AC 2009-2507: CPAS: ON THE STRUCTURE AND USABILITY OF A
COURSE-PLANNING AND AUDIT SYSTEM

Tal Rusak, Cornell University
Tal Rusak is an undergraduate student at the Department of Computer Science at Cornell
University, graduating May 2009. Tal's interests lie in understanding the structure of networks
and novel computing systems as well as in the theory and practice of engineering and computer
science education. Tal was recognized as the 2009 Computing Research Association (CRA)
Outstanding Undergraduate Award Winner. Tal's research in modeling the temporal variations of
low-power wireless network links has been published internationally and was recognized by the
Best Paper Award at ACM MSWiM'08 and two first prizes at ACM Student Research
Competitions. In addition, Tal has served as a teaching assistant in varied courses at Cornell,
including theoretical computer science and a novel course that introduces the mathematical basis
of networks to a diverse body of students.

Christopher Barnes, Cornell University
Chris Barnes is an undergraduate student in the Department of Information Science at Cornell
University. He is expecting to complete his BA in the program in May 2009. Chris is primarily
interested in the architecture and interface design of web-based applications.

G. Scott Russ, Cornell University
Scott Russ is an undergraduate student in the Department of Information Science at Cornell
University. He is expecting to complete his BS in Computer Science in May 2010. Scott is
primarily interested in the interface design and product strategy of web-based applications.

Vincent Kam, Cornell University
Vincent Kam is an undergraduate student in the College of Engineering at Cornell University. He
1s expecting to complete his BS in Computer Science in May 2009. Vincent is one of the founders

of the Course Planning and Auditing System, having conceived the idea with two of his friends
during his freshman year.

David Gries, Cornell University
David Gries is a professor of computer science and currently associate dean of Computer Science.
He received his PhD from the Technische Hocschule Munchen in 1966 and then served on the CS
faculty at Stanford for three years. He has been at Cornell since 1969, except for two years at
UGA, and served as the Department Chair in the 1980s. Gries is known for his work in compiler
construction and programming methodology and his textbooks in compiler writing, programming,
and discrete mathematics. He has received several national/international awards for his
contributions to education and is a Cornell Weiss Presidential Fellow, awarded for his
contributions to undergraduate education.

© American Society for Engineering Education, 2009

T'9.€ 1T abed

CPAS: On the Structure and Usability of a Course
Planning and Audit System

Abstract

We present CPAS, a system that allows students and their advisors to track progress in an
academic program. Our design is able to perform a semi-automatic audit of degree requirements;
the only human-approved components are ones that require discretion.

The underlying mechanism is based on robust propositional logic with extensions that make the
entry, interpretation, and audit of complex degree requirements straightforward. The system also
includes support for human-approved requirements due to the natural discretion that must be
applied when evaluating certain requirements, such as multiple courses with a “cohesive theme”.

Additionally, we demonstrate an implementation, which focuses on providing a clear,
straightforward interface for all users while maintaining the appropriate level of security and
privacy. To the best of our knowledge, CPAS is the first degree audit system that was designed
with a web-based, graphical interface from the start. CPAS indicates in simple terms how a
student is progressing in the degree and allows students to explore other academic programs
offered at their university.

We also address several key software engineering research questions, such as the storage of
complex major requirements and the design of lucid user interfaces for a variety of users.
Considering the number of academic institutions and the variety of academic programs offered,
quantifying and collecting correct expressions for major requirements in our system is a nontrivial
problem. We explore the possibility of using a collaborative social network, with appropriate
security and quality controls, for this purpose. We show how CPAS was used to enter the major
requirements of complete academic programs and present a visualization functionality that
illustrates such programs.

CPAS is a fundamental contribution to education research since it provides a way for academic
programs to be mapped out in a generalized ontology. Thus, it allows students to maximally
utilize the academic resources of their university, and it allows faculty members and departments
to plan and represent programs and to advise students effectively.

