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Dataflow Scheduling and Exploring Digital System Design Alternatives 
 

Abstract 

 

Dataflow scheduling is a powerful technique for exploring design alternatives at the 

system level.  Efficient scheduling is, however, a complicated task.  Software tools are 

often used in high-level synthesis to schedule a design specification.  Since high-level 

synthesis is not yet widely accepted as a method of design entry, most students do not 

appreciate the significance of scheduling to the tradeoffs of system-level digital design.  

In this paper, we use a sorting algorithm to investigate the role of scheduling to the 

design of sorting networks.  In class, we begin with a serial specification.  Then, the as-

soon-as-possible (ASAP) and the as-late-as-possible (ALAP) scheduling algorithms are 

applied to the original description.  Students are also encouraged to define their own 

schedules and compare them with the serial, ASAP, and ALAP schedules.  The impact of 

various schedules on the number of sorting elements, registers, multiplexers, and control 

steps are analyzed.  After students have derived much insight of the problem, several 

scheduling algorithms available in the literature such as the force-directed scheduling are 

studied.  To investigate the impact of dataflow scheduling on hardware implementation, 

the data paths and controllers of two scheduled dataflow specifications are presented.  

The tradeoffs between hardware cost and system performance is analyzed.  The 

methodology was taught in an “Advanced Digital Design” course as a design space 

exploration skill.  Students’ feedback indicated that the method was very systematic and 

robust, and constituted a powerful digital design technique.  Given the instruction set 

specification of a computer, the technique is also applicable to explore the design space 

of a central-processing-unit (CPU).  In addition, the materials give students a clear 

demonstration for the structures of a CPU, including the separation of data paths and 

controller as well as the impact of multiple functional units.  With these considerations in 

mind, the module was also offered in the course of “High-Performance Computer 

Architectures” for students to understand the fundamentals of CPU design. 

 

1. Introduction 

 

As the complexity of digital design continues to increase, system level design is 

becoming the focus of digital design activities.  These days digital design often begins 

with an algorithmic specification.  The algorithmic description is then scheduled [8, 9].  

The structure of a design is generated based on the scheduled data and control flow 

specification. 

 

Given a scheduled dataflow specification, a clique-partitioning procedure can be applied 

to the synthesis of data paths in a digital system [9].  Slicing techniques can be used to 

produce a controller for the data paths [10].  In other words, hardware resources 

requirement is determined by the scheduled data flow.  Indeed, dataflow scheduling has 

become an important technique for exploring design alternatives.  In this paper, we 

describe how we used the design of sorting networks to teach students the new paradigm 

of dataflow scheduling for exploring digital system design alternatives. 
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Sorting problems have been extensively studied; numerous software algorithms including 

bubble sort, quicksort, etc., are available in the literature [5, 7].  Through the study of the 

traditional software algorithms, students learn the fundamental implication, limitation, 

and flexibility of von Neumann architecture. 

 

We also address the impact of algorithm organization on dataflow scheduling, a territory 

often overlooked by traditional scheduling methods.  One aspect is related to how data 

dependency is described and the other is about specifying a function as control or data 

flow.  A sorting algorithm can be described as a combination of data flow and control 

flow.  A list of statements containing a single entry and a single exit point, respectively, 

is defined as a basic block [1].  An algorithm generally consists of a number of basic 

blocks linked together by control flow constructs such as the switch instruction in the C 

language [6] or a concurrent fork statement [3, 10].  Unless a special technique is applied 

to schedule the hardware description, dataflow analysis is confined to the context of a 

basic block.  The amount of parallelism is therefore limited by the instructions embedded 

in each basic block.  A sorting algorithm, on the other hand, may also be specified as 

simple dataflow.  In this case, a sorting element which consists of a comparator and a 

multiplexer is used as the basic operator for sorting.  This type of specification may 

provide rich opportunity for dataflow optimization.  In other words, a design specification 

of sorting function may offer limited parallelism due to the way that data dependency and 

control flow is specified.  A different description for the same objective may enable 

dataflow scheduling to identify maximum parallelism through data dependency analysis.  

In this paper, different styles of hardware descriptions will be provided to address the 

impact of design specification to dataflow scheduling. 

