
Session 2263

Development Of A Feature Based Rapid Design Environment

Utpal Roy, Daniel Panayil
Syracuse University

Abstract
Computer based realistic projects are required in all of our undergraduate design related courses.

Students are encouraged to design their individual projects (related to some real-life design and manufacturing
problems) using state-of-the-art computer-tided design (CAD) tools. However, due to some inherent
inflexibilities of current CAD tools, students cannot use them efficiently. It is now recognized that feature-
based modeling holds the promise of developing requisite design tools for rapid and efficient design systems.
This paper discusses the feasibility of using a design-by-feature approach in the students’ design projects. It
reports the development of a library of macro, micro, and functional features for establishing a prototype,
rapid design environment in SDRC’S I-DEAS solid model based design environment (using I-DEAS’s
programmability).

1.0 Introduct ion
Designing an object using a currently available CAD tool is a very tedious task for a designer. Making

the component of his/her design from the primitives, extruded or revolved profdes takes up more time than
he/she spends on designing that object. The designer also faces the problem of redesigning most of the time
due to cost, manufacturing and assembly reasons. The current design systems do not provide any user-
-friendly design environment where the designer can modify his/her design easily according to the desired
design constraints. We have had such experiences in one of our undergraduate design classes, where a group
of five (5) students was assigned to design a fire truck. The group had to design several major and minor
parts. Each part is again made of several small, intricate design components. For example, the door-knob on
the door has many components inside it like springs, lever, screws and pins. The screws that were used for
the hinges and the door-knob handle were the same except that they were of different sizes. So the students
had to make the same screws of different dimensions several times. It took them more than a week to figure
out how to make these parts using the basic primitives and geometry. As the dimensions of the chair and the
door depended on the width and length of the truck which was designed by the other members of the group,
they had to modify the design several time as others made changes in their design. The same problems arise in
other design projects as well. These are the reasons what motivated us to make a feature based design library
so that other students wouldn’t have to spend so much time in making similar parts.

The objective of the feature based design system is to accelerate the design process and to express the
student’s (user’s) intention in design and manufacturing right on the feature itself. This feature based design
not only makes it easier for the user to make his/her design but also provides a better representation of the
design both for the designer and the manufacturer. This paper discusses how to create and use the features
using the Feature Definition Task in I-DEAS solid modeler in order to develop a feature based rapid design
environment. It reports the development of a library of macro, micro and functional features, and demonstrates
the creation of several complex part using the design-by-feature approach.
2.0 Development of the System: Feature-Based Geometry Construction

In order to develop the feature-based rapid design system, we develop a library of
three (3) kinds (i.e., Macro-, Micro- and Functional) of generic features, instead of providing a feature set

which is only useful to a particular application domain. These generic features are callable at any phase of the
design and are instantiable to produce any application-dependent features as required. Our set of macro
features includes regular bolt, stud bolt, spring, shaft, spur gear, bevel gear, helical gear, roller bearings with
option of cylinder or ball rollers and pulley with arms or web option. The micro features include counterbore,
countersink, elbow, bend plate, wedge, seam, wireedge, round-end slot, cap, flange, rib, offset plate and

?$iii’) 1996 ASEE Annual Conference Proceedings
‘.<+<~ym’:

P
age 1.155.1

1

parallelogram. Currently the functional feature includes only the “twist” function which can be used to twist
any part of an object placed in the workplane. Each type of the stored features is represented by an object
class. Each feature class contains attributes which describe the characteristics and behaviors of its members.
In order to instantiate, the user needs to supply values for all required attributes. The new instantiated feature
thus generated, can be positioned and oriented as required to build the desired design object. The feature
library has been implemented in I-DEAS programmability. A sample feature program file has been shown in
figure 1. Each feature module typically consists of the following four steps: (1) parameter extraction, (2)
additional parameter request, (3) feature creation, and (4) feature positioning (and orienting) in the design
object. Following is a brief description of the development of those features that are stored in the feature
library.
2.1 Development of Macro Features