1 Introduction

Traditionally, course selection and degree audits at Cornell and many other higher education
institutions have been performed with paper and pencil tools or individually designed
spreadsheets used by both students and departments. A fully automated solution is impossible,
since some requirements need approval of the advisor or involve vague guidelines only, for
example, that two courses must be “in related disciplines”. Our Course Planning and Audit
System (CPAS) integrates automatically auditable requirements with those that must be manually
approved in a straightforward way using a simple, well-designed web-based interface. CPAS
allows degree requirements to be easily specified by department staff in a very general way. It was
used in a prototype system to define the computer science degree requirements in the Engineering
and Arts & Sciences colleges at Cornell and several majors at other universities.

2’9/ 1T abed

CPAS was structured using well-established methodologies from the theory and practice of
software engineering and computer science. We use simple logical foundations for the back-end
of the system, where the major components of a degree auditing system—courses, students, and
requirement descriptions—are stored. This leads to a simple and robust representation of the
major requirements and users of the system. At the front-end, we draw from principles of web
design and user interface research in order to provide an easy-to-use, generalized system to
support a wide range of disciplines and users of all experience levels and roles.

The rest of the paper is organized as follows. Sec. 2 provides background, definitions, and
presents related work. Sec. 3 defines user roles in the system and describes the security model for
CPAS. Sec. 4 gives an overview of the logic that underlies our system and its extensible
object-oriented implementation. Sec. 5 discusses user interface considerations and provides an
overview of the usability of the system. Sec. 6 provides an overview of the applications of CPAS
to studying academic programs using the proposed formal representation. Sec. 7 presents possible
architectures for the system when it is deployed. Finally, Sec. 8 presents discussion and
conclusions.

2 Background and Related Work

A bachelor’s degree is granted when a student completes the required coursework assigned by the
faculty. There are two fundamentally different types of requirements in higher education:
automatically auditable requirements and manually auditable requirements. Examples of the first
type are a single course taken by all students (e.g. CS 101) and a requirement expressed by
simple propositional logic (e.g. (CS 282 A CS 283) v CS 284). As we show in Sec. 4, some
automatically auditable requirements cannot be expressed in such simple terms.

Manually auditable requirements, by their nature, require human intervention to be approved.
Typical examples include “Advisor approved electives” or loosely defined requirements such as
“two courses in a related field”. In such cases, deciding whether a student has fulfilled the
requirement is up to interpretation and approval. Under certain circumstances, there may be
requirements that transcend these categories, for example, that a student must either take CS 132
or take another course approved by the advisor.

Several automated degree audit systems exist, and some are widely used. For example, the
PeopleSoft Academic Advisement Module features a complex database-table entry for academic
program requirements.® Other similar systems include the u.achieve system (formerly DARS,
Degree Audit Reporting System) from Miami University > and the Degree Navigator Plus from
Decision Academic Plus.!

CPAS contributes a simple grounding in logic that allows major requirements to be represented as
trees, a basic concept for data representation that has its roots in computer science. In addition, we
show an easy-to-use, web-based user interface for students, staff, and faculty advisors. We also
ensure that information is clearly and concisely represented and suggest a tree-based visualization
scheme that can represent major requirements generally. We defer a more detailed comparison of
a key aspect of the user interface with the design of previous systems to Sec. 5.2 and a discussion
of our visualization scheme to Sec. 6.

€'9/¢1T abed

Permissions for Various Users of CPAS
Users Role

Student Record/Update courses, track their own progress in the degree
Faculty Advisor View the progress of their advisees, approve certain types of manually auditable requirements

Staff Add/Edit/Delete courses, Add/Edit/Delete major requirements within their department, view

progress of students in their department, Create/Edit faculty advisor and student accounts
Supervisor (Al staff user permissions) + Create/Edit accounts, Add/Edit/Delete majors

Table 1: CPAS user account roles and associated permissions.

3 CPAS User Roles

CPAS user roles are based on the principle of least privilege—each user gets “the least amount of
privilege necessary to complete the job”.%!? There are two user types: student and administrator.
The administrative category is further divided into three types, with increasing permissions:
faculty advisor, staff, and supervisor. Table 1 gives an overview of the activities that each user can
perform.

