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1 Introduction

This paper describes the introduction of a computer algebra system (CAS) (e.g., Mathematical or Maple)
as atool in a course which has traditionally used FORTRAN or C as the programming tool of choice. The
claim here is not that one type of programming language-CAS (interpretive language) versus FORTRAN
or C (compiled languages) -is generically better, but that for teaching purposes, each offers different
advantages. Some of the benefits of a CAS approach will be described [1].

2 Background

The course, Numerical Methods for Engineers and Scientists, offered by the Department of Mathematical
and Computer Sciences at The University of Tulsa, istaken by graduate students in chemical, mechanical,
and petroleum engineering, geosciences, and mathematical and computer sciences. Occasionally there is a
graduate student from some other discipline, e.g., business administration. The topics covered, primarily
numerical methods for partial differential equations (pales), include finite difference methods, method of
characteristics, and the finite element method.

3 Traditional Course

There is usually a course text focusing on the descriptions and comparisons of methods, i.e.,, on the
theoretical/analytical aspects. For example, these topics include consistency, stability, and convergence
analyses for finite difference time-marching methods for parabolic and hyperbolic problems, efficient linear
solvers for elliptic problems, and an introduction to error analysis for the finite element method.
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purposes. Being able to conveniently graphically interpret a solution is crucial for students’ understanding
of the correctness of a solution [6]. If desired, Muthematica, for example, can be used as a front-end to
run code that is aready written in FORTRAN or C, via its MathLink utility. Notwithstanding that for
CPU-intensive computations CAS are not efficient, CAS are good for writing and developing prototype
programs.

The symbolic capabilities of CAS came in very handy for such usually tedious hand computations
as truncation error analyses for finite difference methods. Mathematica’s symbolic treatment of Taylor
expansions can remove much of the tedious calculation and frustrating careless algebra that usually ac-
companies these calculations [7], [8]. Students can more clearly see the reasons for the importance of such
concepts as truncation error and order of accuracy when they do not get lost in the repetitive algebra
details. Symbolic manipulations and helpful graphics for stability analyses can aso be utilized.

5 CAS Projects

Students organized some of their homework into Mathematica notebooks and these were submitted electron-
ically to the instructor [9], [10]. Models of interactive Mathematical notebooks had been given previously
in the computer lab portion of the course.

Specific Mathematical assignments included an implementation of the Crank-Nicolson method for
the solution of a one-dimensional diffusion equation initial-boundary-value problem (ibvp). The results
included numerical and graphical output. There was a Mathematica implementation of an explicit finite
difference solution to a wave equation ibvp. A transport equation ibvp was discretized via the Lax-
Wendroff and upwind finite difference methods. Mathematica’s animation of the graphics clearly showed
the dissipative and dispersive effects of the numerical methods. A simple two-dimensional elliptic finite
element program using piecewise-linear shape functions was also assigned. Again, students interpreted
their results graphically to produce 3-D surface graphics of the solution (temperature), contour plots, and
plots of two-dimensiona vector fields (heat flux). Contour plots of temperature and vector-field plots
of heat flux were superimposed to gain more insight into the relationships between various quantities.
Graphics showing jump discontinuities in the (numerical) solution gradient components at interelement
boundaries in the finite element work led naturally into a discussion of error estimation.

6 Summary

Finally, especially considering the diverse student population served by this course, each student had
become familiar with a generally very useful tool for applications beyond this course. From the point
of view of a member of the Mathematics faculty, a CAS such as Mathematica is more open-ended in its
applications and may turn out to be a more generally useful tool for many of the students in this course
than the traditionally used FORTRAN.
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Actua programming examples and problems may or may not be included in the text. The text
by Granville Sewell, The Numerical Solution of Ordinary and Partial Differential Equations [2],
includes FORTRAN subroutines and programs and refers to PDE/PROTRAN (IMSL’S partia differential
equation package). The FORTRAN programs can be used by students as templates for their own projects.
On the other hand, Numerical Solution of Partial Differential Equations by K.W. Morton and D.F.
Mayers [3], has no specific programming language or software coordinated with the text. This is intentional
on the part of the authors. Quoting from their preface, “...However, numerical analysis has very practical
objectives, so there are many numerical illustrations of the methods given in the text; and further numerical
experiments can readily be generated for students by following these examples. Computing facilities and
practices develop so rapidly that we believe this open-ended approach is preferable to giving explicit
practical exercises.” Similarly, the text by Celia and Gray [4] and texts by many other authors do not refer
to any specific language for use in implementing the numerica methods studied.

4 CAS Version of the Course

A CAS, specifically, Mathematical, was chosen as the programming tool for this course instead of the
traditional choice, FORTRAN. Mathematical was used with the text by Morton and Mayers [3]. In addition,
the text, Mathematical for Scientists and Engineers, by Thomas B. Bahder [5] was selected as a
tutorial and reference for Mathematical. It was emphasized to the students that in actual applications a
compiled language such as FORTRAN or C would be used for the CPU-intensive parts of the problem.
CAS, which are interpretive languages, are not efficient-they are too slow—for these computationally
intensive parts of the problem. However, as with many aspects of numerical methods themselves, in the
teaching of such methods, there are trade-offs. There are advantages to the use of CAS as a tool in the
teaching of numerical methods for pales.

For the first several weeks of class, the course met in a computer lab and was taught as a course
with computers in the classroom. This was done to permit those students who were less familiar with CAS
to get up to speed. In the end, there were a couple of students whose expertise with CAS far exceeded
that of the rest of the class. These students were very willing to serve as lab mentors for the rest of the
class. With respect to CAS homework, the students were assigned to work together in small groups. This
was intentional, considering that the ability to work well in groups is vital in the workplace (and that
the students would probably be working together anyhow). Some of the CAS computer work served as
previews of topics that were soon to be studied in a more theoretical context. Thus, the students got
to see/do some examples of finite difference and finite element work (at a very introductory level) before
they saw the analytical presentation of these topics. This helped the latter presentations make much more
sense.

The rationale for offering a CAS-oriented course is based on the following benefits. CAS are easier
to program than, say, FORTRAN (in spite of the syntax rules that accompany either Mathematical or
Maple. Their interactive nature, allowing the execution of code one line at a time, permits students to
discover many types of errors and fix them at this phase. The graphics capabilities of CAS are an aid in
the debugging process and, more importantly, in interpreting and understanding the numerical solution to
a problem. This may be the greatest strength in the use of CAS (versus FORTRAN or C) for teaching
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The intended emphasis in this paper has been that of a trade-off. What has been presented is
another possible approach to the teaching of an introductory graduate numerical methods course. Using
CAS does not necessarily result in a globally better approach to teaching such a course, but it does offer
advantages in a number of areas over a more traditional approach.
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