
Session 2520

Using Spreadsheets to Teach Engineering Problem Solving:
Differential and Integral Equations

James P. Blanchard
University of Wisconsin - Madison

ABSTRACT

Spreadsheets offer significant advantages for teaching numerical problem solving
because of their intuitive interface. Students have little difficulty implementing
algorithms in spreadsheets, allowing them to study the behavior of algorithms without
having to spend significant amounts of time writing routines that implement them. This
has been found to be particularly true for the solution of differential and integral
equations, where Runge-Kutta and finite difference algorithms are often used. This paper
describes the use of a particular spreadsheet application (Microsoft Excel 5.0) to solve a
variety of equations in an undergraduate problem solving course. The advantages and
disadvantages of this approach are discussed.

Introduction

Numerical solutions to engineering problems have historically been carried out
using procedural programming languages. This is not efficient from a pedagogical
perspective because students typically must put more effort into learning the language
itself than they put into solving problems. For example, the numerical solution of a
boundary value problem in one dimension using finite difference techniques generally
involves the creation of a system of linear equations and the conversion of that system
into an equivalent matrix equation that then can be solved. Many students find this
process confusing, so, for instance, a simple change such as modifying the boundary
conditions often takes substantial effort to incorporate into a working solution. The
difficulty here is that students become bogged down in forcing the algorithm to fit a
structure required by the procedural language, rather than implementing the change in a
more natural way. Modern computational tools can alleviate this difficulty, easing the
programming effort required and allowing students to spend more time focusing on the
performance of the algorithms and on the behavior of the resulting solutions. Students
are able to implement algorithms in a more convenient format, removing some of the
steps typically required in reaching a solution and thus allowing more effort to be spent
comparing various algorithms and studying the behaviors of the equations themselves.

One example of a tool with which equations are easily solved is the spreadsheet,
which is particularly well-suited to the numerical solution of both differential and integral
equations. In this paper, Microsoft Excel 5.0 is used to solve a series of problems,
including 1-D initial value problems (Runge-Kutta methods), 1-D boundary value P

age 2.482.1

problems (finite difference methods), elliptic partial differential equations (successive
overrelaxation), and Volterra and Fredholm integral equations.

Initial Value Problems

Because of Excel’s macro language, a simple, 4th order Runge-Kutta algorithm
can easily be implemented. For instance, to solve an ordinary differential equation of the
form:

dy

dt
f t y

y y

=

=

(,)

()0 0

one can use a macro like the following:

Function rk(t, y, dt)
 k1 = dt * f(t, y)
 k2 = dt * f(t + dt / 2, y + k1 / 2)
 k3 = dt * f(t + dt / 2, y + k2 / 2)
 k4 = dt * f(t + dt, y + k3)
 rk = y + (k1 + 2 * (k2 + k3) + k4) / 6
End Function

Function f(t, y)
 f = 2 * t * y
End Function

This macro solves the particular case of f(t,y)=2ty. To use this macro, one merely opens a
blank worksheet, inputs chosen values for the time step and initial values for t and y, and
repeatedly calls this function to generate values for y. A simple spreadsheet using this
macro might look like:

A B C D
1 dt t y
2 0.1 0 1
3 0.1 1.01005
4 yo 0.2 1.04081
5 1 0.3 1.09417

and the formulas that created this sheet might look like:

P
age 2.482.2

A B C D
1 dt t y
2 =0.1 =0 =A5
3 =C2+dt =rk(C2,D2,dt)
4 yo =C3+dt =rk(C3,D3,dt)
5 =1 =C4+dt =rk(C4,D4,dt)

Here I’ve assumed that cell A2 is given the name “dt,” so that the reference to this
value can be used by name in the formulas. This makes the formulas more readable and
easier to debug. In Excel you can name a cell by clicking on that cell and then going to
the menu selection Insert/Name/Define…

The advantage here is that students can write this fairly simple macro and then
easily make repeated calls to it to generate a solution. Accompanying plots can also be
included with minimal difficulty. Because there is no looping required, students can
generate solutions such as this with little or no programming background. Later, when
students have picked up some programming, they can write an additional macro that calls
the rk macro repeatedly and writes the solution directly back to the spreadsheet. These
principles are easily extrapolated to systems of equations and can be adapted to
algorithms that vary the step size to achieve prescribed accuracy. Using this methodology
of starting with simple macros and then graduating to more advanced algorithms, students
can get involved with problem solving early in the learning process and are not required
to first learn advanced programming.

