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Abstract - Generally analog prototype filters are not candidates for the design of optimum digital jilters because the processing
requirements to convert from the analog prototype filter to the target digital filter are excessive, However, some optimized bilinear
transform algorithms introduced by Simons and Harden to solve differential equation models were found to be adaptable to the
problem of designing optimal digital filters without introducing excessive processing requirements. Based on these optimized bilinear
transform algorithms, a procedure is derived whereby the coefficients of an analog prototype filter are adjusted in a parameter
optimization process, The convergence of this process yields the digital filter that optimizes a cost function specifically formulated to
realize desired digital filter goals and specifications. It is important to note that this new class of digital filters can be FIR or /IR with
the latter form also guaranteed to be stable,

Introduction

The name optimal digital filter implies that filter design has been accomplished by specifying some criteria defined as optimal and
the filter has been designed to meet that criteria. In many cases a prototype filter is chosen as a starting point and coefficient values
are changed until satisfactory performance is reached. In such cases, digita filters are normally chosen as a starting point because of
the large number of calculations needed to transform analog prototypes to discrete domains. An alternate approach, with agorithms,
which makes it feasible to design optimal digital filters based on analog filter prototypes is presented by the authors. Much of this
alternate design process rest on powerful agorithms, developed by Simons and Harden to solve differential equations. [SIMO88]
These agorithms can be adapted to greatly reduce the number of computations required to derive a bilinear transformed digital H(z)
model from a prototype H(s) analog model. This reduction in processing makes it feasible to base the optimal digital filter design on
an analog prototype and arrive at solutions based on the changing coefficients of the analog filter. The end result is an optimally
designed digital filter as well as an analog filter that could be claimed to be optimal in some sense.

In order to verify and converge on a proper filter design, the frequency response of the current filter in the design process must be
continuously iterated until convergence to the optimal filter occurs. Frequency response calculations are also based on using new and
efficient algorithms that are presented. These algorithms are based on real arithmetic operations, which account for their speed and
efficiency[SIMO87].

In addition to providing the algorithms used in the formulation of the filter design, a detailed outline of the process used to arrive at
the new class of optimally designed digital filters is provided. Based on the presentations and evaluations of al algorithms and
procedures, the authors present conclusions and ideas for future research.

Optimized Bilinear Transform Algorithms

Cdculation of the bilinear transform provides a method of transferring a polynomial in “s’ to the “z’ domain where digital
processing techniques may be used. Since this transform accounts for a large percentage of the computations needed to complete the
optimal design, more efficient means of calculating the transform becomes critical to an efficient optimization process.

Simons and Harden presented a treatise on “An Optimized Simulation of Dynamic Continuous Models’ in which the authors
derived algorithms that provided the basis for structuring an optimized PC program for simulating differential equation models of
continuous dynamic subsystem components [SIMO88]. These algorithms were adapted to reduce the number of computations needed
to perform the bilinear transform.
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Discussion of the bilinear transform process begins with an analog filter since this study is based on designing optimal digita filters
directly from analog prototypes. The process assumes the prototype H(s) filter model has been specified as a ratio of two decreasing
order polynomials in “s’. It should be noted that the analog prototype may be specified by supplying the decreasing order
polynomials, the poles and zeros, or a combination of both, Nevertheless, by applying commonly used algorithms for real and
complex conjugate root accumulation or multiplication, H(s) factored forms can be put into the common polynomial form[ALKHB86]:
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Calculation of the bilinear transform then proceeds by making the following substitution:
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which is used to implement the bilinear transform and results in the common digital filter H(z) model consisting of a ratio of two
polynomialsin z or
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The following algorithms for performing this transformation have been optimized with respect to processing and memory
requirements.

H(z) A [3]

Initially, it should be noted the scale factor of 2/T can be assumed to be one without loss of generality since the factor can be
incorporated into the H(s) coefficients by making the following substitutions

bm « (%‘)’" bm [4]
and
a" e (%)n an [5]

Note that after the bilinear transform is evaluated, M = N and the filter is now specified by a new set of ¢, d, coefficients. Therefore
we seek methods that enable us to generate the ¢, d, coefficients in equation [3] from the 5,,,a, coefficients in equation [1].