All macro features have been coded in I-DEAL (1-DEAS’s programming language) and stored as
program files in the library. The programs use I-DEAS’s object modeling facilities (specifically its object
modeling task and construction geometry task) liberally to create the features. In the following subsections,
we discuss some of the macro features and their development processes.
2.1.1 Bolt-Regular and Stud

The bolt program file allows the user to make a regular bolt or a stud bolt with a square or hexagonal
head and a nut. It asks the user to input the diameter, the height of the bolt and the pitch of the thread. To
create the bolt (Figure 2(a)), a cylinder is created first from the radius and length entered by the user and it is
stored in a directory. A thread is then created to join with the cylinder. It is done by creating a cross-section
of the thread in the construction geometry. This is dimensioned as a function of the pitch of the thread and
diameter of the bolt, and is created using the ‘profile from points’ option in the construction geometry. This
cross-section is placed at a distance of the radius of the cylinder (that has been created for the bolt) from the y-
axis so that when this cross-section is revolved in the I-DEAS object modeling to form the thread, the inner
diameter of the thread equals the diameter of the cylinder. This cross-section is then stored as a profile and
called in the object modeling to revolve around the y-axis. The length of the thread is made to 4/5 th of length
of the cylinder. The profile is revolved around the y-axis by an angle which is equal to 360* (4/5 *length of
cylinder)/pitch of the thread. The thread and the cylinder are then joined together.

To create the head of the bolt, a profile of its cross-section is created and then extruded. This program
has an option of creating square or hexagonal head as requested by the user. The square head can be made
using the ‘profile from points’ option in the construction geometry. It is then extruded in the object modeling.
However in the case of hexagon, a wireframe of one side of the hexagon is created first. The dimension of
this side is found out by finding the internal angles of a hexagon(360/6) and applying the Pythagorean
theorem. Five other copies of this side is made by rotating this line by 60 degrees having the origin as the
pivot point and thus completing the hexagon. The wireframe is then turned to a profile by ‘Autochain Profile’
and stored. It is extruded in object modeling and joined with the cylinder and the thread. The nut for the bolt
is made just by calling the head of the bolt from its directory and cutting it with the threaded cylinder.
2.1.2 Gear-Spur and Helical

This gear (feature) program asks the user to enter his/her choice of spur or hklical gear, the pitch
diameter, the axle diameter, height of the teeth, gear thickness and the pitch of the teeth as the inputs. The
number of teeth for the gear is calculated as the integer of (pitch diameter *pi/pitch). Since the pitch entered by
the user usually results in a fractional number of teeth, the pitch is corrected by the program by changing the
number of teeth to the nearest whole number and recalculating the pitch. A tooth is created using splines and
lines as a function of the base pitch, the pitch diameter and the tooth height. This tooth wireframe is then
copied by rotating it round the z-axis to equal the total number of teeth in the gear. Due to minor inaccuracies
in the calculations and round-off errors, there would occur tiny spaces between each tooth as they are rotated
and copied. This problem is corrected by changing the tolerance of point coincidence from the default .002 to
a slightly larger value so that the disjoint ends are coincided. After creating the autochain profile from the
wireframe, it is stored. It is then extruded in the object modelling task with the specified thickness. The axle
is created by calling the shaft feature from a universal file and cutting it with the gear (Figure 2(b)).

2.1.3 Roller Bearing with Cylinder or Ball Roller Option
This program asks the user to input the outer diameter of the bearing, its width, thickness of the outer

and inner rings, the diameter of the bore and the option of cylinder or ball rollers. The outer and inner rings of
the bearing are made by creating two tubes from dimensions entered by the user (Figure 3(a)). When the
cylinder roller option is chosen, the program makes a cylindrical race which guides the cylinder rollers. This
cylindrical race is made by cutting the outer and inner rings with a tube. The middle ring which holds the
cylinder rollers in place is also made from a tube. The program then makes holes in the middle ring where the

?@x~j 1996 ASEE Annual Conference Proceedings
‘..+,HJ3.:.