4 Course/Requirements Logic
4.1 Coursework Logic

The underlying logic for requirements starts from appropriately categorizing all the courses.
Courses are naturally organized by department and assigned a number, and CPAS allows each
course to be labeled in this way. However, courses can be related in ways that transcend traditional
departments. At Cornell, for example, a number of courses from disciplines as varied as computer
science and industrial and labor relations are considered “information science” courses. Similarly,
courses from a variety of departments fall under the “Cultural Analysis” group that can be used to
help satisfy liberal studies requirements for Cornell Engineering students. Such groupings are not
unique to Cornell. Many universities have started interdisciplinary programs, such as information
science or symbolic systems programs, which relate courses in a variety of areas.

Official and unofficial course groupings are often used when writing requirements for academic
programs. To account for this observation, CPAS allows the creation of an arbitrary number of
such groups, called categories. Staff can assign any number of courses to each category, or the
information can be parsed out of appropriately-formatted documents. CPAS records courses taken
by students, keeps track of grades, credit hours, and semester and year taken, and it is extensible
to support student information systems.

4.2 Requirements Definitions

Next, we consider the maintenance and tracking of requirements. A strength of CPAS is the
simplicity, consistency, and generality with which it maintains academic requirements. CPAS uses
three types of requirements to represent the complex nature of advanced academic programs:
individual courses, option groups, and free-text requirements.

Individual courses are specific courses, represented by the department name and course number,
offered by the university. Individual courses can also have attributes such as whether they can be
taken pass/fail, a minimum grade required, and the minimum number of credits necessary.

¥'9,£1T abed

Option groups allow more flexibility than the individual course requirement. Each option group
has one set of top-level rules and an arbitrary number of other rules. The top-level rule specifies
the number of courses to be taken and the overall number of credits that need to be achieved

(e.g. 6 courses totaling at least 18 credits). Course-level rules specify that a certain number of
those taken to satisfy the group must be above, at, or below a certain level, as specified by the
university’s numbering scheme (e.g. 3 courses must be numbered at least 2000). Department rules
specify that a certain number of courses must or must not be in a certain department (e.g. courses
may not be in the Computer Science Department). Category rules specify that certain courses
must or must not be in specific categories (e.g. 6 courses must be liberal studies courses), and
category option rules specify that courses representing one or more of the categories must be
taken (e.g. a course must be taken from at least 3 of the following 6 categories). Finally, specific
course rules allow or disallow the use of certain courses to fulfill the requirement (e.g. EDUC
2400 is allowed or is not allowed). Figure 4(d) shows the interface used to define an Option
Group. The Option Group was inspired by the Liberal Studies requirement for Cornell Engineers.
In a nutshell, the liberal studies requirement consists of at least 6 courses for a total of at least 18
credits, two courses of which must be at the 2000 level or higher, and at least one course in three
of six categories (e.g. language, performance, history, and culture). As shown below, this
construct was useful in several other places in designing the requirements for a number of other
majors that we represented using the system.

While full academic programs can be represented with the aforementioned logical expressions, we
found that this presents two challenges. The first is the extreme complexity of the resulting
expression, which would be difficult to input correctly. Secondly, requirements change over time
and are usually associated with graduation class years. In many cases, this change is evolutionary,
i.e. most parts of the program remain the same but certain parts are updated.

We found that it is better to separate the overall expression into individual requirement units, all of
which must be fulfilled. A requirement unit can be loosely defined as a high level requirement
covering a certain theme, e.g. “Liberal studies”, “Scientific Computing”, “Operating Systems”,
and “Calculus sequence”. The division of the degree requirements into these units is up to the user
of the system but is most likely quite obvious from the way requirements are specified in the
university catalog. Since requirements are likely to evolve in terms of these units, CPAS
associates certain class years with each unit and dynamically builds the expression corresponding
to units belonging to each class year. Since variations are often minor, CPAS makes it easy to

clone requirement units when starting to construct new units for subsequent class years.

