintintint count, intintintint *values)
{
 registerregisterregisterregister intintintint i;
 registerregisterregisterregister intintintint sum = 0;

 fffforororor (i=0; i<count; i++)
 sum+=values[i];

 returnreturnreturnreturn sum;
}

Figure 4. Implementation of sum routine in C

{
0x00020270 <sum>: addi sp,sp,-20
0x00020274 <sum+4>: stw fp,16(sp)
0x00020278 <sum+8>: mov fp,sp
0x0002027c <sum+12>: stw r4,0(fp)
0x00020280 <sum+16>: stw r5,4(fp)
 register int i;
 register int sum = 0;
0x00020284 <sum+20>: stw zero,12(fp)

 for (i=0; i<count; i++)
0x00020288 <sum+24>: stw zero,8(fp)
0x0002028c <sum+28>: ldw r2,0(fp)
0x00020290 <sum+32>: ldw r3,8(fp)
0x00020294 <sum+36>: bge r3,r2,0x202c8 <sum+88>
0x00020298 <sum+40>: ldw r2,8(fp)

0x0002029c <sum+44>: muli r3,r2,4
0x000202a0 <sum+48>: ldw r2,4(fp)
0x000202a4 <sum+52>: add r2,r3,r2
0x000202a8 <sum+56>: ldw r2,0(r2)
0x000202ac <sum+60>: ldw r3,12(fp)
0x000202b0 <sum+64>: add r3,r3,r2
0x000202b4 <sum+68>: stw r3,12(fp)

0x000202b8 <sum+72>: ldw r2,8(fp)
0x000202bc <sum+76>: addi r2,r2,1
0x000202c0 <sum+80>: stw r2,8(fp)
0x000202c4 <sum+84>: br 0x2028c <sum+28>
 sum+=values[i];

 return sum;
0x000202c8 <sum+88>: ldw r2,12(fp)
}
0x000202cc <sum+92>: ldw fp,16(sp)
0x000202d0 <sum+96>: addi sp,sp,20
0x000202d4 <sum+100>: ret

Figure 5. Compiled sum.c (un-optimized)

P
age 14.1112.8

8

{
 register int i;
 register int sum = 0;
0x00020278 <sum>: mov r3,zero

 for (i=0; i<count; i++)

0x0002027c <sum+4>: bge zero,r4,0x20294 <sum+28>
0x00020280 <sum+8>: ldw r2,0(r5)
0x00020284 <sum+12>: addi r4,r4,-1
0x00020288 <sum+16>: addi r5,r5,4

 sum+=values[i];

0x0002028c <sum+20>: add r3,r3,r2
0x00020290 <sum+24>: bne r4,zero,0x20280 <sum+8>

 return sum;
}

0x00020294 <sum+28>: mov r2,r3
0x00020298 <sum+32>: ret

Figure 6. Compiled sum.c (optimized)

Register hints and optimizations provide students first-hand experience in how coding techniques

in C affect the underlying generation of assembly/machine code. By comparing optimized and

un-optimized code, the various abstractions of variables become apparent. In the un-optimized

case, variables are always backed by memory whereas optimization typically removes the

backing of memory and leaves much of the solution to be accomplished in registers. For

students accustomed to a high level language such as Java, observing the assembly code

generated by an efficient compiler can be an effective method of transitioning from a highly

abstracted environment and refocusing on handling details at a low level where few abstractions

are provided.

Call By Value Methodology

Another issue that is difficult for students to understand is how parameters are passed to

functions. Seeing and understanding the resulting assembly code underlying C can shed some

light on how C sets up parameters to be sent to a function. Since C is a call by value language,

the question might arise as to how to pass literal values vs. variables to the same function. In the

case where literals are passed, the literal value is moved directly into the calling register. In the

case of a call that references a variable, the content of the variable is copied into the calling

register. The called routine (Figure 7) does not see the two calls differently. All of the work to

accommodate the different call types is done by the compiler at compile time.

unsigned int add_c(unsigned int x, unsigned char y)

{

 return x + y;

}

Figure 7. C language add_c.c routine

Figure 8 shows code produced for the add_c function (un-optimized). Note the different

handling of the variables x (type int) and y (type char) when processed by machine instructions

(<add_c+24> and <add_c+20>, respectively). The optimized code is shown in Figure 9.

