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Abstract

In intermediate materials science laboratory courses the analysis of experimental data is heavily
dependent on the students’ proficiency in the use of commercial softwares.  In such courses, the
students are required to apply theoretical principles and analyze the corresponding experimental
results. In the present article, a spreadsheet implementation results in a simplified alternative to
analyze experimental data when numerical techniques are required. Numerical integration and
differentiation are performed by using Microsoft Excel™ 7.0 for Windows. Finally the resulting
analysis is contrasted against literature data and important conclusions are drawn.

1. Introduction

Cookbook-type of data analysis can help those students with less computer skills catch up with
the rest of the class and comply with the requirements of the course.  However, when dealing
with mathematical problems that cookbook approach can hinder the understanding of the
physical or chemical principles on which the analysis is based (1). In addition the application of
numerical analysis techniques and their limitations may not be evident if no breakdown of the
problem mechanics is provided.  As a worthy example of an alternative approach, the study of
chemical diffusion in the copper-nickel binary system is presented as set up in a college Physical
Metallurgy laboratory course offered at the Dept. of Materials Science and Engineering of the
University of Wisconsin-Madison every Spring semester.  As prerequisite for this laboratory
there is an introductory Phase Transformation course.  Therefore the students are supposed to be
familiar with the phenomenological viewpoint of chemical diffusion in a metallic system.  In
addition, some knowledge of numerical analysis is beneficial for the complete understanding of
the present experiment.

2. Basics of Diffusion and Matano-Boltzmann’s Analysis

Diffusion in an A-B substitutional metallic system comprises the analysis of atom mobility as
affected by temperature and chemical potential differences across an interface (Figure 1).  In this
case the non-steady diffusion process is described by Fick’s Second Law:
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for a one-dimensional problem in a binary system, e. g. copper-nickel.
c: atomic chemical concentration of specimen A in B at a given x.
x: diffusing distance.
~
D : interdiffusion coefficient; in general 

~
D z constant but 

~
D = 

~
D (c).
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Figure 1:  Schematic of the distribution profile at
different annealing times for a diffusion couple
composed by A (right) and B (right) metals slabs.

When 
~
D  depends on the concentration of A, the differential equation 2 can be solved by means

of the Matano-Boltzmann analysis (2).  This approach requires the definition of a plane where
x = xM and for which the following equality verifies:

c  ³ x dc 0
0

"

eq. 3

being xc = x - xM and:
xM: position of the Matano interface.
": maximum distance in the diffusion couple.

Clearly, equation 3 represents mass preservation: all atoms A who migrated from xc < 0 should
accumulate on the other side of the interface (xc > 0).  Finally, after transforming the spatial
variable, the solution for the unidimensional expression of Fick’s Second Law is:
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While this equation can be numerically solved by a number of commercial mathematical
softwares, a spreadsheet computation was implemented because of its versatility as indicated in
the next sections.

3. Experimental Setup

In order to analyze the diffusion in substitutional alloys, the Cu-Ni system was selected. The
corresponding equilibrium phase diagram is showed in Figure 2 (3). A diffusion couple was
prepared with high purity slabs of Cu and Ni and heat treated at 950°C (1223K) under vacuum
for 95 hours and subsequently quenched.

Figure 2:  Copper-Nickel equilibrium phase diagram indicating the
annealing temperature for the present experiment.

The specimen was cut perpendicularly to the diffusion interface and observed in a secondary
electron microscope SEM by the students.  While the SEM operating voltage was 20 kV, a 1 mm
aperture was selected.  An Energy-Dispersive Spectrometry EDS analyzer allowed for the fast
examination of the diffusion profile printout in Figure 3 via a linescan option.  After discussing
this preliminary results the students designed a strategy for the number of data points and its
distribution along a straight line perpendicular to the interface.  As a result 40 EDS microanalysis
data points were obtained for the studied specimen; the resulting profile is indicated in Figure 4.
In Table 1, the corresponding raw data are given.
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Figure 3: Draft of the linescan obtained in the EDS analyzer with only
1 second dwelling time at each microanalyzed spot.

Position [cm] Cu (at. conc.) Ni (at. conc.)
0 0 1

0.01001 0 1
0.010954 0 1
0.012274 0.0323 0.9677
0.013104 0.2723 0.7277
0.014237 0.4392 0.5608
0.015149 0.6502 0.3498
0.016238 0.6631 0.3369
0.01726 0.7315 0.2685
0.018392 0.7873 0.2127
0.019222 0.8066 0.1934
0.020242 0.8464 0.1536
0.021223 0.8626 0.1374
0.022356 0.8845 0.1155
0.023377 0.8862 0.1138
0.024358 0.9125 0.0875
0.025491 0.9064 0.0936
0.02636 0.9173 0.0827
0.027384 0.9273 0.0727
0.028363 0.9434 0.0566
0.030325 0.9489 0.0511
0.032064 0.9622 0.0378
0.033915 0.968 0.032
0.035725 0.9717 0.0283
0.037312 0.9906 0.0094
0.039162 0.9917 0.0083
0.041013 0.9918 0.0082
0.042601 0.9954 0.0046
0.044757 0.9953 0.0047
0.048719 1 0

Table 1:  Raw data set as obtained by EDS analysis
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3. Data Analysis

In the discerning study that follows, only 
~
D as a function of one of the diffusing species - in this

case, copper - has been considered for the sake of conciseness.  Nonetheless, the proposed
educational method is applicable to both diffusion couple components.