At many institutions, students must first affiliate with an academic field and then complete the full
academic program for their chosen discipline. Thus, CPAS maintains two requirements
expressions for each class year, one representing progress toward affiliation and the other toward
graduation. In addition, some institutions have program requirements that change the curriculum
but do not require a unique course to satisfy. For example, a student may be required to take a
course in probability theory, regardless of whether it is a free elective, a core elective, a liberal
studies course, or an engineering distribution course. We call such requirements structural
requirements. CPAS distinguishes each of these requirements with a type label: affiliation-only,
graduate-only, affiliation and graduation, and structural (non-course) requirement.

G'9/£1T abed

Figure 1: Example of requirements unit tree. Diamonds represent logical operations and circles represent major
requirements.

A null

Figure 2: The requirements unit defined in Figure 1 mapped to courses that fulfill these requirements. Diamonds
represent logical operations, circles represent major requirements, and rectangles represent courses applied to satisfy
the requirements. A rectangle labeled “null” means that no course taken has satisfied the corresponding requirement.

9'9/¢'tT abed

Add New Requirement

Requirment Name. Requirment Typs: Affiliation & Graduation |

Applicable ClEss YearS: jg range: 1969-2068 + Add Rsquimment Notss
(e.g. 2001,2003-2007,2010-2012)

start here.

Use the controls below to start building your requirement

+ Add Single Course | + Add Course Group

Save Requirement Reset

Figure 3: CPAS requirements unit interface. The header information (name, class years, and type) is common to all
CPAS requirements. Note the clear starting point in building a requirement.

4.3 Requirements Audits

Graduation and affiliation audits are straightforward to perform using well-known computer
science techniques. The requirement units form a “binary tree” representation of the logical
expression, and it is easily evaluated. By maintaining a database of such expressions for each
student, audits can be performed by evaluating the validity of each node in the tree from the
bottom up. If the root of the tree evaluates to TRUE, then the affiliation or graduation
requirements are completed. On the other hand, any requirements unit that evaluates to FALSE is
flagged in the user interface to indicate to the student which requirements remain to be completed
if the node does not evaluate to TRUE.

Figure 1 illustrates a sample tree that may be used to represent a requirements unit. Assume that
the student is required to take course B and either course A or course C. The student has taken
courses A and B. Figure 2 shows how these courses may be placed in the requirements tree. Node
A is TRUE, node C is FALSE, the OR node evaluates to TRUE, node B is TRUE, and the AND
node evaluates to TRUE. Since the AND node is the root of the requirement, the entire
requirement evaluates to true. The student has fulfilled this requirements unit.

5 User Interface and Usability

The CPAS interface takes into account each of the user roles discussed in Sec. 3 and the logical
grounding considered in Sec. 4. In designing this interface, we adhere to the principle of
information hiding and abstract’ as many details as possible from the user. Unlike many previous
degree audit systems, CPAS was designed with a graphical user interface from the start. The
interface is the result of extensive design and user testing. The basic concepts followed in
implementing this design are covered by Gould and Lewis.® CPAS has a universal inline help
system, which provides assistance to users on every page of the system, and pervasive search and
filtering features for information such as users or courses.

The user interface is designed to be accessible to all users—most elements are basic XHTML
components with an underlying CSS style sheet and JavaScript code for dynamic components.
Most components are scalable and can be increased in size or used with screen readers to aid in
accessibility. Furthermore, color is never the only way used to convey information.’

19/ 1T abed

Add Course: S 101
Minimum Grade: G+ ¥ | Minimum Credit Hours: |4

Hide Gourss Optians

(a) This screen demonstrates the entry of a single course and optional
elements (grade and credit hours)

Add Course:|INFO 481
oR |v

Show Coursa Options

Add Course:|INFO 340

Show Gourss Options

(b) This screen shows the use of Boolean expressions

S

Add Course: cs 108 Show Courss Options.
AND|v
Add Course: cs 231

Show Courss Options

+ Add Single Course | + Add Course Group

o =)
Add Course: s 441 Show Course Optians.

oR |v
Add Course: cs 442

Show Caurse Options

+ Add Single Course | + Add Ceurse Group

(c) This screen shows the application of course groups to achieve paren-
thetical elements in the requirements expressions.