P
age 14.1112.9

9

{

0x00020214 <add_c>: addi sp,sp,-12

0x00020218 <add_c+4>: stw fp,8(sp)

0x0002021c <add_c+8>: mov fp,sp

0x00020220 <add_c+12>: stw r4,0(fp)

0x00020224 <add_c+16>: stb r5,4(fp)

 return x + y;

0x00020228 <add_c+20>: ldbu r2,4(fp)

0x0002022c <add_c+24>: ldw r3,0(fp)

0x00020230 <add_c+28>: add r2,r2,r3

}

0x00020234 <add_c+32>: ldw fp,8(sp)

0x00020238 <add_c+36>: addi sp,sp,12

0x0002023c <add_c+40>: ret

Figure 8. add_c function (un-optimized)

{

 return x + y;

0x00020214 <add_c>: andi r2,r5,255

}

0x00020218 <add_c+4>: add r2,r2,r4

0x0002021c <add_c+8>: ret

Figure 9. add_c function (optimized)

Comparing the two different methods of calling this function (Figures 10 and 11) clearly

illustrates the call by value feature of the C programming language. When the called function is

called, it expects that the passed values are contained in the calling registers.

 c = add_c(12, 34);

0x0002025c <main+28>: movi r4,12

0x00020260 <main+32>: movi r5,34

0x00020264 <main+36>: call 0x20214 <add_c>

0x00020268 <main+40>: stw r2,0(fp)

Figure 10. Calling add_c function with literal values

 c = add_c(a, b);

0x00020298 <test+24>: ldbu r5,4(fp)

0x0002029c <test+28>: ldw r4,0(fp)

0x000202a0 <test+32>: call 0x20214 <add_c>

0x000202a4 <test+36>: stw r2,8(fp)

Figure 11. Calling add_c function with variable arguments

Bit Manipulation

The ability to manipulate data at the bit level (for controlling and pulling data off devices) for

low level coding is very important when dealing with hardware devices. Setting a bit can turn an

LED (or any other electronic device) on or off; getting a bit can determine whether a switch is on

or off. Being able to manipulate individual bits within a hardware register (bit fields) is a useful

P
age 14.1112.10

10

concept. Assembly is used to understand the low level process of manipulating bits within a

word.

To illustrate working with assembly and C for bit manipulations, we create functions that are

passed a 32-bit word and a bit value that is to be set in bit 5 of the 32 bits. (Note that this code

has been simplified by eliminating all movement of data to/from hardware devices; its only

purpose is to illustrate bit manipulation techniques.) Figure 12 represents a C function that

accomplishes this task utilizing traditional C function bit manipulation techniques; the resulting

generated assembly code is shown in Figure 13. Though the traditional C function bit

manipulation takes just one line of code in C, learning how to develop this single line is not a

straightforward process; it is more of an art that is acquired over time.

For this type of function, the students often find it easier to develop assembly code. Figures 14

and 15 represent the same solution written in assembly language.

Yet another approach is to use the facility in the C programming language known as bit fields.

This technique is demonstrated in Figures 16 and 17. On the surface this solution appears to be

more complex than traditional C bit manipulation techniques, but it is more easily reproducible

and thus more usable. (It is interesting to note that all three solutions generate the same machine

code.)

unsigned int set_bit5(unsigned int word, unsigned int bit)

{

 return (word & ~(1<<5)) | ((bit & 0x1) << 5);

}

Figure 12. set_bit5.c (C language) source code

{
 return (word & ~(1<<5)) | ((bit & 0x1) << 5);
0x00020288 <set_bit5>: andi r6,r5,1
0x0002028c <set_bit5+4>: slli r2,r6,5
0x00020290 <set_bit5+8>: movi r3,-33
0x00020294 <set_bit5+12>: and r4,r4,r3
}
0x00020298 <set_bit5+16>: or r2,r4,r2
0x0002029c <set_bit5+20>: ret

Figure 13. set_bit5.c memory image

.text

.global set_bit5

set_bit5:

 andi r6,r5,1 # isolate passed bit

 slli r2,r6,5 # move to ACTIVE position

 movi r3,~(1<<5) # movi r5,~(0x20) ==> -33

 and r4,r4,r3 # zero ACTIVE position

 or r2,r4,r2 # merge new bit value

 ret

.end

Figure 14. set_bit5.s (Assembly language) source code

P
age 14.1112.11

11

0x00020214 <set_bit5>: andi r6,r5,1
0x00020218 <set_bit5+4>: slli r2,r6,5
0x0002021c <set_bit5+8>: movi r3,-33
0x00020220 <set_bit5+12>: and r4,r4,r3
0x00020224 <set_bit5+16>: or r2,r4,r2
0x00020228 <set_bit5+20>: ret

