
AC 2009-2507: CPAS: ON THE STRUCTURE AND USABILITY OF A
COURSE-PLANNING AND AUDIT SYSTEM

Tal Rusak, Cornell University
Tal Rusak is an undergraduate student at the Department of Computer Science at Cornell
University, graduating May 2009. Tal's interests lie in understanding the structure of networks
and novel computing systems as well as in the theory and practice of engineering and computer
science education. Tal was recognized as the 2009 Computing Research Association (CRA)
Outstanding Undergraduate Award Winner. Tal's research in modeling the temporal variations of
low-power wireless network links has been published internationally and was recognized by the
Best Paper Award at ACM MSWiM'08 and two first prizes at ACM Student Research
Competitions. In addition, Tal has served as a teaching assistant in varied courses at Cornell,
including theoretical computer science and a novel course that introduces the mathematical basis
of networks to a diverse body of students. 

Christopher Barnes, Cornell University
Chris Barnes is an undergraduate student in the Department of Information Science at Cornell
University. He is expecting to complete his BA in the program in May 2009. Chris is primarily
interested in the architecture and interface design of web-based applications. 

G. Scott Russ, Cornell University
Scott Russ is an undergraduate student in the Department of Information Science at Cornell
University. He is expecting to complete his BS in Computer Science in May 2010. Scott is
primarily interested in the interface design and product strategy of web-based applications. 

Vincent Kam, Cornell University
Vincent Kam is an undergraduate student in the College of Engineering at Cornell University. He
is expecting to complete his BS in Computer Science in May 2009. Vincent is one of the founders
of the Course Planning and Auditing System, having conceived the idea with two of his friends
during his freshman year. 

David Gries, Cornell University
David Gries is a professor of computer science and currently associate dean of Computer Science.
He received his PhD from the Technische Hocschule Munchen in 1966 and then served on the CS
faculty at Stanford for three years. He has been at Cornell since 1969, except for two years at
UGA, and served as the Department Chair in the 1980s. Gries is known for his work in compiler
construction and programming methodology and his textbooks in compiler writing, programming,
and discrete mathematics. He has received several national/international awards for his
contributions to education and is a Cornell Weiss Presidential Fellow, awarded for his
contributions to undergraduate education. 

© American Society for Engineering Education, 2009 

P
age 14.376.1



CPAS: On the Structure and Usability of a Course

Planning and Audit System

Abstract

We present CPAS, a system that allows students and their advisors to track progress in an

academic program. Our design is able to perform a semi-automatic audit of degree requirements;

the only human-approved components are ones that require discretion.

The underlying mechanism is based on robust propositional logic with extensions that make the

entry, interpretation, and audit of complex degree requirements straightforward. The system also

includes support for human-approved requirements due to the natural discretion that must be

applied when evaluating certain requirements, such as multiple courses with a “cohesive theme”.

Additionally, we demonstrate an implementation, which focuses on providing a clear,

straightforward interface for all users while maintaining the appropriate level of security and

privacy. To the best of our knowledge, CPAS is the first degree audit system that was designed

with a web-based, graphical interface from the start. CPAS indicates in simple terms how a

student is progressing in the degree and allows students to explore other academic programs

offered at their university.

We also address several key software engineering research questions, such as the storage of

complex major requirements and the design of lucid user interfaces for a variety of users.

Considering the number of academic institutions and the variety of academic programs offered,

quantifying and collecting correct expressions for major requirements in our system is a nontrivial

problem. We explore the possibility of using a collaborative social network, with appropriate

security and quality controls, for this purpose. We show how CPAS was used to enter the major

requirements of complete academic programs and present a visualization functionality that

illustrates such programs.

CPAS is a fundamental contribution to education research since it provides a way for academic

programs to be mapped out in a generalized ontology. Thus, it allows students to maximally

utilize the academic resources of their university, and it allows faculty members and departments

to plan and represent programs and to advise students effectively.

1 Introduction

Traditionally, course selection and degree audits at Cornell and many other higher education

institutions have been performed with paper and pencil tools or individually designed

spreadsheets used by both students and departments. A fully automated solution is impossible,

since some requirements need approval of the advisor or involve vague guidelines only, for

example, that two courses must be “in related disciplines”. Our Course Planning and Audit

System (CPAS) integrates automatically auditable requirements with those that must be manually

approved in a straightforward way using a simple, well-designed web-based interface. CPAS

allows degree requirements to be easily specified by department staff in a very general way. It was

used in a prototype system to define the computer science degree requirements in the Engineering

and Arts & Sciences colleges at Cornell and several majors at other universities.