P
age 1.155.2

cylinder rollers are going to be placed. One hole is made by cutting the middle ring with a rectangular block.
The other holes are made similarly by a loop in the program which rotates the block by an angle (the angle
rotated depends on the diameter of the bearing) and cuts a hole in the middle ring after it rotates. The loop
terminates when the block has been rotated by 360 degrees. The cylinder rollers are created in the same loop
and placed in each hole in the middle ring.

When the ball roller bearing option is chosen, the program makes a ball race which guides the ball
rollers. This ball race is made by cutting the outer and inner rings of the bearing with a torus. The torus is
made by creating a circular proffle in the construction geometry and revolving it by 360 degrees in the object
modeling. The middle ring and circular holes for the ball rollers are made in the similar fashion as they are
made in case of cylinder rollers.
2.1.4 Pulley with Arms or Web Option

The program asks the user to provide the diameters of the driven and driver pulleys, the diameters of
the holes (in the hubs) of the driven and the driver pulleys, the width and the distance (center to center)
between the pulleys and the number of arms if the arms option is chosen (Figure 3(b)).

The face of the pulley is created frost by making a tube. Then the hub is made out of a cylinder. The
diameter of the hub is made to be twice the diameter of the hole. The arms for the pulley are created in the
construction geometry using skin groups in the z-direction. Since the top width of the arm is three quarters of
the base width, two sections for the skin groups are made, one with the base width and the other with three-
fourths of the base width. These two sections are placed apart a distance equal to the length of the arm in the
z-direction. Then they are skinned in the object modeling task. The other arms are created recursively by
using a loop and are then joined to the pulley face and the hub. The driver pulley is made from a cylinder.
The holes for both the driver and the driven pulleys are made by calling the feature “shaft” and cutting both the
hubs of the pulleys with it. The “belt” is also called from the feature library.

2.1.5 Springs
This simple program of making compression or extension helical springs (Figure 2(c)) is very similar

to the program that is used to make the threads for the bolts. The user has to input the diameter of the spring,
the cross-sectional diameter, the spring length and the pitch of the spring.

First the workplane is set to the xy- plane (in the I-DEAS construction geometry) and a circle with the
speciiled diameter is created at a distance equal to the radius of the spring from the y-axis. A profile is created
out of this wireframe by using the I-DEAS’s ‘Autochain Profile’ command and it is stored. It is then called in
the object modeling and is revolved around the y-axis. The number of turns in the spring is calculated by
dividing the length with the pitch of the spring. The revolution angle around the y-axis is then equal to (360 *
number of turns). This program only creates springs with circular cross-sections. However other cross-
sections can also be created.
2.2 Development of Micro Features

All the micro features except “elbow” were made using the IDEAS’s feature definition task and can be
found in the feature library. Some of the general construction techniques which were used to make all these
features are described below.

The object to be used in the feature definition task could be made either in the object modeling task
using the primitives or by creating a constrained profile and then extruding, revolving or skinning it in the
object modeling. It is only necessary to draw a rough sketch of the profile used in feature task than drawing it
accurately with all the correct dimensions. This rough sketch can be corrected by constraining the profile
(parallel, perpendicular, horizontal ground, etc.) and the dimensions can be modified to the actual ones using
the modify command. There are a few guidelines to be followed when constraining a profile. At least one
point and the orientation of a line are needed to be grounded using the ground constraints. A profile does not
have to be fully constrained to create an object however, it is recommended to do so. A profile can be
manually constrained or auto constrained. The profile after extruded in the object modeling, has to be stored
to be used in the feature definition task.