 

The aforementioned methodology was presented to the senior and first year graduate 

students taking “Advanced Digital Design” and “Computer Architectures” courses.  The 

laboratory was assigned to students taking “Advanced Digital Design” as one of their 

term projects.  The “Advanced Digital Design” course covers VHDL [2], digital system 

design using micro-architectural modeling techniques, and advanced topics in logic 

optimization.  The main objective of the course was to train students the capability of 

performing system-level design.  The knowledge of scheduling was introduced for the 

purpose of exploring system-level design tradeoffs.  Based on the feedback given by 

students, the module was very instrumental to the study of digital system design and 

computer architectures. 

 

The paper is organized as follows.  Section 2 introduces two software sorting algorithms: 

bubble sort and quicksort.  Section 3 presents three dataflow specifications for sorting.  

Section 4 discusses several scheduling methods.  Section 5 investigates the hardware 

implementation of two scheduled dataflow descriptions.  Section 6 describes the impact 

of separating data and control flow specification.  Finally, Section 7 contains concluding 

remarks of the paper and an assessment for the effectiveness of the course module. 

 

2. Software Sorting Algorithms 
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In order to identify the order of data, sorting involves comparisons.  The simplest 

algorithm for sorting a given number of integers is probably the bubble sort.  Let N 

integers be given.  The following C-like routine describes its details.  Essentially, the 

routine contains two loops.  The outer loop begins with the first datum, compares it with 

all the data following it, one by one, until the last one, to extract the smallest data in the 

list.  In the first iteration, the smallest data is extracted.  In the second iteration, the 

second smallest number is isolated.  This process repeats itself until the list of data is 

completely sorted.  To achieve the goal, during an iteration of the outer loop, the inner 

loop walks through all the data following the reference datum in the outer loop one by 

one to identify the smallest datum in the remaining list.  When both loops are completed, 

the data array contains a list of sorted data. 

 

Bubble sort: 

 

for (i = 0, i < N-1; i++) { 

 for (j = i+1, j < N; j++) { 

if (A(i) > A(j)) { 

temp = A(i); 

A(i) = A(j); 

A(j) = temp; 

                     } 

           } 

   } 

 

In the algorithm, it takes ( ) ( ) 2 / 2  1 −∗− NN steps of sorting operations to complete a 

sorting task.  A sorting operation contains a comparison and three steps of data swapping.  

Of course, this is a natural outcome of applying conventional software development 

concept to a von Neumann machine which assumes that a single arithmetic or logic 

operation is performed in each step. 

 

An efficient algorithm called quicksort applies a divide-and-conquer strategy to 

recursively partition a list of data into two lists and a pivotal element.  Each time a list is 

partitioned into two sub-lists on the two sides of the pivotal element.  If the pivotal 

element is located at half-way of the list, the process results in a time complexity 

of NN log* .  The average number of steps required by quicksort is NN log* ; however, 

the worst-case complexity is still of 2
N . 

 

So far we have investigated the issues of software algorithms for sorting.  A software 

algorithm, which is often run on a von Neumann machine, assumes that a single 

instruction is executed in each step.  In software implementation, the tradeoffs between 

time and memory space are often explored.  Suitable data structures may be required for 

an implementation.  In the next section, we will examine some dataflow specifications for 

sorting. 

 

3. Dataflow Descriptions for Sorting 
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As indicated in Section 2, an efficient sorting algorithm such as the quicksort can have 

the average performance of NN 2log* .  Given N numbers, effectively ≈…

≈
↔←

↔

2

N
 comparisons 

can be performed simultaneously.  As a result, it is possible to complete the sorting task 

in N steps. 

 

For clarity and presentation convenience, instead of using N input data, we will assume 

that five random fixed-width, e.g., 16-bit, integers are given as the input data to illustrate 

dataflow specification of sorting.  Let the five integers be represented by IA, IB, IC, ID, 

and IE. 

 

As described in Section 2, depending on the way an algorithm is designed, the average 

number of steps required for a software implementation can be in the order of 

NN 2log to 2
N for a given N numbers.  Similarly, depending on which pairs of data are 

compared and the order of comparing these pairs of data, there are numerous ways of 

specifying the dataflow of sorting five numbers.  It requires creative thoughts to define an 

efficient description.  In this section, three different descriptions are presented to 

demonstrate the varieties of dataflow specification.  In the future, writing efficient 

dataflow specification may become the focus of creating a good digital design. 

