New practical MS/MSE degree program with concentration in optics and photonics technology

John O. Dimmock*, Anees Ahmad1 and Stephen T. Kowel
University of Alabama in Huntsville
Huntsville, AL 35899

ABSTRACT

An interdisciplinary Master’s Program with a concentration in Optics and Photonics Technology has been developed under the U.S. Manufacturing Education and Training Activity of the Technology Reinvestment Project. This development has been a collaboration between the University of Alabama in Huntsville, Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center, the U. S. Army Missile Command, Oak Ridge National Laboratory, Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research and Speedring Inc. These organizations as well as the National Institute for Standards and Technology and SCI, Inc. have been participating fully in the design, development and implementation of this program. This program will produce highly trained graduates who can also solve practical problems, and includes an on-site practicum at a manufacturing location.

The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing to cost for commercial products.

The MS in Physics and MSE in Electrical Engineering Degrees with concentration in Optics and Photonics Technology are offered by the respective UAH academic departments with support from and in consultation with a Steering Committee composed of representatives from each of the participating organizations, and a student representative from UAH.

Keywords: education, optics, master’s, technology

*Center for Applied Optics

Optical Science and Engineering Program and Center for Applied Optics

Department of Electrical and Computer Engineering

* Director, Center for Applied Optics
University of Alabama in Huntsville
Huntsville, AL 35899
Phone: 205/895-6030 X400; Fax 205/895-66 18; email dimmockj@emailuah.edu
2. ORIGIN AND MOTIVATION

The origins of the new Master’s of Science and Master’s of Science in Engineering program with Concentration in Optics and Photonics Technology go back to early 1993 when a group of scientists and engineers representing mostly Huntsville area government, industry and academic organizations started meeting to discuss the possibility of forming an alliance focussed on defense conversion and the possible commercialization of their largely defense and government oriented technologies and business strategies. At that time the group consisted of representatives of The University of Alabama in Huntsville (UAH), Northwest Shoals Community College, the NASA Marshall Space Flight Center (MSFC), the U. S. Army Missile Command (MICOM), the Army Space and Strategic Defense Command (SSDC), the Oak Ridge National Laboratory (ORNL) and about a dozen, mostly local, companies involved in optical technology. This group shared a common objective in working together on defense conversion and the pursuit of dual-use technologies for the benefit of all participants.

The result of these early discussions was an agreement, reached in May of 1993, to form the Alliance for Optical Technology. The final Memorandum of Agreement, which was effected on March 16, 1994, stipulates that the signatory organizations “... desire to form a strategic alliance to advance the development and transfer of technologies in the interest of enhancing the global competitiveness of the industrial members while facilitating the effectiveness of the public sector members in meeting their mission objectives particularly in the area of strengthening the technological competitiveness of the United States.” The stated purpose of the Alliance is for “... coordinating . . . precompetitive activities in optical technology, sharing controlled access to each other’s facilities, . . . , exchanging and/or sharing personnel resources . . . , providing advanced education and training in applied optical technology and manufacturing, seeking funds for cooperative projects, identification of common technical and manufacturing deficiencies, pooling, . . . internal and external information, providing controlled access to the technology of Alliance members, providing links to new market sectors, and providing a shared electronic design system for project support.”

Of these noble and ambitious objectives, the one that the Alliance decided to pursue first was that of developing an advanced education and training program in applied optical technology and manufacturing. A proposal to develop a new Practice-oriented Master’s in Optics program was submitted to the U. S. Manufacturing Education and Training Activity of the Technology Reinvestment Project (TRP) in July 1993. It was selected for funding in the fall of 1993 and the award was made in March 1994. The proposal stipulated that “Industry and government organizations will participate fully in the design, development and implementation of this program. The program will be designed to produce highly-trained graduates, who have an optimum combination of skills in the areas of manufacturing engineering, science, management and business-practices, and who can solve practical problems. The program will include an on-site practicum at a manufacturing industry. The program will enable the defense workforce and industry transition to commercial manufacturing, enhance their competitiveness in global marketplace, and expand the US job base and economy.” Again, very noble and ambitious objectives.

3. PROGRAM DEVELOPMENT

A Steering Group for the development and implementation of the program was setup in the fall of 1993 consisting of representatives of a subset of the Alliance membership and additional university faculty from UAH and Alabama A&M University (AAMU). A student representative was added in the fall of 1994 when the first class was matriculated. The current project team is indicated in Table I with a total of 45 representatives on the Steering Committee. This would be completely unwieldy should everyone show up at
any one meeting. Most Steering Committee meetings consist of about fifteen representatives with all sectors of the project team community reasonably well represented.