1-D Boundary Value Problems

These problems are typically solved using two techniques: shooting methods and
finite difference algorithms. Shooting methods can be used in a spreadsheet by
combining the Runge-Kutta techniques described in the previous section with a simple
root-finding algorithm or with the built in equation solver (“The Solver”) in Excel.

To demonstrate the use of finite difference techniques to solve boundary value
problems, I’ll use the following model problem:

d y

dx
y

y y

2

2 1

0 1 0

− =

= =() ()

If we difference the operator in this equation using standard central difference techniques,
we find:

y y y

h
yi i i

i
+ −− +

− =1 1
2

2
1

P
age 2.482.3

Solving this for yi yields:

y
y y h

hi
i i=

+ −
+

+ −1 1
2

22

This form allows us to implement an iterative technique to solve the differential equation.
In this case, we take advantage of the built-in iterative capability of Excel. We merely
place this formula into a series of cells, each depending on its two neighboring cells, and
allow Excel to iterate until convergence is reached. A spreadsheet incorporating this
scheme might look like the following:

A B C D
1 h x y
2 0.25 0 0
3 0.25 -0.08492
4 0.5 -0.11265
5 0.75 -0.08492
6 1.0 0

and the formulas would be:

A B C D
1 h x y
2 =0.25 =0 =0
3 =C2+h =(D2+D4-h^2) / (2+h^2)
4 =C3+h =(D3+D5-h^2) / (2+h^2)
5 =C4+h =(D4+D6-h^2) / (2+h^2)
6 =C5+h =0

Note that simply inputting these formulas into Excel will yield an error message of the
form: “Can’t Resolve Circular References.” Circular references occur when two cells
refer, either directly or indirectly, to one another. For example, in the sheet above, cell
D3 refers to D4 and D4 refers back to D3. Excel can only solve such systems iteratively,
but it must be told to do so. To accomplish this, simply click on Tools/Options, go to the
Calculation tab, click the Iteration box, and click the Manual calculation box. This will
set up Excel to iterate. You must press F9 (under Windows) to force calculation.

One advantage of this approach to solving boundary value problems is the ease with
which students can alter the boundary conditions. For instance, if we desire a zero-slope
boundary condition at x=1 in the above problem, we can simply enforce symmetry by
creating an extra mesh point beyond the boundary and forcing it to equal the cell just
inside the boundary. This is equivalent to a zero-slope condition. The sheet would thus
appear as: P

age 2.482.4

A B C D
1 h x y
2 =0.25 =0 =0
3 =C2+h =(D2+D4-h^2) / (2+h^2)
4 =C3+h =(D3+D5-h^2) / (2+h^2)
5 =C4+h =(D4+D6-h^2) / (2+h^2)
6 =C5+h =(D5+D7-h^2) / (2+h^2)
7 =D5

Obviously, many variations on this theme can be carried out to solve a wide variety of
problems. I’ve found that students at the undergraduate level find this approach to be
intuitive. The primary drawbacks to this method are that the convergence can be slow for
large problems and that the mesh spacing is not easily changed. The logical step, then, is
to follow this with a treatment in, for instance, Matlab, where the difference equations are
converted to a matrix equation and the system is then solved. This is a big leap for
undergraduate students and I’ve found that it takes a lot of practice for them to become
proficient at this. It seems that our students lack experience with linear algebra and thus
have difficulty dealing with linear systems of equations cast as matrix equations.

An additional advantage of the spreadsheet approach is that it can easily handle
nonlinear equations.