In feature definition the ‘create from object’ option is chosen fwst and the object that was stored in the
object modeling is selected. It would then ask if this feature is to be cut or joined with another object.
Appropriate parameters have to be created from the dimensions to control the feature. There are two options to
parametrize this object: one is a prompt and the other is an equation. A prompt is used so that the user can
input the dimensions of the object to create the feature. An equation on the other hand, controls a dimensional
constraint as a function of the other dimensions. When the prompt command is chosen, the program asks for
the parameter name, the prompt, the entity to control, the feature label, and a default value. If the feature
doesn’t work because of over or under constraining, the profile has to be modified and a modified object has
to be made out of that modified profile. It needs to be stored and the prompted and equational parameters

?@ib-’} 1996 ASEE Annual Conference Proceedings
‘.,+,yymc.:

P
age 1.155.3

require to be created all over again for that modified object. The featme created can then be used in the object
modeling using ‘create-use feature’ or ‘construction-use feature’ option. Using the ‘create-use feature’
command, only the feature is created from the prompted parameters; while using the ‘construction-use feature’
command, one can create the feature as well as use the feature for orienting or positioning with respect to other
object or, for cutting or joining the feature with other objects. A brief description of some of the micro
features is attached in the following subsections.
2.2.1 Seam

This feature can produce seams (Figure 4(a)) of variable length, thickness, width and radius of bend.
The profile is created first using profde from points. The profile is then extruded in object modeling and stored
as an object. In feature definition this object is called and prompted parameters (such as the length of the two
places, the distance between them, the thickness and the width) are created for the feature definition.
2.2.2 Counterbore and Countersink

These are the two features that weren’t made out of profiles. The counterbore is made in the object
modeling using two cylinders. One of the cylinders is made shorter and wider than the other one. Then these
two are oriented and joined.

In the feature definition, the entity to control now becomes the two cylinders instead of the profiles in
previous cases. The radius and the height of this counterbore can be controlled by the radii and the heights of
the two cylinders.

The countersink (Figure 4(b)) is also made similarly except that a cone is attached with the cylinder.
The upper radius of the cone and the radius of the cylinder controls the radius of the countersink and the bore
respectively. One equational parameter is created for the bottom radius of the cone. It is set to be equal to the
radius of the cylinder.
Other than the above five micro features, we have also created features like wedge,rib, flange, round-end slot,
parallelogram, semicircular plate, wireedge, offset plate, etc. and these features have been stored in the feature
library.
2.3 Development of the Functional Feature

The only functional feature that we have made is the “twist” feature. This twist program can twist any
object of any shape along the xy, yz or xz plane to a limit of 180 degrees (Figure 5). The only limitation of this
program is that the user has to place the end of the object to be twisted at the origin and the rest of it has to lie
in the negative z-direction. This is because the program is set to extract the cross-sectional profde from the
object in the negative z-direction.
3 . Creating Objects with Features: A Rapid Design Environment

The initial prototype system which has been already implemented, is intended to meet the requirements
of our immediate use: geometry construction of a rapid design part (needed for the student design projects).
Instead of using low-level entities (geometric entities), a part being designed with high-level entities (design
features, i.e. macro, micro and functional features) which has a direct and significant meaning from the
perspective of the designer (student), helps the rapid design process (especially in its conceptual design
phase). The macro, micro or functional features that have been used in the prototype system imply features
which achieve certain (explicit) functions, e.g. transmitting the motion (torque), binding for motion, joining
(fastening) two components, etc. These design features support the students (the designers) in establishing
an easy and meaningful communication with the design system to fulfill their creative intentions. The
students construct apart geometry by sending proper messages to the particular feature class. For example, to
create a block (in order to create the desk as shown in figures 6, one would send a message to the “create
method” of the block feature class and instantiate its variational constraint variables to create an “instant” of
the block feature. (Note: The block feature is already available in the I-DEAS as one of its primitive features.
We did not create it specifically for the prototype system). After the generation of the feature, it is then
positioned and oriented as required to create the desired part. In another example, we created a gearbox (the
figure is not included) by using the macro and micro features such as spur gears, flanges, seam, shafts and
semicircular plates. The gears are made by running the gear program and entering the dimensions of the pitch
diameter, pitch, axle diameter and thickness, and height of teeth as the inputs. All the gears that are made have
to be stored in directories because when other macro features are executed like the gear and bearing program, it
erases all the objects in the workspace. The shaft is made by inputting its radius, its length and the size of the
keyway. It is then oriented to the-axle of the gear. The cas;ng of the ~earbox is made ofit of a flange and a
seam.
4 . Conclusion

Engineering design related projects have been successfully integrated with all of our design courses.
helps combine creativity, technology and design methodology and eventually fosters the development of an

It

?@ii’} 1996 ASEE Annual Conference Proceedings
‘?,,qlylc.’.