P
age 14.376.2



CPAS was structured using well-established methodologies from the theory and practice of

software engineering and computer science. We use simple logical foundations for the back-end

of the system, where the major components of a degree auditing system—courses, students, and

requirement descriptions—are stored. This leads to a simple and robust representation of the

major requirements and users of the system. At the front-end, we draw from principles of web

design and user interface research in order to provide an easy-to-use, generalized system to

support a wide range of disciplines and users of all experience levels and roles.

The rest of the paper is organized as follows. Sec. 2 provides background, definitions, and

presents related work. Sec. 3 defines user roles in the system and describes the security model for

CPAS. Sec. 4 gives an overview of the logic that underlies our system and its extensible

object-oriented implementation. Sec. 5 discusses user interface considerations and provides an

overview of the usability of the system. Sec. 6 provides an overview of the applications of CPAS

to studying academic programs using the proposed formal representation. Sec. 7 presents possible

architectures for the system when it is deployed. Finally, Sec. 8 presents discussion and

conclusions.

2 Background and Related Work

A bachelor’s degree is granted when a student completes the required coursework assigned by the

faculty. There are two fundamentally different types of requirements in higher education:

automatically auditable requirements and manually auditable requirements. Examples of the first

type are a single course taken by all students (e.g. CS 101) and a requirement expressed by

simple propositional logic (e.g. (CS 282 ∧ CS 283) ∨ CS 284). As we show in Sec. 4, some

automatically auditable requirements cannot be expressed in such simple terms.

Manually auditable requirements, by their nature, require human intervention to be approved.

Typical examples include “Advisor approved electives” or loosely defined requirements such as

“two courses in a related field”. In such cases, deciding whether a student has fulfilled the

requirement is up to interpretation and approval. Under certain circumstances, there may be

requirements that transcend these categories, for example, that a student must either take CS 132

or take another course approved by the advisor.

Several automated degree audit systems exist, and some are widely used. For example, the

PeopleSoft Academic Advisement Module features a complex database-table entry for academic

program requirements.8 Other similar systems include the u.achieve system (formerly DARS,

Degree Audit Reporting System) from Miami University2;9 and the Degree Navigator Plus from

Decision Academic Plus.1

CPAS contributes a simple grounding in logic that allows major requirements to be represented as

trees, a basic concept for data representation that has its roots in computer science. In addition, we

show an easy-to-use, web-based user interface for students, staff, and faculty advisors. We also

ensure that information is clearly and concisely represented and suggest a tree-based visualization

scheme that can represent major requirements generally. We defer a more detailed comparison of

a key aspect of the user interface with the design of previous systems to Sec. 5.2 and a discussion

of our visualization scheme to Sec. 6. P
age 14.376.3



Permissions for Various Users of CPAS
Users Role

Student Record/Update courses, track their own progress in the degree

Faculty Advisor View the progress of their advisees, approve certain types of manually auditable requirements

Staff Add/Edit/Delete courses, Add/Edit/Delete major requirements within their department, view

progress of students in their department, Create/Edit faculty advisor and student accounts

Supervisor (All staff user permissions) + Create/Edit accounts, Add/Edit/Delete majors

Table 1: CPAS user account roles and associated permissions.

3 CPAS User Roles

CPAS user roles are based on the principle of least privilege—each user gets “the least amount of

privilege necessary to complete the job”.3;10 There are two user types: student and administrator.

The administrative category is further divided into three types, with increasing permissions:

faculty advisor, staff, and supervisor. Table 1 gives an overview of the activities that each user can

perform.

4 Course/Requirements Logic

4.1 Coursework Logic

The underlying logic for requirements starts from appropriately categorizing all the courses.

Courses are naturally organized by department and assigned a number, and CPAS allows each

course to be labeled in this way. However, courses can be related in ways that transcend traditional

departments. At Cornell, for example, a number of courses from disciplines as varied as computer

science and industrial and labor relations are considered “information science” courses. Similarly,

courses from a variety of departments fall under the “Cultural Analysis” group that can be used to

help satisfy liberal studies requirements for Cornell Engineering students. Such groupings are not

unique to Cornell. Many universities have started interdisciplinary programs, such as information

science or symbolic systems programs, which relate courses in a variety of areas.