Figure 15. set_bit5.s memory image

unsigned int set_bit5(unsigned int word, unsigned int bit)

{

 union {

 unsigned int word;

 struct {

 unsigned int fill_1 : 5;

 unsigned int bit5 : 1;

 unsigned int fill_2 : 26;

 } bits;

 } data;

 data.word = word;

 data.bits.bit5 = bit;

 return data.word;

}

Figure 16. set_bit5_fields.c (C language) source code

{
 union {
 unsigned int word;
 struct {
 unsigned int fill_1 : 5;
 unsigned int bit5 : 1;
 unsigned int fill_2 : 26;
 } bits;
 } data;

 data.word = word;

 data.bits.bit5 = bit;
0x00020288 <set_bit5>: andi r6,r5,1
0x0002028c <set_bit5+4>: slli r2,r6,5
0x00020290 <set_bit5+8>: movi r3,-33
0x00020294 <set_bit5+12>: and r4,r4,r3

 return data.word;
}
0x00020298 <set_bit5+16>: or r2,r4,r2
0x0002029c <set_bit5+20>: ret

Figure 17. set_bit5_fields.c memory image

Pointers

Because pointers are difficult to learn in C, we start out by teaching the concept of pointers in

assembly (register containing address of item to be accessed). By the time the students get to C,

the only difference is syntax.

P
age 14.1112.12

12

The classic strcpy routine presented in K&R (pg 105) to copy a string from one location to

another is shown in Figure 18. By observing the optimized assembly code (Figure 19), it is clear

what the function is doing at the machine level to accomplish the task. This clearly shows that

registers r5 and r4 are pointers to the string source and target in their usage of the ldbu and stb

assembly language instructions. Also the increment operations on both are performed after first

accessing the data pointed to by those pointer variables. Sometimes students are mystified by

precedence of the operators in this example. Does the increment operator increment the value

pointed at or the pointer itself? The resulting assembly code makes it perfectly clear what is

happening.

/* strcpy: copy t to s; pointer version 2 */

void strcpy(char *s, char *t)

{

 while ((*s++ = *t++) != '\0')

 ;

}

Figure 18. strcpy routine introduced in k&r

{

 while ((*s++ = *t++) != '\0')

0x0002027c <strcpy>: ldbu r2,0(r5)

0x00020280 <strcpy+4>: addi r5,r5,1

0x00020284 <strcpy+8>: stb r2,0(r4)

0x00020288 <strcpy+12>: addi r4,r4,1

0x0002028c <strcpy+16>: bne r2,zero,0x2027c <strcpy>

0x00020290 <strcpy+20>: ret

Figure 19. Resulting assembly language results of strcpy

Summary

The updated core Microprocessors course at BSU is in the process of being taught for the fourth

time, and continues to evolve. For example, the coverage of C programming language concepts

has been abridged to target the most central microprocessor concepts. The order of presentation

of topics has been revised to facilitate the transition from assembly language to C, by presenting

pointers, structures, unions and bit structures at the beginning of the C language portion of the

course rather than toward the end. The concept of addresses in assembly is tied to the concept of

pointers in C. Supplementary examples have been prepared for both the assembly and C

portions of the course to narrow the scope of and further clarify the concepts the students are

expected to assimilate.

The assembly language is taught first in the course to provide a foundational understanding of

processors and platforms that will accelerate the process of teaching C. Assembly language is

the best way to understand and learn the foundations of microprocessors, since it is the language

of the processor. The C language is added to provide a higher level view of the same processor

concepts, further reinforcing the knowledge provided by learning assembly. Assembly helps to

interpret what is going on at the processor level when the students are working with C, and C

P
age 14.1112.13

13

increases productivity for solutions to more complex problems. Rather than the students

concentrating on learning the idiosyncrasies of the language specific to a particular platform, the

focus of the course is on problem-solving.

The success of the course approach is gauged by student feedback, evaluation of student

comprehension of concepts, and observations of student capabilities in ensuing courses.