P
age 1.155.4

interdisciplinary attitude among the students. Since solid modeling is touted as the CAD/CAM tool of choice
for the next century in industry, we strongly encourage the use of the solid modeling tool (SDRCS I-IDEAS)
in the problem solving process. Though the students are truly enthusiastic about applying this tool in their
works, proper and efficient use of the tool is difficult to achieve because of the inherent inflexibility associated
with the tool itself. More difficult is to express the design intent at the conceptual stage of a design. The
feature-based modeling approach provides the user with a natural way of expressing his/her design intent. In
the SDRC’S I-DEAS design environment, we have developed a prototype feature based design system to
facilitate an easy use of domain-specific features and help students create their designs rapidly. Further work
is necessary to develop more domain- spectilc feature libraries, and flexible assembly procedures to position
and orient the features on the design parts correctly and quickly.

6 . Bibliography
[1] Chung, J. C. H., Patel, D. R., Cook, R.L., and Simmons, M. K., “Feature-Based Modeling for

Mechanical Design,” Comput. & Graphics, Vol. 14, No. 2, PP. 189-199, 1990.
[2] LaWry, M.H., I-DEASTM Student Guide, Structural Dynamics Research Corporation, 2000 Eastman

Dr., Milford, OH 45150, 1993.
[3] Richards, R.A. and Sheppard, S.D., “Classifier System Based Structural Component Shape

Improvement Utilizing I-DEAS,” 92 ICCON Users’ Conference Proceedings, I-DEASTM and

CAEDS@ Cooperative Network, PP. 111-120, May 5-7, Cincinnati, Ohio, 1992.
[4] Roy, Utpal, “Design Project Experience in a CAD/CAM S ystem Course,” Computers in Education

Joumal~Vol. IV, ‘No. l; PP. 6--10, January - March, 1994.

C!4 : ● ● ‘CRBATSS CYLINDSR RACE* ● ●

K :ICRT
K :BRAD+(4*TH115),0RAD-(4*THI15) ,WIDI1.5
K :IORR
K :D
K :90.0.0
K :/ti iTO
K :CUT
K :/COCO
K :L
K : WORK2
K:/t4AG?
K :Cu’r
K :/COCU
K :L
K : WRK1
K : #GOTU MIDDLE

CU:”” WREATSS SALL RACE”**

K :: SAU:ITACG CR C

K :R
K :K
K :BRAD+4*TSI15+SPC12. o
K :SPC12
K :D
K :ICRAC
K :“
K :hlAPRSIU
K : PRO1
X: ITAOCRW
K : PRO1
K :360
K :IORR
K :D
K :90,0,0
K :/nAsm
K : BALL BACE
K : {CO CU
K :L
K : WORK1
K :IuAG
K :BALL RACE
K :/COCU
K :L
K :UORK2

Figure 1. Part of a
program File

Figure

‘r

2(a). A Typical Regular
Bolt With Square Head
and a Square Nut

Figure 2(b). A Typical Spur Gear

Figure 2(c) .A Typical
Helical Spring

Figure 2. Some Macro Features

<hi’&’> 1996 ASEE Annual Conference Proceedings
‘...,~yml’:.

P
age 1.155.5

Figure 3(a).
Figure 3(b). A Typical Pulley

A Typical Roller Bearing With Arms
With Cylinder Roller

Figure 3 . Some Complex Macro Features

Figure 4(a). A Typical

Figure 4. Some Typical Micro Features

Figure 5. The Functional Feature, Twist

Figure 4(b). A Typical
Countersink

Seam

Figure 6. A Typical Office Table

P
age 1.155.6