 

In the following descriptions, the symbols IA, IB, IC, ID, and IE represent five sets of 

input ports.  Each set of input ports, e.g., IA, is assumed to contain the same number of 

bits; for example, 16 bits.  The symbols OA, OB, OC, OD, and OE stand for five sets of 

output ports.  Each of the other variables is represented by the alphabet A, B, C, D, or E, 

followed by an integer.  The integer is used to identify the level in the data flow 

specification.  The first set of statements store the data available at the input ports to A0, 

B0, C0, D0, and E0.  The last set of statements, which are optional, show the association 

of the output ports OA, OB, OC, OD, OE with their respective sources.  Each set of the 

output ports actually captures its source data in real time.  We will use the statements 

between the first line and the last line to describe the issues of dataflow scheduling.  All 

of the statements listed in the same line, separated by semicolons, are assumed to proceed 

concurrently in the same cycle.  Given two adjacent lines of statements, those statements 

placed in the second line are assumed to be executed in the next cycle following the 

completion of the statements in the first line. 

 

One way of describing the dataflow of sorting five numbers is to mimic the software 

algorithm for bubble sort. 

 

Routine-1:  A serial bubble-sort dataflow description of five integers 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); 

(A2, C2) = sort(A1, C0); 

(A3, D3) = sort(A2, D0); 

(A4, E4) = sort(A3, E0); 

(B5, C5) = sort(B1, C2); 
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(B6, D6) = sort(B5, D3); 

(B7, E7) = sort(B6, E4); 

(C8, D8) = sort(C5, D6); 

(C9, E9) = sort(C8, E7); 

(D10, E10) = sort(D8, E9); 

OA = A4;  OB = B7;  OC = C9;  OD = D10;  OE = E10; 

 

A second method of specifying sorting algorithm is a modified bubble-sort description 

presented in Routine-2.  This algorithm requires the same number of steps as Routine-1.  

However, the data dependency specified in this algorithm offers opportunities for 

generating shorter schedules. 

 

Routine-2:  An alternative serial bubble-sort dataflow description of five integers 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); 

(B2, C2) = sort(B1, C0); 

(A3, B3) = sort(A1, B2); 

(C3, D3) = sort(C2, D0); 

(B4, C4) = sort(B3, C3); 

(D4, E4) = sort(D3, E0); 

(A5, B5) = sort(A3, B4); 

(C5, D5) = sort(C4, D4); 

(B6, C6) = sort(B5, C5); 

(A7, B7) = sort(A5, B6); 

OA = A7;  OB = B7;  OC = C6;  OD = D5;  OE = E4; 

 

A third method of specifying sorting algorithm is a “balanced” description.  Data 

dependency specified in this dataflow evenly spreads across all the statements.  As a 

result, the task of sorting five numbers can be completed in five steps. 

 

Routine-3:  A balanced sorting dataflow description of five integers 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); (C1, D1) = sort(C0, D0); 

(B2, C2) = sort(B1, C1); (D2, E2) = sort(D1, E0); 

(A3, B3) = sort(A1, B2); (C3, D3) = sort(C2, D2); 

(B4, C4) = sort(B3, C3); (D4, E4) = sort(D3, E2); 

(A5, B5) = sort(A3, B4); (C5, D5) = sort(C4, D4); 

OA = A5;  OB = B5;  OC = C5;  OD = D5;  OE = E4; 

 

The first dataflow description does not offer any possible parallelism.  A more relaxed 

data dependency is embedded in the second specification.  As a result, shorter schedules 

can be generated from it.  The data dependency in the third description is pretty much 

evenly spread over all the variables; maximum parallelism is available.  In the following 

sections, we will use this description to illustrate the issues of dataflow scheduling. 
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4. Dataflow Scheduling 

 

Given a dataflow specification, scheduling assigns all statements to a number of steps 

based on the data dependency defined by the description.  The as-soon-as-possible 

schedule assumes that each statement is exercised at its earliest possible time.  The as-

late-as-possible schedule, on the other hand, places each statement at the latest possible 

cycle.  Optimal scheduling is a complicated task.  Heuristics are normally applied to 

identify a good schedule for an efficient hardware implementation.  For example, a 

method called force-directed scheduling, which is based on the criterion of load 

balancing, is presented in [8]. 

 

To generate the ASAP schedule, the process begins with placing the first statement in the 

first cycle.  If the second statement uses the output generated by the first statement, it is 

placed in the following cycle of the first statement, i.e., in the second cycle.  Otherwise, it 

is placed in the same cycle as the first statement.  This process continues for the third, 

fourth, etc., statements until all the statements are scheduled. 

