
Session 3220

A SIMULATION PROJECT FOR AN OPERATING SYSTEMS COURSE

John K. Estell
The University of Toledo

1. INTRODUCTION

One of the dilemmas facing instructors of introductory operating systems courses is the development of
suitable programming assignments. It is desirable to expose undergraduate students to realistic projects that
allow them to apply the theoretical concepts learned in lecture; however, great care must be taken not to
overwhelm the student enrolled in this course. Several methodologies have been discussed in the literature over
the years, one of which is the use of simulation. Various papers have described the use of generic simulators
being provided as a framework, writing a multitasking operating system in assembly language for use on a
IBM Virtual Machine2, developing an operating system for a provided virtual hardware simulator, and

4 One popular simulation package isdeveloping the simulation of the machine along with the operating system .
5 here one is provided with the code for a working instructional operating systetn alongthe Nachos system , w

with a machine simulator. The use of simulated machines allows for the avoidance of such potential problems
as architectural idiosyncrasies and programming in a complex and unfamiliar language.

Another dilemma is dealing with the abstract nature of a process. Students initially look at a process as
being the same as a program, for that is how it appears to them as a user when they are learning how to
program: same thing, different names. Now that they have to deal with the internals of a multitasking operating
system, students are left trying to cope with theoretical concepts that are not well defined. Additionally, the
dynamic and concurrent nature of processes on a multitasking system departs from the sequential concepts they
have been exposed to in their previous studies. In order to grasp an understanding of the nature of a process,
students need to work with processes, and the greater the immersion, the greater will be their comprehension.

This paper presents a group project used as a programming assignment for groups of three to four
students in a junior-level introductory operating systems course. The quarter-long assignment, written in C on
a UNIX platform, was broken down into four phases: the initial simulation of the specified computer
architecture and accompanying machine language with the incorporation of a process management model, the
development of process scheduling routines for handling the simultaneous execution of multiple processes, the
development of performance evaluation programs to filter data generated by the simulator, and an extension to
the simulator initiated and designed by each group. Test programs modelling various types of processes were
developed and executed using the simulation and evaluation programs. The results were used to examine the
performance of several process scheduling algorithms under a variety of conditions. Through the development
and implementation of this project, the students gained experience with processes, obtained insight into the
nature of an operating system, learned about simulation methods and furthered their understanding of how
computers operate at the machine instruction level.

?$hx~} 1996 ASEE Annual Conference Proceedings
‘.J~M&l#.

P
age 1.37.1

2. THE LS COMPUTER SYSTEM

In order to work with actual processes a hypothetical computer system, complete with machine
language, was developed. As the primary focus was to work with processes and not to explore the nuances of
computer architecture, the specifications for the system were kept as simple as possible. The system, called LS,
consists of an 8-bit accumulator register, a 16-bit indirect (X) register, a 16-bit program counter (PC), a 16-bit
stack pointer (SP), and a status register. The status register contains three 1-bit flags: the zero flag, the carry
flag, and the negative flag. All arithmetic and logical operations will place results in the accumulator and
modify the appropriate status flags. The system supports three addressing modes: immediate, where the data is
contained with the instruction; direct, where a PC-relative offset refers to the desired memory location; and
indirect, where the contents of the X register refer to the desired memory location.

A minimal instruction set was specified in order to keep the implementation of the simulator as simple
as possible. This information was presented to the class in terms of specific machine codes for each allowed
combination of operation and addressing mode. For each machine code, a value is specified for the number of
clock cycles it would take to fetch and execute that particular instruction; these values are needed to update the
master clock used for keeping track of time in the simulation. The instructions break down into several mostly
recognizable categories, such as load and store register contents, arithmetic and logical operations on the
accumulator, comparison and branch, and subroutines. Port-based I/O instructions are used for flexibility in
that no new instruction is needed to add a new I/O feature. All that is required is to assign a port number to the
new operation and write the supporting simulation code. The fork instruction is not commonly found in an
instruction set; however, it is suitable here as it makes the action of forking a process atomic, greatly
simplifying the design.

In order to allow groups to test their simulators an assembler program for the LS mnemonics was
needed; otherwise, object code would have to be hand-compiled. As this course had a honors section
associated with it which required extra work to be performed, it was decided that writing a simple assembler
would constitute the honors students’ project. The specifications called for a minimal number of assembler
directives: “byte” specifies data to be stored, “.blkb” reserves memory space, “ start” indicates the start of the
executable portion of the source file, and “stop” indicates the end of assembly. To simplify matters, a label
format consisting of a letter followed by a digit was adopted. This assignment was given to the honors students
at the beginning of the quarter. Its completion was scheduled such that a working assembler program would be
available to the groups for at least one week prior to the deadline for the first phase of the simulation program.