Choose courses totaling at least credits

+ Course Level | + Department | + Category | + Category Option | + Specific Course
Course Level Rules
none

Department Rules

none
category Rules

courses must | ¥|be within EC |7

Category Option Rules

of the following selected categories must be fulfiled EC =

EM

FL
H&SS
HA .

Specific Course Rules

none

(d) This screen shows an option group used to input complex require-
ments

Choose courses.
Requirement Description

At least 6 credit hours total. Anything approved by the advisor including the
freshman advisor.

(e) This screen shows the entry of a manual requirement.

Figure 4: Examples of Requirements Entry in CPAS.

8'9/¢tT abed

Computer Science Major (ENGR)

Calculus Sequence

B4 maTH 191: calculus I for Engineers

Serm: FAO7 | Grases a- | Credit:
AND

[0 matH 192 : Multivariable Calculus for Engineers
AND

D MATH 294 : Linear Algebra for Engineers

Introductory Programming

CS 100 : Introduction to Computing
Sem: FAO7 | Grade: A- | Credits: 4

AND

. CS 211 : Clh]act-orlantad Programming and Data Structures
Sem: FAO? | Grade: A- | Credits:

1 Credit Project

M CS212: Prugrammmg Practicum
Sem: FAO? | Grader A- | Credits:
CS Core

B4 c¢s 280: Discrete Structures
Semn: FAO7 | Grade: A- | Credits:

AND

D €S 312: Data Structures and Functional Programming

AND
CS 314: Computer Organization
% SemoF;D7|Gmﬂe A- | Cradits: 4
CS 316: C y Organization and Progr
AND
CS 321: Numerical in Ce i iology
OR

CS 322: Introduction to Scientific Computation

CS 421: Numerical and
OR

CS 428: ion to C i i i

AND
D CS 381: Introduction to Theory of Computing

AND
D CS 414: Operating Systems

AND

D CS 482: Introduction to Analysis of Algorithms

Liberal Distribution Courses

4 mes27s:m
Sam: FAO7 | Grade:

ions r.vflsrael HA (Historical Analysis)
edits:

EDUC 404: Learning and Teaching I Approval Pending

O

5 Additional Courses Required; 1 Course must 200 level or higher.

At least two additional categories requlred CA (Cultural Analysis); LA (Literature
and the Arts); KCM (ge, C ion, Moral ing); SBA (Social and Be-
havioral Analysis); FL (Foreign Languages).

Figure 5: Requirements tracking visualization. The purpose of this screen is to let the user know, in a quick glance,

how far a student has progressed in completing the degree.

6'9.£ 1T abed

5.1 Requirements Entry Interface

Figure 3, illustrates the initial interface displayed to staff members when creating a new
requirement unit. Note the presence of requirement class year(s), requirement type (affiliation
only, affiliation and graduation, or graduation only), and the ability to add free text notes to any
requirements. In initial versions of this interface, users were confused about where to start
building the requirement, so we added a clear starting point as shown in Figure 3.

Figure 4 shows the interface used by staff members utilizing the system to enter requirements into
each requirements unit. Figure 4(a) is an individual course that is used for a requirement. As
shown, it is possible to optionally enter a requisite grade or number of credit hours required for
each course. If these options are not specified, then CPAS defaults to a global setting that can be
specified per university policy. In Figure 4(b), we see several courses separated by Boolean
operators. In Figure 4(c), we demonstrate the use of groups, which simulate parenthetical
elements in the logical expressions. Figure 4(d) demonstrates the capabilities of the option group,
and Figure 4(e) shows the entry interface for a manually auditable requirement.

5.2 Requirements Tracking

The display of progress made toward fulfilling the degree requirements is of central importance to
a degree audit system. Previous systems have tried varied approaches. The DARS system (now
u.achieve), first developed in the 1980’s, originally used text based output in a specific format to
convey this information and was gradually improved to include color codes and then graphical
output. The current version displays a number of graphs as well as a list of courses. Different
information is displayed as the mouse pointer hovers over each. This version does not completely
omit the original text-based formatting in the list of requirements. > Original versions of Degree
Navigator illustrated different degree requirements as graphical “islands” on a map. '

Unlike the previous approaches, CPAS indicates in simple terms how a student is progressing in
the degree. Each requirement is represented by one or more boxes, illustrating the courses or
paths that can be taken to fulfill the requirement. Many courses can be applied automatically. In
other cases, however, students can choose how to apply their coursework toward a requirement.
For example, a course might be an advisor approved elective. In such cases, CPAS allows students
to choose how each course applies.