Official and unofficial course groupings are often used when writing requirements for academic

programs. To account for this observation, CPAS allows the creation of an arbitrary number of

such groups, called categories. Staff can assign any number of courses to each category, or the

information can be parsed out of appropriately-formatted documents. CPAS records courses taken

by students, keeps track of grades, credit hours, and semester and year taken, and it is extensible

to support student information systems.

4.2 Requirements Definitions

Next, we consider the maintenance and tracking of requirements. A strength of CPAS is the

simplicity, consistency, and generality with which it maintains academic requirements. CPAS uses

three types of requirements to represent the complex nature of advanced academic programs:

individual courses, option groups, and free-text requirements.

Individual courses are specific courses, represented by the department name and course number,

offered by the university. Individual courses can also have attributes such as whether they can be

taken pass/fail, a minimum grade required, and the minimum number of credits necessary.

P
age 14.376.4



Option groups allow more flexibility than the individual course requirement. Each option group

has one set of top-level rules and an arbitrary number of other rules. The top-level rule specifies

the number of courses to be taken and the overall number of credits that need to be achieved

(e.g. 6 courses totaling at least 18 credits). Course-level rules specify that a certain number of

those taken to satisfy the group must be above, at, or below a certain level, as specified by the

university’s numbering scheme (e.g. 3 courses must be numbered at least 2000). Department rules

specify that a certain number of courses must or must not be in a certain department (e.g. courses

may not be in the Computer Science Department). Category rules specify that certain courses

must or must not be in specific categories (e.g. 6 courses must be liberal studies courses), and

category option rules specify that courses representing one or more of the categories must be

taken (e.g. a course must be taken from at least 3 of the following 6 categories). Finally, specific

course rules allow or disallow the use of certain courses to fulfill the requirement (e.g. EDUC

2400 is allowed or is not allowed). Figure 4(d) shows the interface used to define an Option

Group. The Option Group was inspired by the Liberal Studies requirement for Cornell Engineers.

In a nutshell, the liberal studies requirement consists of at least 6 courses for a total of at least 18

credits, two courses of which must be at the 2000 level or higher, and at least one course in three

of six categories (e.g. language, performance, history, and culture). As shown below, this

construct was useful in several other places in designing the requirements for a number of other

majors that we represented using the system.

While full academic programs can be represented with the aforementioned logical expressions, we

found that this presents two challenges. The first is the extreme complexity of the resulting

expression, which would be difficult to input correctly. Secondly, requirements change over time

and are usually associated with graduation class years. In many cases, this change is evolutionary,

i.e. most parts of the program remain the same but certain parts are updated.

We found that it is better to separate the overall expression into individual requirement units, all of

which must be fulfilled. A requirement unit can be loosely defined as a high level requirement

covering a certain theme, e.g. “Liberal studies”, “Scientific Computing”, “Operating Systems”,

and “Calculus sequence”. The division of the degree requirements into these units is up to the user

of the system but is most likely quite obvious from the way requirements are specified in the

university catalog. Since requirements are likely to evolve in terms of these units, CPAS

associates certain class years with each unit and dynamically builds the expression corresponding

to units belonging to each class year. Since variations are often minor, CPAS makes it easy to

clone requirement units when starting to construct new units for subsequent class years.

At many institutions, students must first affiliate with an academic field and then complete the full

academic program for their chosen discipline. Thus, CPAS maintains two requirements

expressions for each class year, one representing progress toward affiliation and the other toward

graduation. In addition, some institutions have program requirements that change the curriculum

but do not require a unique course to satisfy. For example, a student may be required to take a

course in probability theory, regardless of whether it is a free elective, a core elective, a liberal

studies course, or an engineering distribution course. We call such requirements structural

requirements. CPAS distinguishes each of these requirements with a type label: affiliation-only,

graduate-only, affiliation and graduation, and structural (non-course) requirement.

P
age 14.376.5



P
age 14.376.6



P
age 14.376.7



P
age 14.376.8



P
age 14.376.9



5.1 Requirements Entry Interface

Figure 3, illustrates the initial interface displayed to staff members when creating a new

requirement unit. Note the presence of requirement class year(s), requirement type (affiliation

only, affiliation and graduation, or graduation only), and the ability to add free text notes to any

requirements. In initial versions of this interface, users were confused about where to start

building the requirement, so we added a clear starting point as shown in Figure 3.