Table I

MS/MSE Concentration in Optics and Photonics Technology

<table>
<thead>
<tr>
<th>Project Team</th>
<th>Government Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Institutions</td>
<td>NASA Marshall Space Flight Center</td>
</tr>
<tr>
<td>University of Alabama in Huntsville</td>
<td>U.S. Army Missile Command</td>
</tr>
<tr>
<td>Alabama A&M University</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Northwest Shoals Community College</td>
<td>National Institute of Standards & Technology</td>
</tr>
<tr>
<td>Industrial Affiliates</td>
<td></td>
</tr>
<tr>
<td>Advanced Optical Systems</td>
<td></td>
</tr>
<tr>
<td>Dynetics Inc.</td>
<td></td>
</tr>
<tr>
<td>Hughes Danbury Optical System</td>
<td></td>
</tr>
<tr>
<td>Nichols Research</td>
<td></td>
</tr>
<tr>
<td>SCI Inc.</td>
<td></td>
</tr>
<tr>
<td>Speedring, Inc.</td>
<td></td>
</tr>
<tr>
<td>Advisory</td>
<td></td>
</tr>
<tr>
<td>Space & Systems Defense Command</td>
<td></td>
</tr>
<tr>
<td>Boeing</td>
<td></td>
</tr>
<tr>
<td>Mason and Hanger International</td>
<td></td>
</tr>
<tr>
<td>Morgan Research</td>
<td></td>
</tr>
<tr>
<td>Teledyne Brown Engineering</td>
<td></td>
</tr>
<tr>
<td>WIT, Inc.</td>
<td></td>
</tr>
</tbody>
</table>

This group worked through April 1994 to define a program and curriculum which met their diverse requirements and expectations. It was decided that the program would be offered with two tracks under existing UAH master’s degrees with special concentrations: one as a Master’s in Science with Concentration in Optics and Photonics Technology under the UAH Physics Department and the other as a Master’s of Science in Engineering with Concentration in Optics and Photonics Technology under the UAH Electrical and Computer Engineering Department. A sense of the challenge of reconciling very disparate viewpoints is captured in the UAH Physics Department internal memorandum of February 7, 1994, recommending approval of the program “on a trial basis”. This memorandum states, in part, that “... there was some concern ... that the proposed degree program did not have sufficient core physics graduate courses.” The recommendation was made that, with the addition of pairs of electives from the physics core program, the program would be satisfactory provided that it “… be viewed as an ‘experimental’ terminal Master’s program with an emphasis on a particular specialty. While this is a significant departure from our current program, the success of the program should provide our department with a means of addressing (through a reexamination of our graduate program) the national concern that many physics graduates are lacking the necessary qualifications demanded by modern industry (see Physics Today, January 1994). The Graduate Committee will examine the success of the program after 2-3 years and in the meantime our current program will be reviewed. Should the optics MS degree prove a success, the question of such a graduate program based on focused areas of specialization is appropriate and . . . (should) . . . be seriously considered... ”

The program was also accepted on a trial basis by the UAH Department of Electrical and Computer Engineering and the two departments worked together and with the Center for Applied Optics and the Steering Group to formulate the curriculum and course content for the new courses that needed to be developed.
4. PROGRAM STATUS/CONTENT

Table II indicates the resultant Curriculum Requirements. Table III gives a Typical Course Schedule although the program also supports alternative and nontraditional schedules. Four new courses were developed specifically for this program. These are the three listed in Table II under Optics Design and Manufacturing Technology, namely “Optics and Photonics System Design”, “Optomechanical Design and Manufacturing” and “Optical Fabrication and Testing”; and the “Integrated Production and Process Design” course under Engineering Management.

Table II

Curriculum Requirements

<table>
<thead>
<tr>
<th>21 Hours Required Core Courses</th>
<th>6 Hours of On Site Practicum and Thesis required:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 6 credit hours in Optics Principles:</td>
<td>a. Optical Systems and Engineering</td>
</tr>
<tr>
<td>(a) Geometrical Optics/(b) Physical Optics</td>
<td>b. Quantum Optics</td>
</tr>
<tr>
<td>• 9 credit hours in Optics Design and Manufacturing Technology:</td>
<td>c. Optical Signals</td>
</tr>
<tr>
<td>- Optics and Photonics Systems Design</td>
<td>d. Optical Communications</td>
</tr>
<tr>
<td>- Optomechanical Design/Manufacturing</td>
<td>e. Optical Materials</td>
</tr>
<tr>
<td>- Optical Fabrication and Testing</td>
<td>f. Manufacturing Technology, Systems</td>
</tr>
<tr>
<td>• 6 credit hours in Engineering Management:</td>
<td>g. Manufacturing Technology, Quality</td>
</tr>
<tr>
<td>Integrated Production and Process Design plus one course from area k or l.</td>
<td>h. Manufacturing Technology, Statistics</td>
</tr>
</tbody>
</table>

| 6 Hours Required in Elective Courses (two courses to be taken in one of the following lettered areas): | |
| 6 Hours of On Site Practicum and Thesis required: |