Elliptic Partial Differential Equations

The solution of elliptic partial differential equations is also quite simple in a
spreadsheet which can handle iteration. If we consider the model problem:

d

dx

d

dy

2

2

2

2 1
φ φ

+ =

with homogeneous boundary conditions on a unit square, one can difference this equation
and, using equal spacing in both directions, obtain the following difference equation:

φ
φ φ φ φ

i j

i j i j i j i j h
,

, , , , ^
=

+ + + −+ − + −1 1 1 1 2

4

Again we simply set boundary values for the dependent variable and place this formula
into all interior cells. Excel can then iterate to convergence. A spreadsheet to carry this
out might look like:

P
age 2.482.5

A B C D E F
1 h 0.25
2
3 0 0 0 0 0
4 0 -0.04297 -0.05469 -0.04297 0
5 0 -0.05469 -0.07031 -0.05469 0
6 0 -0.04297 -0.05469 -0.04297 0
7 0 0 0 0 0

and the accompanying formulas would be:

A B C D E F
1 h =0.2
2
3 =0 =0 =0 =0 =0
4 =0 =(B4+D4+C3+C5-h^2)/4 =(C4+E4+D3+D5-h^2)/4 similar =0
5 =0 =(B5+D5+C4+C6-h^2)/4 =(C5+E5+D4+D6-h^2)/4 similar =0
6 =0 =(B6+D6+C5+C7-h^2)/4 =(C6+E6+D5+D7-h^2)/4 similar =0
7 =0 =0 =0 =0 =0

The formulas in column E have been left out to reduce the table size. They are similar to
those in columns C and D.

This provides a simple solution, but convergence tends to be slow. One can
implement a different scheme, successive overrelaxation for instance, simply by making
small changes in the formulas. In the example just given, we might rewrite the algorithm
as:

φ φ
φ φ φ φ φ

i j i j

i j i j i j i j i j h
, ,

, , , , , ^
= +

+ + + − −+ − + −1 1 1 1 4 2

4

and then insert an overrelaxation parameter as:

φ φ ω
φ φ φ φ φ

i j i j

i j i j i j i j i j h
, ,

, , , , , ^
= +

+ + + − −

+ − + −1 1 1 1 4 2

4

P
age 2.482.6

Formulas for implementing this algorithm are:

A B C D E
1 h =0.2 omega =1.26
2
3 =0 =0 =0 =0 =0
4 =0 =C4+omega*(B4+D4

+C3+C5-4*C4-
h^2)/4

=D4+omega*(C4+E4
+D3+D5-4*D4-h^2)/4

=E4+omega*(D4+F4
+E3+E5-4*E4-h^2)/4

=0

5 =0 =C5+omega*(B5+D5
+C4+C6-4*C5-

h^2)/4

=D5+omega*(C5+E5
+D4+D6-4*D5-h^2)/4

=E5+omega*(D5+F5
+E4+E6-4*E5-h^2)/4

=0

6 =0 =C6+omega*(B6+D6
+C5+C7-4*C6-

h^2)/4

=D6+omega*(C6+E6
+D5+D7-4*D6-h^2)/4

=E6+omega*(D6+F6
+E5+E7-4*E6-h^2)/4

=0

7 =0 =0 =0 =0 =0

The value chosen for the overrelaxation parameter is optimized for equal mesh spacing
on a square grid with 5 mesh points in each direction1.

Integral Equations

Here we solve two types of integral equations: a Volterra integral equation of the
second kind and a Fredholm integral equation of the second kind. The Volterra equation
can be represented by

y t f t K t x y x dx
t

() () (,) ()= + ∫
0

where f(t) and K(t,x) are known functions. Solution of this general equation is
cumbersome on a spreadsheet, but if we reduce it to the following form:

y t f t K x y x dx
t

() () () ()= + ∫
0

then we can produce a simple spreadsheet that will solve the equation for general cases of
f(t) and K(x). In order to solve this equation, we can approximate the integral by a simple
integration rule, such as the trapezoidal rule, and then use iteration to converge to a
solution. A solution for f(t)=K(x)=1 is given below.