The object file generated by the assembler consists of ASCII hexadecimal characters, with each line
containing two characters to form one machine code. This format was chosen so that, if the need arose, object
files could be easily sight-verified. The LS system operates on a relative addressing scheme; therefore,
addressing begins at relative location 0000. The first word in the object file gives the offset, in low byte - high
byte order, to the first executable machine code in the file. This information is used by the LS loader to
properly adjust the PC for beginning the execution of the process created for this program. The remaining
bytes are the data and machine codes that make up the program.

3. PHASE ONE: SIMULATOR AND PROCESS MANAGEMENT

The first phase of the project was to implement the basic system so that a single process could be
successfully executed on the simulator. Each student was given the specification for the LS computer system.
Time was given in class for the groups to assemble and discuss design criteria under the general supervision of
the instructor. This phase was the most difficult for the students to accomplish as an understanding of all
aspects of the material was needed in order for the system to be functional.

{~x~~ 1996 ASEE Annual Conference Proceedings
‘Jt#l..$.

P
age 1.37.2

I
The five-state mode16 was used for process management. The New state handles just-created

processes, It initializes the data structures for a new process, after which it enters the process into the ready
queue. The Ready state contains the ready queue, which lists those processes that are ready to use the
processor. The Running state deals with the one currently executing process. A process is placed into this
state by a scheduling algorithm that determines which process in the ready queue will be given access to the
processor. A process continues operating in this state until either an 1/0 or event wait is encountered or a timer
interrupt is received. The Waiting state contains those processes blocked by such things as an I/O request.
Once the event that is being waited on has occurred then the process associated with the event will be placed
into the ready queue. Finally, the Terminated state deals with the exiting of a process. The data structures
associated with the process are properly disposed of and data regarding the execution of the process is
collected. In order to use this model, a process control block must be created for each process on the system.
This block will store such data as the register contents, the process identification number (PID), memory
location, queue pointers, and statistical data. The information contained within the process control block is
used by all of the process management states.

A process is executed by specifying its program object file as a command line parameter when invoking
the simulator. A process control block and a PID are created for the process, the program’s object codes are
stored in the simulator’s memory, and memory is allocated for the process stack. The dispatcher begins the
execution by performing a context switch, giving the processor to the process. The dispatcher is a system-
owned process that executes the scheduling algorithm that controls the use of the processor. The basic
simulation uses the first-come, first-served (FCFS) scheduling algorithm. The process has control of the
processor until it either terminates or is blocked by an 1/0 request. When a process is blocked, it is assumed that
a fixed number of clock cycles will elapse before the request is serviced and the process is unblocked. The
output from the simulator is a trace in column form of the activity during the simulation. In order, the output
gives on each line the cumulative clock cycle time when the event occurred, the PID of the affected process,
and the reason for the context switch. A PID of zero indicates the dispatcher process.

4. PHASE TWO: MULTITASKING AND PROCESS SCHEDULING

The next phase of the project involved the modification and refinement of the LS computer system
simulation. The main goals here were to implement multitasking and various process scheduling algorithms.
Multitasking was reasonably straightforward, as most of the necessary elements were in place. The object files
of all of the processes to be executed during a simulation are specified on the command line; they enter the New
state in order of appearance on the command line. The command line is also used to explicitly specify a
scheduling algorithm. In the first phase of the project the FCFS algorithm was implemented. Under FCFS, the
ready queue is designed as a simple FIFO (first-in, first-out) queue. When the process in the Running state
either finishes execution or is blocked, the FCFS algorithm will select the process at the head of the ready queue
for execution. Because of the way that the FCFS algorithm was implemented in the first phase of the project, it
was already available for use in a multitasking environment.

Two scheduling algorithms were added to the simulation: round robin (RR), and shortest remaining
time (SRT). The RR algorithm is similar to the FCFS algorithm, but with the inclusion of preemption to allow
for switching between processes. Preemption is based upon allowing a process to execute in the Running state
only up to a specified maximum amount of time referred to as a time slice. When a process is preempted, it is
placed at the rear of the ready queue, and the next process to run is taken from the head of the ready queue. For
the simulation, the time slice was specified as a passed parameter expressing the time slice in terms of number
of clock cycles. By allowing the students to set the time slice value at run time, one sets the stage for
experimentation into the effect of varying time slices to be conducted later on in the course. The SRT algorithm

?@xd; 1996 ASEE Annual Conference Proceedings
‘..,,~ymlL.:.