The CPAS interface for authorized users to track student progress is presented in Figure 5.
Requirements that are not fulfilled are red and have an empty check box next to their box.
Requirements to which courses have been applied are either approved immediately (if
automatically auditable) or sent to appropriate staff for approval if they are manually auditable.
Courses that are in the process of being approved are yellow and a question mark is displayed in
the check box. Finally, once any course is approved it becomes green and the check box is filled
in. Note that the check boxes along with the written comments have an obvious meaning even
without referring to the color, increasing accessibility to colorblind people.’

6 Visualization and Representation of Academic Programs
In addition to the clear role of the CPAS as a tool for students, faculty members, and department

staff persons, we can also use the ontology provided by the logical representation in CPAS to
understand academic programs. We have demonstrated the mechanics of CPAS and the logic

0T'9.€¥T abed

CS 2800

Manual-Audit
Requirement

E

|
pgEeeRRRRGE

CS 4820

————————

Option Group

Option Group

Manual-Audit

X Option Group
Requirement

group

group
Manual-Audit
Requirement

Structural Requirement:

Option Group MATH 2940

Option Group

Structural Requirement:
Option Group

group

Figure 6: A tree-based representation of the new requirements in Computer Science at Cornell, introduced in
Dec. 2008.

T1°9.€ T obed

Option Group

Option Group

Computer Scie
rev 2007

Figure 7: A tree-based representation of the requirements for the new Computer Science major (Information Track) at
Stanford, introduced in 2007.

21'9/.€ T obed

Figure 8: A tree-based representation of the requirements for the Aerospace Engineering major at the Rensselaer

Polytechnic Institute.

I
UEGEROELDRBELR]

MANE 2060

MANE 4070

MANE 4900

MANE 4920

MANE 4080

2

group

ENGR 4010

MATH 4800

MANE 4090

MANE 4850

€1°9/€' 1T abed

EI0LY

EI0LY

group

0 i
m Option Group

EI0LY

Figure 9: A tree-based representation of the requirements for the Economics major at Princeton.

behind our system; now we demonstrate its broad applicability to a wide range of university and
curricula. We also consider the system’s possible usage schemes to represent a wide variety of
programs. Then, we focus on the option group and show how it can be used to express a range of
liberal studies programs in various Engineering programs.

In contrast to the widely varying formats in which universities publish this data, our work
provides a unified scheme by which to represent these requirements. This may lead to a better
understanding of a curriculum for a major.

6.1 Departmental and College Requirements

To show the generality of our system, we show the tree-based structure discussed above in the
representation of actual academic programs from a wide range of universities and majors for
college and department requirements. We defer a discussion of core requirements and liberal
studies requirements for engineering to the next subsection. The trees, constructed using the
GraphViz package,* aim to show the underlying structure of each major tree. Such trees may be
used in the further analysis of academic programs for discovery of errors, omissions, or similarity
among the academic programs at different universities. We are interested in pursuing this as future
work.

Figure 6 shows the requirements for Computer Science at Cornell University using the tree
format, while Figure 7 shows the Computer Science major at Stanford University. Figure 8 shows
the Aeronautical Engineering major at the Rensselaer Polytechnic Institute. To show an example
of a non-engineering major expressed with our system, we present Princeton’s Economics major
in Figure 9.

v1°9.€ 1T abed

Choose courses totaling at least credits

+ Course Level + Department + Category + Category Option + Specific Course
Course Level Rules

none

Department Rules

none
Category Rules

courses must |w | be within H&SS|™

Category Option Rules

of the following selected categories must be fulfilled -‘

H&SS

.v

Specific Course Rules

none

Figure 10: Distribution Requirements for Engineering Majors at Princeton.