A B C D E F
1 dt t y(t) K(t) y*K(t)
2 0.25 0 1 1 1
3 0.1 1.105263 1 1.105263

P
age 2.482.7

4 0.2 1.221607 1 1.221607
5 0.3 1.350197 1 1.350197
6 0.4 1.492323 1 1.492323

The formulas that produced these results are:

A B C D E F
1 dt t y(t) K(t) y*K(t)
2 =0.25 =0 1 =K(C2) =D2*E2
3 =C2+dt =f(C3)+dt*(F$2+F3)/2 =K(C3) =D3*E3
4 =C3+dt =f(C4)+dt*((F$2+F4)/2+F$3) =K(C4) =D4*E4
5 =C4+dt =f(C5)+dt*((F$2+F5)/2+

SUM(F$3:F4))
=K(C5) =D5*E5

6 =C5+dt =f(C6)+dt*((F$2+F6)/2+
SUM(F$3:F5))

=K(C6) =D6*E6

Here the cells in column D hold the solution algorithm, which simply adds f(t) to an
approximation for the integral from t=0 to the current time. This is an intuitive form and
the iteration in Excel allows it to be solved in this way. Using more direct methods
requires an additional step of converting the equations into a linear system.

In this sheet the functions f(t) and K(t) are assumed to be defined in a macro and
thus can easily be changed. Note that the cells in column D are written in such a way that
the formula in cell D5 can be copied down and the cell references will be updated
appropriately. Cells D2, D3, and D4, though, are unique.

The Fredholm integral equation of the second kind can be represented by

y t f t K t x y x dx() () (,) ()= + ∫λ
0

1

This paper will only consider degenerate kernels of the form

K t x Kt t Kx x(,) () * ()= ,

because, again, the general case is somewhat cumbersome on a spreadsheet. The
spreadsheet to solve these equations is set up with the three functions f(t), Kt(t), and Kx(x)
written as macro functions. This allows one to change these easily and recalculate the
problem. The spreadsheet was set up as follows:

P
age 2.482.8

A B C D E F G
1 dt
2 0.25 t y(t) kx(x) y*kx(x) kt(t)
3 0 0 0 0 0
4 lambda 0.25 0.251572 0.25 0.062893 0.25
5 0.5 0.5 0.503145 0.5 0.251572 0.5
6 0.75 0.754717 0.75 0.566038 0.75
7 1 1.006289 1 1.006289 1

The formulas that produced these values are:

A B C D E F G
1 dt
2 =0.25 t y(t) kx(x) y*kx(x) kt(t)
3 =0 =f(C3)+((F$3+F$7)/2+

SUM(F$4:F$6))*dt*G3*
lambda

=kx(C3) =D3*E3 =kt(C3)

4 =C3+dt =f(C4)+((F$3+F$7)/2+
SUM(F$4:F$6))*dt*G4*

lambda

=kx(C4) =D4*E4 =kt(C4)

5 =C4+dt =f(C5)+((F$3+F$7)/2+
SUM(F$4:F$6))*dt*G5*

lambda

=kx(C5) =D5*E5 =kt(C5)

6 =C5+dt =f(C6)+((F$3+F$7)/2+
SUM(F$4:F$6))*dt*G6*

lambda

=kx(C6) =D6*E6 =kt(C6)

7 =C6+dt =f(C7)+((F$3+F$7)/2+
SUM(F$4:F$6))*dt*G7*

lambda

=kx(C7) =D7*E7 =kt(C7)

Again I use the trapezoidal rule to approximate the integral and iteration is used to solve
the equations.

Conclusions
Modern spreadsheets, with their intuitive interfaces, provide an opportunity for

students to study computational algorithms with minimal overhead associated with
learning how to program them. This is convenient when teaching numerical methods, as
it allows increased focus on the algorithms themselves and decreased focus on a
particular implementation.

Availability of Software

Examples of spreadsheets described in this paper can be found at
http://elvis.neep.wisc.edu/~jake/asee/paper97.html.

P
age 2.482.9

References

[1] William H. Press et al., Numerical Recipes in C: the art of scientific computing, 2nd Edition,
Cambridge University Press, 1982.

Biographical Information

James P. Blanchard is an Associate Professor of Nuclear Engineering and Engineering Physics at the
University of Wisconsin - Madison.

P
age 2.482.10

