
Session 1253

Teaching Computer Programming Effectively
Using Active Learning

Byron S. Gottfried
University of Pittsburgh

Summary

Over the past three years, we have learned how to provide effective instruction in computer
programming within an active-learning environment. The use of active-learning does not in
itself assure success in this area. However, we have found that we can provide effective
instruction by utilizing a series of “mini-lectures” based upon carefully prepared examples that
illustrate key features; by providing students with copies of the examples and encouraging them
to write their own notes on the examples; by assigning simple in-class programming exercises
that reinforce the material presented in the “mini-lectures;” and by supplementing the in-class
activities with weekly programming assignments of a more comprehensive nature.

This paper describes each of these course characteristics in some detail. It also includes a list of
features that work well, and another list of features, including some traditional teaching
techniques, that we feel should be avoided.

Introduction

Ask most engineering graduates of the 1960s or 1970s what they remember most vividly about
their undergraduate years, and they will probably recall, with nostalgia and some disdain, their
experiences writing Fortran programs for a mainframe computer in a punched-card environment.
During the 1980s, most engineering schools switched from mainframes to PCs and workstations,
and some have adopted C or Pascal as their language of choice. At many schools, however, the
methods used to teach programming have not changed, despite the dramatic changes in both the
computing environment and the programming tools.

Experiences with Active Learning

At the University of Pittsburgh, all freshmen engineering students are required to take a course in
C programming in their second semester, as a part of a common first year of study. Until three
years ago, we had been teaching the course in much the same manner as in the 1960s and 70s:
Two 50-minute lectures per week taught by a faculty member, and a two-hour lab per week
taught by a graduate teaching assistant (TA). The lab session was largely devoted to answering
questions (if there were any) about the weekly homework assignments. Classes were held in
traditional classrooms, though the TAs occasionally took their students into a (somewhat
underutilized) PC-based computer lab. Participating faculty were carefully screened, based upon
their teaching ability and programming skills; some were experienced programmers,

P
age 2.385.1

distinguished teachers and authors of successful programming textbooks. Yet the student
outcomes had been at best only mildly successful. Most students found the course uninspiring,
despite concerted efforts by the faculty to provide interesting, high-quality instruction.

This began to change three years ago, when we decided to adopt an active-learning approach to
both of our required first-year engineering courses. The traditional schedule (two 50-minute
lectures and a two-hour recitation) was replaced by two 2-hour sessions per week, taught in a
computer-equipped classroom (one student per computer). Each faculty member was now
responsible for the entire four contact hours per week, assisted by a TA who helped individual
students during each class session and graded the weekly assignments.

During a typical 2-hour session, the first 20 to 30 minutes were used for formal instruction
(lecturing, which we refer to as the “L- word”), and the remaining time used for student hands-on
exercises. Sometimes the mode of instruction shifted back and forth between formal instruction
(lecturing) and active student involvement. We were very optimistic that this new mode of
instruction would significantly improve the course.

During the first year, however, we were only modestly successful in improving the course. In our
enthusiasm to bring about change, we had included too many loosely coupled exercises that
students found largely unrelated to one another. (Some examples: Download a sample program
and run it; change a program segment; run a program one way, then run it another way; find
what’s wrong with this program; etc.) We were lacking a central focus, to hold each day’s
instruction together. We later learned that this central focus is an essential component of an
effective active-learning experience. Thus, we found that there is more to a successful active
learning experience than a series of busy-work activities in a computer-equipped classroom.

In the second year we concentrated on the style of delivery and began to realize some significant
improvements in the quality of the students’ learning experience. We began by preparing a series
of overhead transparencies that illustrated key points, largely by providing skeletal outlines of
programs that served as prototypes for later student activities. Each student was provided with a
printed copy of the entire transparency set.

Only three or four transparencies were shown each day, though the discussion of the
transparencies frequently occupied 20 to 30 minutes of class time. Key points were pointed out
to the students, and they were told to make notations on their copies of the transparencies (“Write
this down!”). The students responded very positively to this - they seemed to appreciate the
explicit emphasis on important key points.

At the conclusion of each day’s transparency-based “mini-lecture,” the students were assigned
one or two simple programming assignments that made use of the concepts introduced earlier.
The students were required to hand in a printed copy of each day’s programming activity,
primarily for accountability rather than grading purposes. A more comprehensive programming
assignment, to be completed outside of class, was also given each week.

P
age 2.385.2

The Transparency Set

Over the past two years we have refined the transparency set, which now includes 96 separate
transparencies. These transparencies serve as the backbone of the course. The nature of the
transparencies can be seen from the representative examples shown in Figs. 1 through 3. Figure
1, for example, shows a very simple but complete C program. It is introduced during the second
class session to illustrate several points, including overall program structure, symbolic constants,
declarations, data input (with prompts), assignment, data output, and a representative dialog
generated when the program is executed. A complete in-class discussion of this example
requires 10 to 20 minutes.

Figure 2 presents a skeletal structure of a for loop, in which the number of passes through the
loop is known in advance. This example is introduced during the fifth week of class. It
illustrates several features of for loops, including the inclusion of an index, assignment of an
initial value to the index, specification of a continuation condition, and a provision for altering
the index at the end of each pass. About 10 minutes are required for a complete explanation.

Figure 3 shows a simple program that utilizes a subordinate user-defined function. This example
is introduced in week 10 or 11. It illustrates a situation in which a numerical value is transferred
from main to the subordinate function. This value is processed within the subordinate function,
and another value, generated within the function, is returned to main. Roughly 10 minutes are
required to fully explain this example.