We can already come to preliminary conclusions about these majors. The RPI Aerospace
Engineering major and Princeton’s Economics major have highly structured requirements.
Similarly, we can conclude that Cornell’s Computer Science major has a more complex
characteristic, including two structural requirements, than that of Stanford.

6.2 Liberal Studies and Core Curriculum Representations

In this section we show examples of liberal studies requirements that can be represented in our
system’s ontology. We express a wide variety of liberal studies, general education, and other
non-engineering courses that are required by engineering students at a variety of universities.
Figure 10 shows a single option group representing Princeton’s Distribution Requirements,
Figure 11 shows several option groups representing General University Requirements for
Engineering Majors at the New Jersey Institute of Technology. Finally, Figure 12 shows the
Liberal Studies requirement at Cornell University as a single option group. By expressing these
examples, we demonstrate the generality of the option group for the representation of liberal
studies courses for engineering students at a wide variety of universities.

7 Proposed Architectures for CPAS

We considered two overall architectures for CPAS. In the first model, CPAS is fully supported by
a university, which integrates the system into its support infrastructure for students, trains staff
members, and arranges for the entry of many major requirement trees into the system. In the
second model, CPAS is implemented as a social network, where major trees are input and are
maintained by the community. We applied the results of user studies in the analysis of each of
these architectures.

GT'9/.€vT abed

)
Choose I:] courses totaling at least l:l cradits

+CourseLevel][+Deparment || ~Category || +Category Opton][~Speciic Course | Choose ||| courses totaling at least [| cradits -

Course Leval Rulas

[courses beFE00 | e |.+-Gourse Levl ||+ Depariment || + Category || +Categon Opiion ||+ Specific Course

Course Level Rules.

Department Rules

[Jeourses be]

Category Rules
l:l courses be within | Cultural History (]
Catogory Rules

Category Option Rules nsne
none

= Department Rules

catogary Option Rulec

5 ifie C Ruls G
Epacee conalieles [Jof the following selected categories must be fulfiled msm,;, @
1 1terature

'e Philosophy

Add Course: [HUM [101 Show Course Optisns STS
(Theater |
WIET HUM 101 =
u: e Specific Course Rules
Add Course: [HUM |102 Show Course Optisns - 5
NIIT HUM 102 u] a
Chosse [I | courses totaling at least [I__| credits
[[--2dd Single course][-Add Couse Group | _~Course Level [~Depatment || +Catagory || +Category Option | + Specifc Coursa |

or_ 7]) Courss Level Rules

Department Rules
[L+coursz Level][+Deparment |[+Category][+Category Opton [+ Speciic Course |

none
Caurse Lavel Rules Category Rules

[] cowses [t [53) e

Category Option Rules.
Departmant Rulas

D of the following selected categories must be fulfilled

Category Rules
l:l courses [must =]] be within [Cultural History : Q

Category Option Rules
nans

Specific Coursa Rulas

Add Course: [Aum 1o Shaw Course npu.ﬂ;e

NIIT HUM 101

-

Figure 11: General University Requirements for Engineering Majors at the New Jersey Institute of Technology.

Choose I:I courses totaling at least I:I credits |

+ Course Level | + Department | + Category | + Category Option | + Specific Course |
Course Lewel Rules

courses must |V|be z|V| e

Department Rules

none

Category Rules

courses must |v|bewithin Liberal Arts|'|

Category Option Rules

I:I of the following selected categories must be fulfilled

]
[|
Liberal Art: I
Liberal Ars
A

Specific Course Rules)
EDUC |2400 isAlowed |+ | e
EDUC 2480 | s not Allowedl~ | —

Figure 12: Liberal Studies Requirements for Engineering Majors at Cornell.

9T'9/€'vT abed

7.1 University-Centric Model

In this model, CPAS would be given or licensed to universities for the purposes of auditing
students’ academic records as an administrative tool. In such cases, departmental staff would be
responsible for entering the requirements of each major and ensuring that the major is correctly
represented. In turn, students would enter their coursework, or such coursework would be
imported automatically from university information systems such as PeopleSoft.