3.1 Preparation of the Data Set

To solve Fick’s second law, the variable x needs to be transformed into x’= x - xM where the xM
is the position of the Matano interface that needs to be determined.  Unfortunately, the raw data
cannot be used as such since both its dispersion and the small number of data points would
introduce a larger scattering of the results.  Therefore the instructor should preprocess the data so
as to generate a curve that fits the data set.  In the present case such preprocessing was performed
using Statistica™, a statistical package provided with a non-linear regression module.  It was
found that the most appropriate function that fits our data was:

x a (b c ) d f c xCu
cu � � � � � �tan e 0 eq. 5

where:
a, b, d, f and xo are statistical parameters
e is the base of the neperian logarithms
x is the distance in cm
and ccu is the atomic concentration of copper at each position x.

The estimated statistical parameters are given in Table 2.

a b d f x0

0.002041 0.511728 -0.005368 -106.808 0.011210

Table 2:  Non-linear regression parameters for equation 5 estimated by the least-squares method.

For the statistical model in equation 5 the computed correlation coefficient was very high:
R=0.98600. In Figure 4 these fitted values are displayed along with the observed data points; the
high correlation between fitted and observed values is apparent.  For the remainder computations
a new larger set with fitted values will replace the raw data set.  In this case 101 fitted values of x
were calculated by means of eq. 5 at intervals of 0.01 molar fraction of copper.  As mentioned
before, this larger set assures a much smaller dispersion in the results.
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Figure 4: Cu concentration profile as determined by EDS analysis and its
corresponding fitted curve as evaluated in Section 3.1.

3.2 Estimation of the Matano Interface Position

In Figure 5, the strategy used for calculating the position of this interface is illustrated.  A
forward numerical integration is performed from the origin (x=0) to a generic position xi to
obtain Ai.
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Figure 5: Scheme demonstrating how the areas Ai

and Aj are successively calculated.
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This integral can be solved numerically by applying the trapezoidal approximation (4,5) as
follows:

A (x ) x dc (x x )
(c c )

2i i k+1 k
k 2

i
k 1 k

0

xi
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�

 

�¦³ eq. 6

Clearly this method approximates the area under the curve representing the function c = g(x) to a
series of trapezoids with individual areas:

(x x )
(c c )

2k+1 k
k 1 k� �

�
�

In Figure 6, an Excel spreadsheet is sketched where in cell F18 the formula representing equation
6 is showed.  Note that the first value assigned to Ai , i.e. A1 in cell F2, is equal to 0.

D E F
1 xi (cm) Cui Ai (cm)
2 0.00000 0.00000 0
... ... ... ...
16 D16 E16 F16
17 D17 E17 F17
18 D18 E18 =(E18+E17)/2*(D18-D17)+F17
19 D19 E19 F19
20 D20 E20 F20

Figure 6:  Spreadsheet schematic used to calculate the areas Ai.

Similarly a backward integration from the last data point (x=") is carried out to obtain the shaded
area Aj ; in this case the integral can be described by:

A (x ) (1 - x)dc (x x )
[(1- c c )]

2j j
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eq. 7

The corresponding formula is implemented in cell G99 of the spreadsheet sketched in Figure 7.
Note that the last data point is in cells D101 and E101, and that G101 was equaled to zero.

D E F G
1 xi (cm) Cui Ai (cm) Aj (cm)
... ... ... ... ...
97 D97 E97 ... G97
98 D98 E98 F98 G98
99 D99 E99 F99 =((1-E99)+(1-E100))/2*(D100-

D99)+G100
100 D100 E100 F100 G100
101 x= " 1.0000 F101 0

Figure 7: Spreadsheet schematic used to calculate the areas Aj.

Hence the Matano interface is where: Ai = Aj, i.e. the shaded areas in Figure 5 are equal when
x = xM.  After this procedure, it should expected that the students realize that equation 3 is
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another expression of mass preservation.  In Figure 8, both areas Ai and Aj are plotted vs. the
distance x. An arrow indicates the intersection point, that is the position of the Matano interface.
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Figure 8: Plot of the estimated areas Ai and Aj as function of the distance x.  The
Matano interface, i. e. the intersection between both curves is indicated as xM.