To obtain N(z) and D(z), consider the following definitions for just the denominator D(z). If P(s) is the denominator of the analog
transfer function H(s), then

D(z) = (z+D" P —11) [6]
If the following definitions are applied

E(z) A P(z-1) [7

F(z) A zVE(1/z) (8]

G(z2) é F(z+1/2) (9

J(2) é ZNG(I/Z) [10]
then

D(z) A J(2z) [11]
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The preceding substitutions constitute the basis of the Simons-Harden algorithm for deriving a bilinear transformed H(z). In
words, the algorithm consists of the following steps:

1. Tranglate the polynomia one unit to the right [DAZZ66].
2. Reverse the order of the coefficients.

3. Trandate the polynomial one half unit to the left,

4. Reverse the order of the coefficients.

5. Replace the nth order coefficient d, with d, times 2"

This agorithm effectively transforms the denominator of the H(s) transfer function into the “z” domain. The process must be
repeated for the numerator of the transfer function, which results in aratio of two polynomialsin “z".

The authors assume that the order of the denominator of the H(s) transfer function is greater than that of the numerator so that the
prototype filter is realizable. As mentioned earlier, when the bilinear transform is calculated, a ratio of two polynomials of equal
order occurs. This happens because the bilinear transform automatically places the needed number of z = -1 zeros in the numerator
to achieve this equality. If the analog filter is reaizable, and the above algorithm is evaluated only for the numerator and
denominator, N(z) and D(z) will be of different orders. Therefore to complete the bilinear transform formulation, one more step must
be added. After the algorithm is applied to the numerator of the H(s) transfer function, the resulting numerator polynomial must be
multiplied by (z+ )™, where N is the order of the transformed denominator and A is the order of the transformed numerator. After
the bilinear transform of the analog filter is calculated, the next step in the design is to evaluate the frequency response of the
resulting digital filter.

Real Arithmetic H(z) Frequency Response Algorithms

Freguency response evaluation of H(z) models becomes an integral part of the design process when error analysis has to be
performed. The frequency response of the calculated digital filter must be compared to the response of the idea filter to determine
the magnitude of error. If stopping conditions are met, the optimal filter has been determined; otherwise the direction of coefficient
change for the next iteration must be calculated. In most cases, the computer program used for the purpose of frequency response
evauation will be based on some standard FFT algorithm which limits the evaluation to a discrete set of values. The algorithms used
in this paper performs the frequency response evaluation using all real arithmetic and the user is not confined to a limited set of
discrete evaluation points. In most cases the real arithmetic algorithms require less processing power than FFT based evaluation
techniques [SIMO87]. It is assumed to be that the H(z) transfer-function form is

M —m
LORYVEEP I 12
X(2) = >dz
since the bilinear transformation process yields exactly this form. In the evaluation of an H(z) frequency response,
z=g’"= cos(w7) + jsin(wT) [13]

The magnitude of the response is calculated as a function of frequency . Each response calculation requires the evaluation of H(z)
which is a complex function of a complex variable z. Due to the periodic nature of the z = ¢" substitution, a complete frequency
response evaluation is defined by the range of frequencies from O to @,/2, provided the H(z) coefficients are real. With the definition

P(2)=Y a,z [14]
and (z—a—jb)(z—a+jb)ézQ+az+B [15]
Clearly o =—2cos(w7) and B =1 [16]

The division of P(z) by (Z+oz+ ) can be put into the form

P(z)=(2+0z+B)Y . b,z"+ Rz+ R, [17]

Since z =€ ' “" is defined as a root of equation [15], then

P(e’*"y=Re’“"+R, (18]

N
*
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Thus, the polynomial evaluation can be expressed in terms of its real and imaginary parts as

R [P("")]= R, + R cos(@T) and I, [P(s"*") ]= jR;sin(@T) [19]

This result implies that if we have a method of determining R; and R,,, then we have a method of determining the frequency response
by evaluating the numerator and denominator of H(z). Consider the form

P(z . Rz+ R,
N Y TS Y P g ch (2]
22 +oz+pP 22+ z+P
Rz + -
from which = 1 bz" [21]
zZ 4+az+f n=-e
Multiplying both sides by the denominator and equating equal powers of z leads to
R=bh,andR. = b_+ab, [22]

Thus, with the evaluations of R, and R, revealed, the frequency response algorithm consist of evaluating the numerator and
denominator of H(z) with the following steps:

Step 1. Evaluate a and B from &i” ’
Step2: From the definition of the P(z) form given in equation [20], evaluate
b,,=a,-ob, , —Bb,
For n =N, N-1, N-2, ,.....0
with by A O and b, ;A O

Step3: Evauate R, R, = (b, +a b)), b
Step4: Finaly P(s “N= R. + R, cos(wT) +jR,sin(wT)

With these optimized algorithms on which the design process heavily relies, the complete optimal digital filter design process can
be outlined.