The major technical challenge in this approach is the standardization and interfaces between
complex systems that need to interact, especially if student coursework is entered automatically.
We continue to pursue this model concurrently with the social networking model discussed below.

7.2 Social Network Architecture

In the absence of the support of an institution, we envision CPAS to be used as a tool where a
collaborative community could create major requirements and a large number of users could audit
and plan their academic careers using the major requirements already entered into the system. In
turn, such users would correct errors and make additions to missing or incomplete majors. In
essence, this model applies the principle of Wikipedia to CPAS.

There are several possible issues with this model. First, entering major requirements is difficult
and takes time and effort to do correctly. It is not clear that anyone would have the incentive to
correctly enter major requirements for others’ benefit. It is also not clear how appropriate quality
controls can be put in place to ensure that the majors are all entered correctly. One possible way to
partially remedy these issues is to allow for a system of voting for the quality of representations
and the assignment of trusted editors—either the system’s maintainers or university staff members
who volunteer—to check the representation of the majors. These are areas that we are actively
investigating and that we will cover in future work.

Thus, we believe that this approach may be workable if there is a solid system outlining the
participation guidelines and quality controls. In addition, it would likely be necessary to add a
core of majors or to provide incentives to users to add their majors into the social network.

8 Discussion and Conclusions

CPAS combines a simple, robust logical framework with an elegant, simple user interface and
visualization in order to help students, advisors, and staff track degree requirements. Majors can
be represented concisely and with a common ontology, thereby allowing for a general
visualization of major requirements across many disciplines.

The immediate contributions of CPAS allow students to efficiently track their coursework and to
understand which requirements they have completed, allow advisors to suggest courses to students
and track their students’ progress, and allow departments to visualize their academic program in a
standardized way. Interesting open questions are how such a system can be used to compare major
requirements of various universities and/or to find improvements or errors in existing academic
programs. By presenting a standardized format in which major requirements can be represented,
this work provides a way for these questions to be answered more effectively.

/1°9.€ T obed

Acknowledgments

We appreciate the role of Patrick Coffey, Keith Bodin, and Sarah Perkins in the design and
implementation of portions of CPAS. This work was supported by a generous gift from Cisco
Research. Extensive discussions with Sara Lin, William Arms, and Carla Gomes helped in
developing and improving our ideas. We also thank Cornell’s Computer Science Department for

its support of CPAS and especially appreciate the work of Nicole Roy, Gloria Loehle, and Dora
Abdullah.

References

1.
2.
3.

10.

Decision Academic Inc. Degree Navigator Plus, http://www.decisionacademic.com/, 2009.
redLantern u.achieve, http://www.redlanternu.com/uachieve/, 2009.

C. Botev, H. Chao, T. Chao, Y. Cheng, R. Doyle, S. Grankin, J. Guarino, S. Guha, P.-C. Lee, D. Perry, C. Re,
L. Rifkin, T. Yuan, D. Abdullah, K. Carpenter, D. Gries, D. Kozen, A. Myers, D. Schwartz, and

J. Shanmugasundaram. Supporting workflow in a course management system. SIGCSE Bull., 37(1):262-266,
2005.

. J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz—Open Source Graph Drawing Tools.

Lecture Notes in Computer Science, 2265:483-484, 2002.

. B. Friedman. Value-sensitive design. Interactions, 3(6):16-23, 1996.

J. Gould and C. Lewis. Designing for usability: key principles and what designers think. Communications of the
ACM, 28(3):300-311, 198s5.

. K. R. M. Leino and G. Nelson. Data abstraction and information hiding. ACM Trans. Program. Lang. Syst., 24

(5):491-553, 2002.
Oracle Inc. PeopleSoft Enterprise Academic Advisement 9.0 PeopleBook. 2006.

D. Peters. A Practical Application of Cognitive Work Analysis: Transforming a Static Report Into an Interactive
Interface. Master’s thesis, Miami University, 2005.

J. Saltzer. Protection and the control of information sharing in multics. Communications of the ACM, 17(7):
388-402, 1974.

8T1°9/¢ 1T abed