P
age 1.37.3

gives the students some experience with algorithms that use the history of previous accesses to the processor to
determine which process should next be scheduled for execution. For this algorithm, one needs to keep a
history of the amount of processor time used by each process for each of the last few previous visits in the
Running state. Each of these times are multiplied by a weighted value biased towards the more recent visits,
then are summed together to form an estimation as to the amount of time the process will spend in its next visit
to the Running state. The SRT scheduling algorithm will select the process with the shortest estimated time for
execution. The SRT algorithm is similar to the RR algorithm in that it also uses a time slice preemption
mechanism; however, it differs in that it is possible for a process with a sufficiently high time estimate to
encounter starvation, where it does not have the opportunity to access the processor because of other processes
having shorter estimated times always being present in the ready queue.

For all scheduling algorithms, the estimated amount of clock cycles it would take for the dispatcher to
perform the appropriate operations is calculated. While the dispatcher could be implemented as an actual
process executed by the simulator, it was decided that it would be better to allow the students to perform all of
the necessary dispatcher functions in the high-level language used in writing the simulation. In this way the
students still get the necessary experience of working with such items as process control blocks and ready
queues without having to deal with the tedious nature of working with these structures in a primitive assembly
language. The estimated value for the dispatcher operation is used to update the system time during simulation
for each invocation of the dispatcher.

The more complex LS machine codes were implemented during this stage; this includes FRK, for
forking a process, and the specification of port numbers for handling both terminal I/O and interprocess
communication (IPC). The fork instruction is used to spawn a child process. The child process is created by
making a new process control block based on the current state of the parent process and by allocating memory
into which will be copied an image of the parent process. Upon return from the fork instruction, both the parent
and the child processes will have the PID of the related process located in the X register. The carry flag is used
to differentiate between parent and child; the parent has the carry flag set to one, and the child has the carry flag
set to zero. This design facilitates the use of interprocess communication in that, upon creation of a child
process, the child knows the PID of the parent and the parent knows the PID of the child. Message passing
between two processes is performed by having a receiving buffer for each process. Semaphores are used to
control the reading and writing of data to this buffer; this is essentially an implementation of the bounded-
buffer producer/consumer problem6. When an IPC write operation is performed, the transmitted data is place
into the message queue of the target process. If the message buffer is full, then the transmitting process is
blocked until an entry is read by the target process. When an IPC read operation is performed, the process
accesses its message queue to search for data. If the message buffer is empty then the process is blocked until
data is received from the transmitting process. As multiple processes are now sharing memory, a bounds
checking mechanism was incorporated into the simulation in this development phase to provide process
integrity security. This was done to prevent a process from performing a scan of the address space outside of its
allocated area in an attempt to obtain data from, or to otherwise interfere with, another process.

5. PHASE THREE: PROCESS SCHEDULING ALGORITHM EVALUATION

The third phase of the project dealt with the testing and performance of the simulation. Each group had
to write LS assembly language programs that would serve as characteristic examples of various types of
processes. Several CPU-bound and I/O-bound processes with specified execution times were developed, as
well as processes that would implement interprocess communication and attempt to examine the entire contents
of memory. A filter program was also written to take the output from the simulator, analyze it, then display the
results in a tabular format. The filter program provides information regarding the various scheduling criteria

{axa~ 1996 ASEE Annual Conference Proceedings
‘..+,plvlll&:

.,,, O ‘,

P
age 1.37.4

1
used when analyzing algorithm performance. One of the key criteria is CPU utilization. As the CPU is a scarce
resource, it needs to be kept as busy as possible executing user programs. Because of the nature of the
simulation, the CPU utilization is measured not over time but only for the life-span of the processes used in the
simulation. This still provides informative data for comparing the difference in system performance between
algorithms. As an example, one of the evaluations required the students to run the simulation using the RR
algorithm with various time slices for the same set of processes. As smaller time slices will increase the number
of context switches, the students can observe from their data that the CPU utilization suffers when the time slice
is too small and how other scheduling criteria are adversely affected when the time slice is too large.

The filter output also gives the values for arrival time, amount of service time, the start and finish times,
the regular and normalized turnaround times, the waiting time, and the throughput, which is the number of
processes completed per time unit. The ideal scheduling algorithm would maximize the CPU utilization and
throughput to make the system as efficient as possible. Additionally, this algorithm would minimize the
waiting, turnaround, and response times for the convenience of the user. From their experiments using various
scheduling algorithms and process mixes, students learn that when one criteria is optimized, it is at the expense
of another. A report was submitted by each group along with their test data for the various processes and
scheduling algorithms investigated.