Things That Work Well

In the past three years we’ve learned that the use of a carefully designed transparency set is only
one of many different factors that contribute to a successful active-learning programming course.
The factors that work well and contribute positively to the learning experience are summarized
below.

• Present a brief, informal mini-lecture (20 to 30 minutes) each day.

• Use carefully designed transparencies to illustrate basic concepts (not more than 3 or 4
transparencies per session). The transparencies can include simple programs, skeletal
outlines of programming constructs, or summary sheets. However, they must contain
meaningful information (students will not pay attention otherwise), though they cannot
contain so much information as to be overwhelming.

• Provide the students with printed copies of the transparencies. Have the students write their
own notes on the printed copies to emphasize key points.

• Assign in-class programming exercises that reinforce the concepts presented in the
transparencies. Begin with simple exercises, but assign additional, more challenging
exercises to brighter students, who will finish early.

P
age 2.385.3

• Assign one student per computer during each class session.

• The professor and TA should wander around the class during the in-class programming
exercises, assisting individual students as required. At the same time, students should be
encouraged to help each other.

• Have students hand in a printed copy of their programming exercises at end of each session,
mainly for accountability purposes. Do not grade them closely, but give each student a few
points for successful completion of each exercise (or consider penalizing them for exercises
not completed successfully).

• “Slip in” new concepts informally, before the concepts are formally discussed. This helps the
student understand the concept intuitively, and it provides some constructive reinforcement
when the concept is later introduced formally.

• Assign reasonably comprehensive weekly homework assignments. Grade them carefully and
base a substantial portion of the course grade on the homework assignments. Show
engineering relevance wherever possible.

• Include at least two traditional exams. Look for disparities between excellent performance
on the homework and poor performance on the exams.

• Select a textbook that is easily understood and not too long.

Things That Don’t Work Well

Success has its price. We’ve also learned that some things should be avoided, such as:

• Traditional 50-minute lectures.

• Detailed programming examples written on a chalkboard, which students write down in their
notebooks (with numerous mistakes along the way).

• Detailed programming examples written on a chalkboard, with printed copies handed out to
students. Though this works better than having the students write the programs by hand, it
still blurs everything together and does not focus on key points.

• Placing too much emphasis on syntax, ignoring overall program design.

• Placing too much emphasis on program design, ignoring syntax.

• Selecting a sophisticated textbook, containing lots of detail.

• Insisting that students do the homework assignments entirely on their own (many won’t).

P
age 2.385.4

• Assigning ineffective in-class activity, which may include too many unrelated or weakly
related individual activities.

• Having students double-up on computers. (One does the work while the other daydreams.)

• Introducing a second programming language at the end of the course. (This approach is
politically popular at many schools, though it does not contribute to good instruction. Just
when students are at a point when they can be given a more comprehensive, capstone-type
programming assignment, they are confused and sometimes bewildered by the details of a
second language. This actually detracts from their learning either language.)

Conclusions

The use of an active-learning environment does not automatically guarantee effective instruction
in a computer programming course. However, there are several steps that can be taken to insure
the success of the course and bring about a favorable outcome. These steps include the use of
“mini-lectures” based upon carefully prepared examples that illustrate key features, providing
students with copies of the examples and encouraging them to write their own notes on the
examples, assigning simple in-class programming exercises that reinforce the material presented
in the “mini-lectures,” and supplementing the in-class activities with weekly programming
assignments of a more comprehensive nature. In addition, some widely used traditional teaching
methods, such as 50-minute lectures and the use of detailed examples written on a chalkboard
should be avoided.

BYRON S. GOTTFRIED
Professor of Industrial Engineering and Academic Director, Freshman Engineering Program, Univ. of Pittsburgh.
Department of Industrial Engineering, 1048 Benedum Hall, Pittsburgh, PA 15261
bsg@engrng.pitt.edu

P
age 2.385.5

Figure 1

A Representative C Program

(Page 6 in Notes)

Most programs consist of three basic steps:

1. Enter the input data (known information)

2. Process the input data to obtain the desired output (the answer)

3. Display the output data

/* calculate the area of a circle */

#include <stdio.h>

#define PI 3.141593

main()
{

float radius, area;

/* enter the input data */
printf("Radius = ? "); /* prompt for input data */
scanf("%f", &radius);

/* process the input data -> desired output */
area = PI * radius * radius;

/* or
area = 3.141593* radius * radius;
*/

/* display the output data */
printf("Area = %f", area);

}

Program execution:

Radius = ? 3
Area = 28.274309

P
age 2.385.6

Figure 2

Looping - the For Loop

(Page 38 in Notes)

#include <stdio.h>

main()
{

int count, n;

scanf("%d", n); /* n is the number of passes */

for (count = 1; count <= n; count = count + 1) {

 /* do something (repeated n times) */

}

}

The for loop is best suited to situations where the number of passes through the loop is
known in advance (i.e., n is known before entering the loop).

Notes:

The initialization (count = 1) occurs at the beginning of the first pass.

The continuation condition (count <= n) is tested at the beginning of each pass.

The index adjustment (count = count + 1) occurs at the end of each pass.

P
age 2.385.7

Figure 3

Functions and Function Prototypes

(Page 66 in Notes)

#include <stdio.h>

#define PI 3.141593

float funct(float r); /* function prototype */

main()
{

float radius, area;

printf("Radius = ");
scanf("%f", &radius);

area = funct(radius); /* function access */

printf("Area = %f\n\n", area);
}

float funct(float r) /* function definition */
{

float a;

a = PI * r * r;

return(a);
}

Note:

The function prototype is required because funct is accessed (from main) before it is
defined.

Without the function prototype, the compiler could not interpret the function access. P
age 2.385.8