The Design of Optimum Digital Filters Based on Analog Prototypes

In order to best express the ideas developed for the implementation of the optimization process, a reference flow chart has been
included at the end of the paper. Explanations on how each step contributes to the process follows.

The first step in the process is the evaluation of the initial guess analog prototype filter. There are a number of options available for
analog prototype filter design but they are not treated in this paper since many basic DSP texts cover this topic| PROA88],[ DEFASS].

There are several methods of filter coefficient input, but the authors have chosen to enter the poles of the filter because of the ease of
insuring stability.

The second step in the process is to use the bilinear transform to transform the filter from the continuous domain to the discrete
domain. The optimized algorithms used to accomplish this task were presented earlier in detail. A frequency response of the digital

filter is then performed and compared to the idea response by calculating the Integral Square Error (ISE) of the differences between
the two responses.

Then the gradient is evaluated based on small perturbations in the analog parameters and the magnitude of the ISE. The gradient
calculation is an integral part of the parameter optimization process. In parameter optimization, we seek to find the combination of
parameters that provides us with the smallest possible error.

Cdculation of the gradient gives us an indication of the direction of maximum increase in error. With the gradient calculation
completed, the negative of this calculation will give us the direction of maximum decrease from our present position. The process
resembles successive parameter optimization in the sense that for each analog parameter changed, the effects of this change is
measured by evaluating the ISE and noting the change in the magnitude of the error. Thus, each perturbation and error calculation is
equivalent to the calculation of a partial of the error with respect to that parameter. Once the negative of the gradient is calculated
from the collective parameter gradients, a good indication of which direction should be taken from the present point to arrive at the
optimal parameter solution is known. This approach is termed the method of steepest descent.
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Therefore, gradient calculations include calculation of the ISE at the present solution, calculation of I1SE after each change, and the
differences between the two errors. It should also be noted that each error calculation involves the bilinear transform, frequency
response, and | SE calculation.

It was decided to initially limit the size of parameter step to O. 1°A of the average magnitude of the poles in order to avoid the
chances of overshooting possible local solutions. After each gradient iteration, the magnitude of the error must be checked to
determine if further calculation is needed. If the error criteriais met, the current filter is defined as the optimal solution. If the criteria
is not met, further calculations are required.

In the flow chart diagram, the cost function terms ./, and Jmay cause some confusion. These two terms are used to denote two
different concepts.

J, refersto the total gradient calculation for the n™ time through the whole process whereas
J,  refersto the component of the gradient that is due to the it parameter.

In the error criteria iteration, the analog coefficients are changed as a function of error magnitude and the calculated gradient.
However, the analog coefficients are in turn functions of pole positions, which defines the analog parameters that are actually iterated.
With their direct implication on stability, pole positions are clearly the preferred optimization parameters. Thus pole position
parameter optimization continues until the error criteriais met and the optimal solution is determined.

Conclusions

The optimized algorithms on which the design process is based have been shown to be very powerful and effective in reducing
computational requirements. The number of computations needed to perform the bilinear transform with the optimized algorithm has
been shown with MATLAB simulations to be 10 times smaller that the number needed to perform the same transformation with direct
computations [MED194]. It has also been shown that the frequency response algorithms used in the design reduce the computational
requirements over other techniques in most cases [SIMO87]. Therefore the use of these algorithms in formulating this new procedure
for designing optimal digital filters results in an extremely efficient process. Also, since parameter optimization techniques have been
widely used and documented, the optimal filter design defined herein has a high probability of success and a strong possibility of wide
acceptance in the field of digital signal processing.

Future Resear ch
In order to take full advantage of the algorithms, direct form filter implementations of the digital H(z) models are implied. The

disadvantage of direct form structures is that they suffer great penalties due to quantization error. Therefore, new implementation
algorithms will be sought to circumvent these errors.
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Optimal Digital Filter Design Directly
from Analog Prototypes
Flow Chart
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