Figure 4 shows the interface used by staff members utilizing the system to enter requirements into

each requirements unit. Figure 4(a) is an individual course that is used for a requirement. As

shown, it is possible to optionally enter a requisite grade or number of credit hours required for

each course. If these options are not specified, then CPAS defaults to a global setting that can be

specified per university policy. In Figure 4(b), we see several courses separated by Boolean

operators. In Figure 4(c), we demonstrate the use of groups, which simulate parenthetical

elements in the logical expressions. Figure 4(d) demonstrates the capabilities of the option group,

and Figure 4(e) shows the entry interface for a manually auditable requirement.

5.2 Requirements Tracking

The display of progress made toward fulfilling the degree requirements is of central importance to

a degree audit system. Previous systems have tried varied approaches. The DARS system (now

u.achieve), first developed in the 1980’s, originally used text based output in a specific format to

convey this information and was gradually improved to include color codes and then graphical

output. The current version displays a number of graphs as well as a list of courses. Different

information is displayed as the mouse pointer hovers over each. This version does not completely

omit the original text-based formatting in the list of requirements.2;9 Original versions of Degree

Navigator illustrated different degree requirements as graphical “islands” on a map.1;9

Unlike the previous approaches, CPAS indicates in simple terms how a student is progressing in

the degree. Each requirement is represented by one or more boxes, illustrating the courses or

paths that can be taken to fulfill the requirement. Many courses can be applied automatically. In

other cases, however, students can choose how to apply their coursework toward a requirement.

For example, a course might be an advisor approved elective. In such cases, CPAS allows students

to choose how each course applies.

The CPAS interface for authorized users to track student progress is presented in Figure 5.

Requirements that are not fulfilled are red and have an empty check box next to their box.

Requirements to which courses have been applied are either approved immediately (if

automatically auditable) or sent to appropriate staff for approval if they are manually auditable.

Courses that are in the process of being approved are yellow and a question mark is displayed in

the check box. Finally, once any course is approved it becomes green and the check box is filled

in. Note that the check boxes along with the written comments have an obvious meaning even

without referring to the color, increasing accessibility to colorblind people.5

6 Visualization and Representation of Academic Programs

In addition to the clear role of the CPAS as a tool for students, faculty members, and department

staff persons, we can also use the ontology provided by the logical representation in CPAS to

understand academic programs. We have demonstrated the mechanics of CPAS and the logic

P
age 14.376.10



Computer Science
rev 2008

Advisor Approved Electives

CS Core

CS Electives

CS Project

Engineering Distribution

External Specialization

Intro to CS

Major Approved Elective

Mathematics

Probability

Science

Technical Electives

Vector

Manual-Audit
Requirement

AND

CS 2800

CS 3110

group OR

CS 3410

CS 3420

CS 4410

CS 4820

Option Group

OR

CS 4321

CS 4411

CS 4450

CS 4621

CS 4701

CS 5150

CS 5410

CS 5450

AND

CS 2110

Option Group

Option GroupManual-Audit
Requirement

AND
group

OR

CS 1113

CS 1110

CS 1112

CS 1114

group

OR CS 1130

CS 1132

Manual-Audit
Requirement

AND

MATH 1910

MATH 1920

MATH 2940
Structural Requirement:

Option Group

AND PHYS 1112

PHYS 2213

CHEM 2090

group OR

PHYS 2214

CHEM 2080

Option Group

Structural Requirement:
Option Group

Figure 6: A tree-based representation of the new requirements in Computer Science at Cornell, introduced in

Dec. 2008.

P
age 14.376.11



Computer Science
rev 2007

Core

Depth

Engineering
Fundamentals

Mathematics

Science

Senior Project

Technology
in Society

AND

CS 107

CS 110

CS 161

AND

CS 124

CS 145

Option Group

Option Group

AND

group OR

CS 106b

CS 106x

ENGRG 40

Option Group

AND

MATH 41

MATH 42

CS 103

CS 109

Option Group
group

OR

group
AND

PHYS 41

PHYS 43

group AND

PHYS 21

PHYS 23

group

AND PHYS 61

PHYS 63

OR

CS 191

CS 191W

CS 194

CS 294

CS 294W

Option Group

Figure 7: A tree-based representation of the requirements for the new Computer Science major (Information Track) at

Stanford, introduced in 2007.