 

To generate the ALAP schedule, the process begins with placing the last statement in the 

last cycle.  If the output generated by the second last statement is used by the last 

statement, it is placed in the previous cycle of the last statement, i.e., in the second to the 

last cycle.  Otherwise, it is placed in the same cycle as the last statement.  This process 

continues for the third to the last, fourth to the last, etc., statements until all the statements 

are scheduled. 

4.1 Case Study #1 

 

In Routine-1, starting from the second statement, each statement uses at least one result 

generated by the previous statement.  There is no room for schedule adjustment. 

4.2 Case Study #2 

 

The ASAP/ALAP schedules for Routine-2 turned out to be identical; they are given in 

Routine-4.  Given the ASAP and ALAP schedules, the same schedule is derived from the 

force-directed scheduling method. 

 

Routine-4:  The ASAP/ALAP schedule of Routine-2 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); 

(B2, C2) = sort(B1, C0); 

(A3, B3) = sort(A1, B2); (C3, D3) = sort(C2, D0); 

(B4, C4) = sort(B3, C3); (D4, E4) = sort(D3, E0); 

(A5, B5) = sort(A3, B4); (C5, D5) = sort(C4, D4); 

(B6, C6) = sort(B5, C5); 

(A7, B7) = sort(A5, B6); 
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OA = A7;  OB = B7;  OC = C6;  OD = D5;  OE = E4; 

 

4.3 Case Study #3 

 

Based on the order of statements given in the schedule shown in Routine-3, a serial 

schedule is given in Routine-5. 

 

Routine-5:  A serial dataflow description of Routine-3 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); 

(C1, D1) = sort(C0, D0); 

(B2, C2) = sort(B1, C1); 

(D2, E2) = sort(D1, E0); 

(A3, B3) = sort(A1, B2); 

(C3, D3) = sort(C2, D2); 

(B4, C4) = sort(B3, C3); 

(D4, E4) = sort(D3, E2); 

(A5, B5) = sort(A3, B4); 

(C5, D5) = sort(C4, D4); 

OA = A5;  OB = B5;  OC = C5;  OD = D5;  OE = E4; 

 

The ASAP and ALAP schedules of Routine-3 are identical; they are represented in 

Routine-6.  Since the two schedules are the same, there is no room for further 

optimization.  As a result, the force-directed scheduling method based on the 

ASAP/AEAP schedule also produces the same schedule. 

 

Routine 6:  The ASAP and ALAP dataflow description of Routine-3 

 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;  E0 = ID; 

(A1, B1) = sort(A0, B0); (C1, D1) = sort(C0, D0); 

(B2, C2) = sort(B1, C1); (D2, E2) = sort(D1, E0); 

(A3, B3) = sort(A1, B2); (C3, D3) = sort(C2, D2); 

(B4, C4) = sort(B3, C3); (D4, E4) = sort(D3, E2); 

(A5, B5) = sort(A3, B4); (C5, D5) = sort(C4, D4); 

OA = A5;  OB = B5;  OC = C5;  OD = D5;  OE = E4; 

 

5. Hardware Implementation for Scheduled Dataflow Descriptions 

 

There are three types of generic resources in the data paths of a digital design, including 

registers, operators, and interconnections.  Resource allocation of a given dataflow 

description is determined by the constraints embedded in the description. 

 

Lifetime analysis can be used to identify sharing constraints for registers.  The same 

register can be assigned to the input operand and the output variable of the same 

statement if flip-flops are used for the variables.  In digital design, this refers to the 
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read/modify/write scheme.  Usage analysis in each cycle can be used to determine the 

constraints for sharing an arithmetic and logic unit or an interconnection unit.  We use the 

clique-partitioning procedure described in [9] to generate the hardware structure of a 

given schedule. 

 

The three types of data-path components of a design can be allocated separately.  An 

integrated approach can also be applied.  No matter what method is applied, a general 

observation is that it will only produce an optimal solution for a small set of descriptions.  

In other words, no methods are universally effective.  Indeed, the problem of digital 

system design is very complicated.  An efficient method often uses a simple strategy to 

generate high-quality designs. 

 

If data operators are the focus, a serial schedule would generate a single-operator 

structure, which is equivalent to the von Neumann architecture of early computers. 

 

As depicted in Figure 1, a sorting element consists of a comparator and a multiplexer.  