Through a linear interpolation displayed in Figure 9 this interface is computed as:

x  =  x  +  (A A
x x

(A A (A AM M-1 c a
M+1 M-1

c a b d

� �
�
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)

( )

) )
eq. 8

In the present case this interface was estimated as: xM = 0.016655 cm.
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Figure 9: Schematic of the linear interpolation used to estimate the value of xM

corresponding to the intersection between the curves Ai (ascending) and Aj (descending).
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3.3 Estimation of Cu-Ni Interdiffusion Coefficient

With that value of xM the transformed variable xc is calculated as: xc = x - xM.  This new variable
is then plotted against the molar fraction of copper in Figure 10 in order to work on the terms
involved in equation 4.  In this equation, the derivative factor is calculated separately by the
three-point formula (6) or central difference formula (7).  In brief, it consists of averaging the
slopes of the secants behind and ahead of the point where the derivative is approximated (see
Figure 7.1 in Ref. 7).  Therefore the slope at c = c* is estimated as:
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Figure 10: Plot the transformed variable xc as a function of Cu concentration.

In Figure 11, the derivatives are computed in column I whereas cell I18 displays equation 9 as it
was typed in.

On the other hand, the integral factor in equation 4 can be estimated by means of the trapezoid
rule in a similar manner as for the calculation of areas Ai  and Aj discussed in section 3.2. P
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G H I
1 Cui x’ i Derivative
... ... ... ...
16 G16 H16 I16
17 G17 H17 I17
18 G18 H18 =1/2*((H18-H17)/(G18-G17)

+(H19-H18)/(G19-G18))
19 G19 H19 I19
20 G20 H20 I20

Figure 11: Spreadsheet schematic used to estimate the derivative s(c*) in equation 9.

This equation is implemented in cell J18 of the spreadsheet sketched in Figure 12; column J
contains the values of the sequential integrals.

G H I J
1 Cui x’ i Derivative Integral
... ... ... ... ...
16 G16 H16 I16 J16
17 G17 H17 I17 J17
18 G18 H18 I18 =(H18+H17)/2*(G18-G17)+J17
19 G19 H19 I19 J19
20 G20 H20 I20 J20

Figure 12: Scheme of the spreadsheet used to estimate the integral I(c*) in equation 10.

In summary equation 4 can be expressed as:

I(c*)s(c*)
t2

1
dcx

dc

dx

t2

1
(c*)D

~ *C

0*C

��� ��� ³ eq. 11

In Figure 13, this equation is typed in so as to obtain the interdiffusion coefficient 
~
D  in cm2·s-1 in

column H of the sketched spreadsheet.  It is assumed that the annealing time t in seconds be
stored into cell T1.

G H I J H
1 Cui x’ i Derivative Integral Interdiff. Coefficient
... ... ... ... ... ...
16 G16 H16 I16 J16 H16
17 G17 H17 I17 J17 H17
18 G18 H18 I18 J18 =-(1/2/$T$1)*I18*J18
19 G19 H19 I19 J19 H19
20 G20 H20 I20 J20 H20

Figure 13:  Scheme of the spreadsheet used to compute the interdiffusion coefficient
~
D as a function of the molar concentration of Cu . P
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In Figure 14, the final results for the present analysis are plotted along with literature data by
Brunel et al. (8). Additionally the end points, i. e. pure Ni and pure Cu, were also included in the
plot; they were calculated from values reported in the “Smithells' Metals Reference Book.”(9):

~
D 1.4Ni Cu

228,200 J/mol
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e  [cm²·s-1] = 2.51·10-10 cm²·s-1 eq. 12
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e  [cm²·s-1] = 3.87·10-12 cm²·s-1 eq. 13

It is apparent that the literature data falls just below the estimated curve.  However, this small
discrepancy only helps to corroborate the correctness of our analysis.  In effect, Brunel et al.
performed their experiment at 940°C; that is 10°C below the annealing temperature for the
present experiment.  Therefore there should be expected that the assessed curve reflects higher

values of 
~
D for a slightly higher treating temperature.
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Figure 14: Final plot of the interdiffusion coefficient 
~
D  as a function of copper

concentration and the corresponding literature data. P
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4. Summary

An alternative implementation of a spreadsheet to diffusion analysis has been presented.  By
using the Matano-Bolztmann method the students are able to investigate the dependence of the
interdiffusion coefficient on the chemical composition in the Cu-Ni binary system.  This is
accomplished by applying elementary numerical techniques by means of Excel™ software.
Upon completing this experiment, the students are expected to fully understand the mechanics of
the Darken equations and the Matano-Bolzmann method and on how to instrument mathematical
tools in a commercial software in a very effortless manner.  An example has provided in order to
demonstrate the effectiveness of the proposed educational investigation.  Finally the illustrated
example results were contrasted against available data reported in the literature to demonstrate
the efficacy of the students’ assignment.  The comparison confirmed the accuracy of the
proposed method.
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