6. PHASE FOUR: STUDENT EXPLORATION

The final phase of the project allowed groups to further develop their simulator. Most groups used the
curses text windowing package to provide for a visual interface if desired by the user; some included a
disassembler that allows for single stepping of the instructions in memory. One group even implemented a
simple virtual memory system. Some exploration was performed, but not implemented, in the area of files.
This involved the discussion of establishing a directory and file format, and of setting up a disk simulation
program that would run as a separate process. Through use of the UNIX socket mechanism, the LS simulator
would make requests of the disk simulator. If this course was taught under the semester system instead of the
quarter system, there would be sufficient time to extend this project further. Areas such as virtual memory, files
and disk I/0, and multiple users could be fully explored. It would also be possible to set up sockets to allow
connections between simulators, forming a network that could be used for exploring remote procedure calls.

7. RESULTS

Student comments obtained from both discussions and anonymous evaluations indicate that this
project was a positive experience. By developing the simulation students gained a greater understanding of
both the amount of work and the complexity involved in developing an operating system. The LS computer
simulation contained, on average, 3000 lines of code distributed over several modules. While this is minuscule
compared to the size of a modern operating system, students still experienced the frustration of yet another bug
cropping up during testing, and thereby appreciated the comment made at the beginning of the quarter that
operating systems are never fully debugged. While only about a third of the groups in the class had everything
working correctly, all of the remaining groups had most of their simulation working according to specifications.
The portions not working were minor flaws that did not properly execute one or two test programs.

The project, by itself, allowed the students to learn first hand about such things as what information is
necessary when performing a context switch, what things have to be done in order to fork a process, and how
one can implement interprocess communication. The students also experienced having to develop test
programs for the purpose of analyzing system performance. However, other lessons not directly related to the
project were learned as well. For many students this was the first “real” program that they have worked on -

{hx~~ 1996 ASEE Annual Conference Proceedings
‘?+,~yy’:.

P
age 1.37.5

“real” in the sense that they were working in a group environment on a program that actually “did something”.
Students learned the importance of planning out of necessity, as they had to agree on how they as a group were
going to implement the project before coding. The size of the project forced them to develop modular
programming skills so that work could be performed by all team members simultaneously. As one student
aptly put it, “If this would have been one large program, it would have been impossible - thank goodness for the
makefile !” The complexity of the program and the need for working on code designed by others also helped to
reinforce the importance of good documentation and a clean, readable programming style.

One of the keys to the success of this project was the development of clear and concise specifications
that were distributed to the students at the beginning of the project. The foundation formed by the detailed
description of the LS computer system along with assignment handouts spelling out what was to be
implemented and what was to be accomplished for each phase of the development process provided a necessary
framework for the students. However, they were not led by the hand and told how to implement. There are
many ways to implement an operating system, and as each member of a group had his or her own ideas as to
how to accomplish this, the design discussions that ensued among the group members enabled each student to
obtain a greater understanding of the subject than what would have resulted by working alone.

In conclusion, this was an enlightening experience for both the students and the instructor. While it was
not the original intent of the assignment, this project touched upon many separate threads discussed in previous
courses. These threads were woven together into a cohesive whole -- a cloth that tied together many concepts,
allowing them to see and appreciate why we previously spent all that time over “boring, useless” material. And
as the threads that enter a loom are woven into patterns, so too were the concepts that the students used in
designing their project woven into a fabric that gave them the opportunity to learn about processes and to
further their knowledge of the architecture, organization, and operation of a computer system.

REFERENCES

1.

2,

3.

4.

5,

6.

M. Cartereau, “A Tool for Operating System Teaching,” SZGCSE Bulletin, Vol. 26, No. 3, pp. 51-57,
September 1994.
J. L. Donaldson, “Teaching Operating Systems in a Virtual Machine Environment,” SZGCSE Bulletin, Vol.
19, No. 1, pp. 206-211, February 1987.
T. Hayashi, “An Operating Systems Programming Laboratory Course,” SZGCSE Bulletin, Vol. 15, No. 1, pp.
31-35, February 1983.
C. Shub, “A Project for a Course in Operating Systems,” SIGCSE Bulletin, Vol. 15, No. 1, pp. 25-30,
February 1983.
A. Silberschatz and P. B. Galvin, Operating System Concepts, 4th edition, Addison-Wesley, Reading, MA,
1994.
W. Stallings, Operating Systems, 2nd edition, Prentice Hall, Englewood Cliffs, NJ, 1995.

JOHN K. ESTELL

Dr. Estell received his BS degree (summa cum laude) from The University of Toledo in 1984. Awarded
NSF Graduate and Tau Beta Pi Fellowships, he received his MS and PhD degrees in Computer Science from
the University of Illinois at Urbana-Champaign in 1987 and 1991. Dr. Estell is a member of ACM, ASEE,
IEEE, Eta Kappa Nu, Phi Kappa Phi, and Tau Beta Pi.

$iifii:} 1996 ASEE Annual Conference Proceedings
‘JHJ!$..’.

P
age 1.37.6