For clarity, we will use the schematic shown in Figure 2 to represent a sorting element.  

The comparator in Figure 1 is replaced by two small circles in Figure 2.  Generally 

speaking, a sorting network consists of registers, sorting elements, multiplexers, and a 

controller.  The total cost of a design is comprised of the chip area occupied by these 

circuit components.  The cycle period is determined by the longest delay from a primary 

input or the output of a flip-flop to a primary output or the input to a flip-flop.  The 

overall performance is characterized by the product of the cycle period and the number of 

cycles.  In practice, the implementation cost is technology dependent.  In this study, we 

use FPGA as the target technology [11, 12]. 

 

 
 

<a3, a2, a1, a0> 

<b3, b2, b1, b0> 

<x3, x2, x1, x0> 

<y3, y2, y1, y0> 

Figure 1: A Sorting Element Comprising of A Comparator and A Switch Element 

GT 
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We will use the balanced dataflow specification presented in Routine-3 to explore the 

design alternatives of sorting networks.  Three designs for two schedules, including a 

serial schedule, and the ASAP/ALAP schedule which turns out to be the same as the 

original balanced description, are presented in this section to demonstrate the impact of 

dataflow scheduling on hardware implementation.  To simplify the presentation, instead 

of five, four input variables are used in the dataflow descriptions.  Also, two input 

signals, called “strobe” and “reset,” and one output signal, named “done,” are included in 

the descriptions for handshaking purpose.  The “strobe” signal initiates a sorting request 

and the “done” signal indicates the completion of a sorting task.  The “reset” signal is 

used as an external reset for the “done” signal.  The four variables A0, B0, C0, and D0 

included in the first line of each schedule are for latching the input values.  For clarity, 

they are not considered for further optimization while register allocation is performed. 

 

5.1 Single sorting element implementation 

 

Routine-7: A serial sorting dataflow description of four input variables 

 

if (strobe = ‘1’) then 

   begin 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID; done = ‘0’;  -- I 

(A1, B1) = sort(A0, B0);      -- 1 

(C1, D1) = sort(C0, D0);      -- 2 

(B2, C2) = sort(B1, C1);      -- 3 

(A3, B3) = sort(A1, B2);      -- 4 

(C3, D3) = sort(C2, D1);      -- 5 

(B4, C4) = sort(B3, C3);      -- 6 

OA = A3;  OB = B4;  OC = C4;  OD = D3; done = ‘1’;  -- X 

   end 

else 

   begin 

if (reset = ‘1’) then 

   begin 

        done <= ‘0’; 

    end; 

   end; 

 

<a3, a2, a1, a0> 

<b3, b2, b1, b0> 

<x3, x2, x1, x0> 

<y3, y2, y1, y0> 

Figure 2: A Sorting Element 
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In order to perform register allocation, lifetime analysis is done for the twelve variables.  

The result is presented in Table 1, where D and L stand for the status of a variable being 

dead or live, respectively, in a time slot. 

 

Table 1: Lifetime analysis result for Routine-7 

 

 A1 B1 C1 D1 B2 C2 A3 B3 C3 D3 B4 C4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 

Step1 L L D D D D D D D D D D 

Step2 L L L L D D D D D D D D 

Step3 L L L L L L D D D D D D 

Step4 L D D L L L L L D D D D 

Step5 D D D L D L L L L L D D 

Step6 D D D D D D L L L L L L 

StepX D D D D D D L D D L L L 

 

Based on the dataflow in Routine-7 and the lifetime analysis result in Table 1, an 

undirected graph identifying the compatible variable-pairs for sharing is given below.  

Applying the clique-partitioning procedure described in [9], the twelve variables can be 

assigned to four registers. 

 
                    (1, 7) (1, 8) (1, 9) (1,10) (1,11) (1,12) 

      (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2,10) (2,11) (2,12) 

      (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3,10) (3,11) (3,12) 

                                  (4, 9) (4,10) (4,11) (4,12) 

                    (5, 7) (5, 8) (5, 9) (5,10) (5,11) (5,12) 

                                  (6, 9) (6,10) (6,11) (6,12) 

                                                (8,11) (8,12) 

                                                (9,11) (9,12) 

 

The result of register allocation is given below and the new dataflow description is 

presented in Routine-8. 