Typical Course Schedule

Fall Semester:
- Geometrical Optics
- Physical Optics
- Engineering Management Elective

Spring Semester:
- Optics and Photonics System Design
- Optomechanical Design and Manufacturing
- Elective 1

Summer:
- On Site Practicum Thesis

Fall Semester:
- Integrated Product and Process Design
- Optical Fabrication and Testing
- Elective 2
In the early planning stages it was decided that the degree should require a practicum/thesis and that these would be conducted at non-university locations. A number of the organizations involved in the development of the program volunteered to offer support for students pursuing their practicum at their locations. The list of these organizations is given in Table IV. The students are now engaged in their on-site practicum summer thesis work in accordance with Table III. As of this writing the two students who entered in the fall of 1994 have completed most of their course work and are making good progress on their practicum projects. They should both graduate in June 1996. The class which started in the fall of 1995 consists of nine students of which five are part time.

Table IV

The MS/MSE Degree Program
with Concentration in
Optics and Photonics Technology

On-Site Practicum Locations

NASA Marshall Space Flight Center, Huntsville, AL
U.S. Army Missile Command, Redstone Arsenal, AL
Oak Ridge National Laboratory, Oak Ridge, TN
National Institute of Standards & Technology (NIST), Gaithersburg, MD
Advanced Optical Systems, Huntsville, AL
Dynetics Inc., Huntsville, AL
Hughes Danbury Optical Systems, Danbury, CT
Nichols Research Corporation, Huntsville, AL
SCI Systems, Huntsville, AL
Speedring, Cullman, AL

5. LESSONS LEARNED

These lessons may not be all that surprising to those who have developed new curricula in the past.

First, it was an interesting challenge to develop and get Steering Committee agreement on a new curriculum with as diverse a group as we had, but it can be done. This took about three months of fairly steady effort. Initially there was a significant difference of viewpoint between the academic and the government/industry representatives with the academic representatives stressing fundamentals and the industry stressing practical training. What resulted, of course, was a mix.

Second, it takes a considerable amount of time to get a new set of courses and curriculum approved by the academic organizations involved once they were approved by the Steering Committee. This also took about three months.
Third, even with reasonably extensive advertising, it takes time for the student community to realize
that there is a new program available. All reasonable avenues for advertising should be pursued and a
process should be established to ensure that all inquiries and applications get communicated promptly to the
program office. A considerable amount of time should be set aside by the program office to discuss the
program with prospective students.

Fourth, nearly every prospective student either requires or expects financial support. This needs to be
budgeted and a process established to determine who gets supported. A time-line for this needs to be
established and communicated in advertising and to the prospective students.

Fifth, this curriculum was designed for both traditional full time students as well as non traditional part
time students. It is challenging to develop a course and class schedule which meets the needs of all of these.
One option which has been used at UAH is Distance Learning in which the classes are video taped for
viewing by the Distance Learning students on their own, preferably prior to the next class. This has worked
well for other programs at UAH and will be tried in this program in the spring of 1996. Results will be
presented at the conference and preliminary results will be included in the final paper.

6. ACKNOWLEDGEMENTS

Obviously the development and implementation of this program has required the support and
participation of many individuals and organizations. First, we would like to acknowledge Jeff Bennett, U. S.
Army Missile Command; Jim Bilbro, NASA Marshall Space Flight Center; Gordon Emslie, Chairman of the
UAH Physics Department; Darell Engelhaupt, UAH Center for Applied Optics; Dick Hartman, Advanced
Optical Systems; Gary Kamerman, Teledyne Brown Engineering; Neil Mohon, Dynetics; and David Olson,
Hughes Danbury Optical Systems; who, among other members of the Alliance for Optical Technology, were
very effective in the initial definition and development of the program. Second, we would like to thank the
NASA Marshall Space Flight Center, the U. S. Army Missile Command, the Oak Ridge National Laboratory,
Advanced Optical Systems, Inc., Dynetics Inc., Hughes Danbury Optical Systems, Nichols Research, the
National Institute for Standards and Technology, SCI Inc., and Speedring for offering support for the student
site practicum thesis projects. Third, we would like to thank Bob Berinato, Dynetics, Inc. for his continued
support and for teaching several of the Optomechanical Design and Manufacturing classes. Classes were also
taught by Ned Bragg, OETC, Inc.; David Pollock, UAH: and Jim Spann, NASA/MSFC. Finally we would
like to acknowledge support of the Technology Reinvestment Project, and thank John Jennings, ARPA, and
John Carlisle and Sally Little, NASA/MSFC, for their interest and support.