Apparent weaknesses are addressed by adjustments as the semester is progressing, and by further

improvements in the next semester. Student feedback was especially helpful for refining the

scope and methodology when the updated course was initially taught. During the course, the

level of student comprehension of various microprocessor concepts is continually evaluated by

means of homework, quizzes and exams.

The final exam is considered one measure of overall student understanding. Most of the students

in Fall 2008 appeared to understand basic assembly, with 94% of the students scoring 70% or

more on a final exam question requiring assembly language encoding. The questions on the final

exam addressing students’ comprehension of assembly/C relationships (half of the problems) had

mixed results. The percentage of students scoring 70% or more on each of those questions was

as follows:

Question Concept(s) % Scoring ≥ 70%
Write ASM function to be called

by C (provided)

Passing parameters between languages

How C and assembly utilize memory
62.5%

Write C code to call ASM

function (provided)

Passing parameters between languages

How C and assembly utilize memory
75%

Correlate assembly instructions

with resulting memory image of

machine instructions

Address relocation

75%

Utilize assembly instructions and

memory/register information to

trace execution path of code

Interaction of code and data, where data

resides in registers and memory 94%

Determine memory image after

executing sequence of C

instructions

How C utilizes memory with relation to

basic data types and structures 50%

Based on these results, adjustments have been made to the current course offering. Additional

homework and examples have been developed to facilitate student learning of the key concepts,

and improvements have been noted in the current semester.

Observation of student capabilities in ensuing courses has provided the most encouraging

measure of success. Several students who had previously learned the C language indicated that

they finally understood pointers for the first time after taking this course. With each refinement

of the course, students have been able to master the concepts with fewer reiterations. We also

found that students who have been through the updated course can be productive more quickly

than those who haven’t taken the course or who have just recently transferred into our program.

The improved skills of students who have taken the updated Microprocessors course are making

a difference in subsequent courses such as Embedded Systems. In the Embedded Systems

course, students are able to do more complex projects earlier in the semester than was previously

possible due in part to the expanded language skills from the updated Microprocessors course.

P
age 14.1112.14

14

 An ultra-light menu system for embedded applications that was originally assigned in Week 7 of

the experimental course previously mentioned is now a beginning project in the Embedded

Systems and Portable Computing course. Students who have had the updated Microprocessors

course are able to develop this small efficient menu without further instruction. Students are

utilizing techniques learned in the updated Microprocessors course to produce well-designed

code that is easier to maintain and is also portable to other platforms.

Conclusion

A combination of assembly and C language was used to teach the basics of microprocessor

programming in the updated Microprocessors course at BSU, using a modern development

environment (a soft processor instantiated on an FPGA with classic RISC architecture).

Overlapping the teaching of both languages had a synergistic effect on educating the students

about microprocessors. In addition to learning how microprocessors work and control a broad

range of devices, the students learned problem-solving skills and practiced these skills with

realistic laboratory assignments and projects. Materials developed to teach the updated

Microprocessors course are continuing to be expanded and refined.

References

[1] B.E. Dunne, A.J. Blausch, and A. Sterian, “The Case for Computer Programming

Instructions for ALL Engineering Disciplines,” Proceedings of the 2005 ASEE Annual

Conference,Portland, OR June 12-15, 2005.

[2] G. Skelton, “Introducing Software Engineering to Computer Engineering Students,”

Proceedings of the 2006 Southeast Conference, 0-4244-0169-0/062006 IEEE.

[3] M. Curreri, “Object-Oriented C: Creating Foundation Classes Part 1,” Available:

http://www.embedded.com, Embedded Systems Design, 9/10/03.

[4] S. M. Loo, “On the Use of a Soft Processor Core in Computer Engineering Education,”

Proceedings of 2006 ASEE Annual Conference, Chicago, IL, June 18-21, 2006.

[5] S.M. Loo and C.A. Planting, “Use of Discrete and Soft Processors in Introductory

Microprocessors and Embedded Systems Curriculum,” Proceedings of the 2008 Workshop on

Embedded Systems Education (WESE), Atlanta, GA, October 23-24, 2008.

[6] B.W. Kernighan and D.M. Ritchie, 1988. The C Programming Language, 2
nd

 ed. Upper

Saddle River, NJ: Prentice Hall.

P
age 14.1112.15