 

 { 2, 5, 8, 11 } or equivalently, { B1, B2, B3, B4 } 

 { 3, 6, 9, 12 } or equivalently, { C1, C2, C3, C4 } 

 { 1, 7 } or equivalently, {A1, A3 } 

 { 4, 10 } or equivalently, { D1, D3 } 

 

Routine-8: Resultant dataflow description of Routine-7 from register allocation 

 

if (strobe = ‘1’) then 

   begin 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID; done = ‘0’;  -- I 

(A1, B1) = sort(A0, B0);      -- 1 S0 

(C1, D1) = sort(C0, D0);      -- 2 S1 

(B1, C1) = sort(B1, C1);      -- 3 S2 

(A1, B1) = sort(A1, B1);      -- 4 S3 

(C1, D1) = sort(C1, D1);      -- 5 S4 
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(B1, C1) = sort(B1, C1);      -- 6 S5 

OA = A1;  OB = B1;  OC = C1;  OD = D1; done = ‘1’;  -- X 

   end 

else 

   begin 

if (reset = ‘1’) then 

   begin 

        done <= ‘0’; 

    end; 

   end; 

 

 

Since only one sorting operation is performed in every cycle, all the sorting operators, 

represented by S0, S1, S2, S3, S4, and S5 in Routine-8, can be assigned to the same 

sorting element. 

 

{ S0, S1, S2, S3, S4, S5 } 

 

Two five-to-one and two two-to-one multiplexers are needed.  The five-to-one 

multiplexers are for routing { A0, C0, A1, B1, C1 } and { B0, D0, B1, C1, D1 } to the 

first and the second inputs of the sorting element, respectively.  The two-to-one 

multiplexers are for routing the two outputs of the sorting element to the two registers B1 

and C1, respectively.  Below is the schematic of the resultant data paths.  The controller 

of the data paths is specified by the state transition diagram depicted in Figure 4. 

 

 
 

Figure 3: Data paths of Routine-8 

 

B0 
D0 
[B1] 

C1 

MUX 

D1 

MUX 

O1 

O2 

O1 

O2 

MUX 
O1 

O2 

A0 
C0 
A1 
B1 

MUX 

[C1] 
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Figure 4: A finite-state-machine control specification for Routine-8 

 

5.2 ASAP/ALAP Implementation. 

 

Routine-9 contains the ASAP/ALAP schedule of the four-input sorting function defined 

in Routine-7. 

 

Routine-9: The ASAP/ALAP dataflow description of four variables 

 

if (strobe = ‘1’) then 

   begin 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;   done = ‘0’;  -- I 

(A1, B1) = sort(A0, B0); (C1, D1) = sort(C0, D0);  -- 1 

(B2, C2) = sort(B1, C1);      -- 2 

(A3, B3) = sort(A1, B2); (C3, D3) = sort(C2, D1);  -- 3 

S0 

S1 

S2 

(A1,B1) = SORT(A0,B0) 

(C1,D1) = SORT(C0,D0) 

S3 

S4 

(B1,C1) = SORT(B1,C1) 

(A1,B1) = SORT(A1,B1) 

S5 OA = A1; OB = B1; OC = C1; OD = D1; done = ‘1’ 

strobe = 0 & reset = 0 

[strobe = 1] => { A0 = IA; B0 = IB; C0 = IC; D0 = ID; done = ‘0’ } 

strobe = 0 & reset = 1 => done = ‘0’ 

clk 

S3 

S4 

 (C1,D1) = SORT(C1,D1) 

(B1,C1) = SORT(B1,C1) 
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(B4, C4) = sort(B3, C3);      -- 4 

OA = A3;  OB = B4;  OC = C4;  OD = D3; done = ‘1’;  -- X 

   end 

else 

   begin 

if (reset = ‘1’) then 

   begin 

        done <= ‘0’; 

    end; 

   end; 

 

To perform register allocation, the result of lifetime analysis for Routine-9 is given in 

Table 2. 

 

Table 2: Lifetime analysis result for Routine-9 

 

 A1 B1 C1 D1 B2 C2 A3 B3 C3 D3 B4 C4 

Index 1 2 3 4 5 6 7 8 9 10 11 12 

Step1 L L L L D D D D D D D D 

Step2 L L L L L L D D D D D D 

Step3 L D D L L L L L L L D D 

Step4 D D D D D D L L L L L L 

StepX D D D D D D L D D L L L 

 

Based on the dataflow in Routine-9 and the lifetime analysis result in Table 2, an 

undirected graph identifying the compatible variable-pairs for sharing is given below. 
 