P
age 14.376.12



Aerospace Engineering

Aeronautical

Engineering

Free
Electives

Mathematics

Science

AND

MANE 2060

MANE 4060

MANE 4070

MANE 4050

MANE 4030

MANE 4900

MANE 4920

MANE 4080

MANE 4800

MANE 4910

group

OR

MANE 4090

MANE 4100

MANE 4200

group

OR

MANE 4230

MANE 4850

MANE 4860

AND

ENGR 1100

ENGR 1200

ENGR 1300

ENGR 2530

ENGR 2050

ENGR 2090

ENGR 2250

ENGR 2600

ENGR 4010

Option Group

AND

MATH 1010

MATH 1020

MATH 2525

MATH 4800

AND

CHEM 1100

PHYS 1100

PHYS 1200

CSCI 1190

Figure 8: A tree-based representation of the requirements for the Aerospace Engineering major at the Rensselaer

Polytechnic Institute.

P
age 14.376.13



Economics

Core

Departmental
Electives

Entrance
Requirements

AND

group
OR

ECO 300

ECO 310

group OR

ECO 301

ECO 311

group

OR ECO 302

ECO 312

Option Group

AND

ECO 100

ECO 101

group OR
ECO 202

ORF 245
MATH 103

Figure 9: A tree-based representation of the requirements for the Economics major at Princeton.

behind our system; now we demonstrate its broad applicability to a wide range of university and

curricula. We also consider the system’s possible usage schemes to represent a wide variety of

programs. Then, we focus on the option group and show how it can be used to express a range of

liberal studies programs in various Engineering programs.

In contrast to the widely varying formats in which universities publish this data, our work

provides a unified scheme by which to represent these requirements. This may lead to a better

understanding of a curriculum for a major.

6.1 Departmental and College Requirements

To show the generality of our system, we show the tree-based structure discussed above in the

representation of actual academic programs from a wide range of universities and majors for

college and department requirements. We defer a discussion of core requirements and liberal

studies requirements for engineering to the next subsection. The trees, constructed using the

GraphViz package,4 aim to show the underlying structure of each major tree. Such trees may be

used in the further analysis of academic programs for discovery of errors, omissions, or similarity

among the academic programs at different universities. We are interested in pursuing this as future

work.

Figure 6 shows the requirements for Computer Science at Cornell University using the tree

format, while Figure 7 shows the Computer Science major at Stanford University. Figure 8 shows

the Aeronautical Engineering major at the Rensselaer Polytechnic Institute. To show an example

of a non-engineering major expressed with our system, we present Princeton’s Economics major

in Figure 9.

P
age 14.376.14



Figure 10: Distribution Requirements for Engineering Majors at Princeton.

We can already come to preliminary conclusions about these majors. The RPI Aerospace

Engineering major and Princeton’s Economics major have highly structured requirements.

Similarly, we can conclude that Cornell’s Computer Science major has a more complex

characteristic, including two structural requirements, than that of Stanford.

6.2 Liberal Studies and Core Curriculum Representations

In this section we show examples of liberal studies requirements that can be represented in our

system’s ontology. We express a wide variety of liberal studies, general education, and other

non-engineering courses that are required by engineering students at a variety of universities.

Figure 10 shows a single option group representing Princeton’s Distribution Requirements,

Figure 11 shows several option groups representing General University Requirements for

Engineering Majors at the New Jersey Institute of Technology. Finally, Figure 12 shows the

Liberal Studies requirement at Cornell University as a single option group. By expressing these

examples, we demonstrate the generality of the option group for the representation of liberal

studies courses for engineering students at a wide variety of universities.

7 Proposed Architectures for CPAS

We considered two overall architectures for CPAS. In the first model, CPAS is fully supported by

a university, which integrates the system into its support infrastructure for students, trains staff

members, and arranges for the entry of many major requirement trees into the system. In the

second model, CPAS is implemented as a social network, where major trees are input and are

maintained by the community. We applied the results of user studies in the analysis of each of

these architectures. P
age 14.376.15



Figure 11: General University Requirements for Engineering Majors at the New Jersey Institute of Technology.

Figure 12: Liberal Studies Requirements for Engineering Majors at Cornell.