                    (1, 7) (1, 8)               (1,11) (1,12) 

      (2, 5) (2, 6) (2, 7) (2, 8) (2, 9) (2,10) (2,11) (2,12) 

      (3, 5) (3, 6) (3, 7) (3, 8) (3, 9) (3,10) (3,11) (3,12) 

                                  (4, 9) (4,10) (4,11) (4,12) 

                    (5, 7) (5, 8)               (5,11) (5,12) 

                                  (6, 9) (6,10) (6,11) (6,12) 

                                                (8,11) (8,12) 

                                                (9,11) (9,12) 

 

Register allocation concludes that the twelve variables can be assigned to four registers.  

The assignments are listed below. 

 

 { 2, 5, 8, 11 } or equivalently, { B1, B2, B3, B4 } 

 { 3, 6, 9, 12 } or equivalently, { C1, C2, C3, C4 } 

 { 1, 7 } or equivalently, {A1, A3 } 

 { 4, 10 } or equivalently, { D1, D3 } 

 

The new dataflow description is presented in Routine-10. 

 

Routine-10: Resultant dataflow description of Routine-9 from register allocation 
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if (strobe = ‘1’) then 

   begin 

A0 = IA;  B0 = IB;  C0 = IC;  D0 = ID;   done = ‘0’; -- I 

(A1, B1) = sort(A0, B0); (C1, D1) = sort(C0, D0); -- 1 S0, S1 

(B1, C1) = sort(B1, C1);     -- 2 S2 

(A1, B1) = sort(A1, B1); (C1, D1) = sort(C1, D1); -- 3 S3, S4 

(B1, C1) = sort(B1, C1);     -- 4 S5 

OA = A1;  OB = B1;  OC = C1;  OD = D1; done = ‘1’; -- X 

   end 

else 

   begin 

if (reset = ‘1’) then 

   begin 

        done <= ‘0’; 

    end; 

   end; 

 

The sorting operators, represented by S0, S1, S2, S3, S4, and S5 in Routine-10, can be 

assigned to two sorting elements. 

 

{ S0, S2, S3, S5 } => sortX 

{ S1, S4 }  => sortY 

 

Below is a segment of the dataflow description showing which sorting element is used in 

each statement. 

 

(A1, B1) = sortX(A0, B0); (C1, D1) = sortY(C0, D0); -- 1 S0, S1 

(B1, C1) = sortX(B1, C1);     -- 2 S2 

(A1, B1) = sortX(A1, B1); (C1, D1) = sortY(C1, D1); -- 3 S3, S4 

(B1, C1) = sortX(B1, C1);     -- 4 S5 

 

Two three-to-one and four two-to-one multiplexers are needed.  The three-to-one 

multiplexers are for routing { A0, A1, B1 } and { B0, B1, C1 } to the first and the second 

inputs of the sorting element denoted by sortX, respectively.  Two of the two-to-one 

multiplexers are for routing { C0, C1 } and { D0, D1 } to the two inputs of the sorting 

element denoted by sortY, respectively.  The other pair of two-to-one multiplexers is for 

routing the outputs of the sorting elements to the two registers B1 and C1, respectively.  

Figure 5 depicts the schematic of the resultant data paths.  The controller of the data paths 

is specified by the state transition diagram depicted in Figure 6. 

 

A sorting element is a commutative operator; its input operands can be swapped without 

affecting the output.  If the two input operands B1 and C1 in Step 2 and 4 of Routine-10 

are swapped, the number of inputs to one of the three-input multiplexer can be reduced to 

two. 
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Figure 5: Data paths of Routine-10 

 
Figure 6: A finite-state-machine control specification for Routine-10 

 

A0 
A1 

B1 
MUX 

B0 

C1 

MUX 

MUX SortXO1 

SortXO2 

SortXO1 

SortXO2 

MUX 
SortXO2 

SortYO1 

C0 

[C1] 
MUX 

D0 

D1 

SortYO1 

SortYO2 

sortX 

sortY 

[B1] 

MUX 

S0 

S1 

S2 

(A1,B1) = SORT(A0,B0); (C1,D1) = SORT(C0,D0) 

(B1,C1) = SORT(B1,C1) 

S3 

S4 

(A1,B1) = SORT(A1,B1); (C1,D1) = SORT(C1,D1) 

(B1,C1) = SORT(B1,C1) 

S5 OA = A1; OB = B1; OC = C1; OD = D1; done = ‘1’ 

strobe = 0 & reset = 0 

[strobe = 1] => { A0 = IA; B0 = IB; C0 = IC; D0 = ID; done = ‘0’ } 

strobe = 0 & reset = 1 => done = ‘0’ 

clk 
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5.3 Direct implementation of the ASAP/ALAP schedule 

 

Instead of applying the clique-partitioning procedure to allocate registers, sorting 

elements, and multiplexers, as depicted in Figure 5 and Figure 6, the dataflow description 

in Routine-9 can be directly implemented.  Figure 7 depicts the data-path schematic.  The 

finite state transition diagram of the controller is depicted in Figure 8. 

 

 
 

Figure 7: Direct Implementation Data paths of Routine-9 
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Figure 8: A control specification for the direct implementation of Routine-9 

 

5.4 Implementation Data Summary 

 

Sorting networks are data-path intensive designs; the circuit cost strongly depends on the 

width of data paths.  If the input variables consists of a large number of bits, the cost of 

the finite state machine controller is insignificant and stays fairly constant.  Table 3 

summarizes the implementation data, where N is the number of bits contained in the input 

variables.  Since we assume that there are only four input variables, the AEAP/ALAP 

schedule requires less area than the serial implementation.  If the number of input data is 

large, then the serial implementation would be the most cost-effective one.  The direct 

implementation requires a profound number of registers and sorting elements.  Its 

implementation cost is generally the highest one. 

 

 

S0 

S1 

S2 

(A1,B1) = SORT(A0,B0); (C1,D1) = SORT(C0,D0) 

(B2,C2) = SORT(B1,C1) 

S3 

S4 

(A3,B3) = SORT(A1,B2); (C3,D3) = SORT(C2,D1) 

(B4,C4) = SORT(B3,C3) 

S5 OA = A3; OB = B4; OC = C4; OD = D3; done = ‘1’ 

strobe = 0 & reset = 0 

[strobe = 1] => { A0 = IA; B0 = IB; C0 = IC; D0 = ID; done = ‘0’ } 

strobe = 0 & reset = 1 => done = ‘0’ 
clk 
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Table 3: Hardware implementation data 

 

Design ID Serial ASAP/ALAP Direct 

Number of states in controller 8 4 4 

Number of flip-flops in data 

paths 

8*N 8*N 16*N 

Equivalent number of 2-input 

multiplexers in data paths 

10*N 8*N 0 

Number of sorting elements 1 2 6 

 

 

6. Sorting Specification with Separate Comparator and Data Switch 

 

The sorting statement of (A1, B1) = sort(A0, B0) can be expanded as the following 

program segment. 

 

if (A0 > B0) then 

begin 

  A1 = B0; B1 = A0; 

end 

else 

begin 

  A1 = A0; B1 = B0; 

end; 

 

The presence of the relational expression (A0 > B0) would prevent normal dataflow 

scheduling from obtaining a description with maximum parallelism.  One method of 

addressing this issue is to identifying the output variable of each comparison as a net 

variable, instead of a register variable [10].  Generally speaking, whether to implement an 

operation in the data paths or controller is also an important consideration in digital 

system design. 

 

7. Conclusion and Assessment 

 

In this paper, we address the issues of exploring the design space of digital systems 

through dataflow scheduling.  Several sorting dataflow specifications are presented.  

Given a dataflow specification, we discuss the issues in optimizing the number of 

registers, operators, and interconnections.  The factors which affect the cost and 

performance of the resultant system are discussed.  Also, we briefly examine the 

implication of separating and integrating dataflow and control flow on design space 

exploration. 

 

Students analyzed and compared software algorithms and hardware dataflow 

descriptions.  They also investigated the designs generated from various dataflow 

specifications.  From this exercise, they learned the importance of writing efficient 
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algorithms for generating high-quality digital designs and how to explore the system-

level design tradeoffs. 

 

Many students indicated that “Advanced Digital Design” was one of the most useful 

courses that they had taken during their college years.  Some of them applied the skills to 

their senior design projects; they used the techniques to produce compact and working 

circuits such as a speaker identification system using an FPGA technology [11, 12].  

Several of them had also applied the methodologies to the design of new mathematical 

transforms in digital signal processing for their Master theses and conference papers [4]. 
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