P
age 14.376.16



7.1 University-Centric Model

In this model, CPAS would be given or licensed to universities for the purposes of auditing

students’ academic records as an administrative tool. In such cases, departmental staff would be

responsible for entering the requirements of each major and ensuring that the major is correctly

represented. In turn, students would enter their coursework, or such coursework would be

imported automatically from university information systems such as PeopleSoft.

The major technical challenge in this approach is the standardization and interfaces between

complex systems that need to interact, especially if student coursework is entered automatically.

We continue to pursue this model concurrently with the social networking model discussed below.

7.2 Social Network Architecture

In the absence of the support of an institution, we envision CPAS to be used as a tool where a

collaborative community could create major requirements and a large number of users could audit

and plan their academic careers using the major requirements already entered into the system. In

turn, such users would correct errors and make additions to missing or incomplete majors. In

essence, this model applies the principle of Wikipedia to CPAS.

There are several possible issues with this model. First, entering major requirements is difficult

and takes time and effort to do correctly. It is not clear that anyone would have the incentive to

correctly enter major requirements for others’ benefit. It is also not clear how appropriate quality

controls can be put in place to ensure that the majors are all entered correctly. One possible way to

partially remedy these issues is to allow for a system of voting for the quality of representations

and the assignment of trusted editors—either the system’s maintainers or university staff members

who volunteer—to check the representation of the majors. These are areas that we are actively

investigating and that we will cover in future work.

Thus, we believe that this approach may be workable if there is a solid system outlining the

participation guidelines and quality controls. In addition, it would likely be necessary to add a

core of majors or to provide incentives to users to add their majors into the social network.

8 Discussion and Conclusions

CPAS combines a simple, robust logical framework with an elegant, simple user interface and

visualization in order to help students, advisors, and staff track degree requirements. Majors can

be represented concisely and with a common ontology, thereby allowing for a general

visualization of major requirements across many disciplines.

The immediate contributions of CPAS allow students to efficiently track their coursework and to

understand which requirements they have completed, allow advisors to suggest courses to students

and track their students’ progress, and allow departments to visualize their academic program in a

standardized way. Interesting open questions are how such a system can be used to compare major

requirements of various universities and/or to find improvements or errors in existing academic

programs. By presenting a standardized format in which major requirements can be represented,

this work provides a way for these questions to be answered more effectively.

P
age 14.376.17



Acknowledgments

We appreciate the role of Patrick Coffey, Keith Bodin, and Sarah Perkins in the design and

implementation of portions of CPAS. This work was supported by a generous gift from Cisco

Research. Extensive discussions with Sara Lin, William Arms, and Carla Gomes helped in

developing and improving our ideas. We also thank Cornell’s Computer Science Department for

its support of CPAS and especially appreciate the work of Nicole Roy, Gloria Loehle, and Dora

Abdullah.

References

1. Decision Academic Inc. Degree Navigator Plus, http://www.decisionacademic.com/, 2009.

2. redLantern u.achieve, http://www.redlanternu.com/uachieve/, 2009.

3. C. Botev, H. Chao, T. Chao, Y. Cheng, R. Doyle, S. Grankin, J. Guarino, S. Guha, P.-C. Lee, D. Perry, C. Re,

I. Rifkin, T. Yuan, D. Abdullah, K. Carpenter, D. Gries, D. Kozen, A. Myers, D. Schwartz, and

J. Shanmugasundaram. Supporting workflow in a course management system. SIGCSE Bull., 37(1):262–266,

2005.

4. J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz–Open Source Graph Drawing Tools.

Lecture Notes in Computer Science, 2265:483–484, 2002.

5. B. Friedman. Value-sensitive design. Interactions, 3(6):16–23, 1996.

6. J. Gould and C. Lewis. Designing for usability: key principles and what designers think. Communications of the

ACM, 28(3):300–311, 1985.

7. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM Trans. Program. Lang. Syst., 24

(5):491–553, 2002.

8. Oracle Inc. PeopleSoft Enterprise Academic Advisement 9.0 PeopleBook. 2006.

9. D. Peters. A Practical Application of Cognitive Work Analysis: Transforming a Static Report Into an Interactive

Interface. Master’s thesis, Miami University, 2005.

10. J. Saltzer. Protection and the control of information sharing in multics. Communications of the ACM, 17(7):

388–402, 1974.

P
age 14.376.18


