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Using Electronic Courseware and a Simple Computer Math Package
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Abstract

While computer simulation can be used to augment student understanding of complex systems
and signals principles, knowledge of computer package specifics can form a major barrier to
student understanding. A series of five electronic courseware modules for use in a senior-level
communication systems course are described. The modules are designed to provide interactive
step-by-step guidance to students performing system simulations using a mathematical
simulation package. The system simulations are designed and run from within the courseware
modules. Five such modules are described. Among the communication systems topics
investigated in the exercises are quantization noise, distortion, companding, and Nyquist's
criteria for zero intersymbol interference.

Introduction

In the study of communication systems, it is often difficult for students to develop a true
understanding of the more complex systems and signal principles without exercising an
appropriate communication system. However, the complexity of and costs associated with
appropriate commercial or instructional communication hardware systems make such systems, in
many cases, unattractive in a university setting. Computer simulation is often a more appropriate
solution to augmenting student learning in the area of communications systems. A mathematical
computation package, such as Mathcad, provides a suitable platform for the development of such
simulation exercises. One drawback to this approach is the difficulty experienced by students not
adept in use of the particular computer package.

Student knowledge of computer package specifics can be bypassed through the use of electronic
courseware modules. A series of such original courseware modules has been developed at the
University of San Diego. Among the communication systems topics investigated in the exercises
are quantization noise, distortion, companding, and Nyquist's criteria for zero intersymbol
interference. These modules, which make use of interactive multimedia presentation techniques,
can be used by the students within a computer laboratory, or be made available as web pages that
are internet-accessible. The exercises are appropriate for use as student laboratory exercises, as a
supplement to hardware laboratory exercises, or as outside assignments for courses that do not
have a laboratory component. One significant advantage of these modules is that they allow
most of the student's effort to be devoted to understanding of communications systems rather
than usage of a particular mathematical computation package. Another advantage is that the
modules can be made available to the student without an extensive commitment of laboratory
facilities. The paper describes courseware modules for the simulation exercises, and reports on
the use of these exercises in a university setting to augment a course in communication system
principles.
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Course Setting and Motivation

Many electrical engineering programs include a senior-level course in communications systems.

At the University of San Diego, students majoring in electrical engineering are required to take
Communications Principles and Circuits (EEE 170) a four semester-credit course that includes
three hours of lecture and one three-hour laboratory each week. This course has several
prerequisites including upper-division mathematics courses, a course in signal and systems
analysis, and two courses in electronics.

Despite the rather extensive course background of the students, the theoretical nature of the
communication systems topics and the complexity and cost of appropriate hardware systems
motivated the development of five simulation exercises. [1] While mathematical simulation
proved a very effective laboratory topic for communication systems, student (and instructor)
knowledge of the particular mathematical simulation package, in this case Mathcad, became a

barrier to some. Those students who were less adept in the use of Mathcad were forced to devote

as much effort to understanding the particulars of the tool as they were to understanding the
systems and principles they were attempting to simulate.
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1 Figure 2 - Simulation 2: Distortionless

. . . . _ Transmission through a Linear Channel
Figure 1 - Simulation 1: Digital Fourier Transform
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Pulse Train Distortion Through Low-Pass Filters
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The transfer function of a 2nd order Butterworth Filter at cutoff frequency o ¢ '=5000
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The transfer function of a 4th order Butterworth Filter with the same cutoff frequency
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Figure 3 - Simulation 3: Pulse Distortion due to
Low-Pass Filtering

Quantization Noise with/without Companding
(This exercise uses p-law compression)

*** Definition of Message, m(t): Starttime  Stop time
(size limits: -1 < message < 1) Tst:=0 Tsp '=.004n
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sinc(x) :=if xzo,w,l
X

sgn (x):=if( x<0,-1, 1)
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Figure 4 - Simulation 4: Quantization Noise
without Companding
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Nyquist's First Criterion for Zero Intersymbol Interference In response to thlS prOblem a SerieS Of ﬁve
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the necessary capabilities of allowing the
design of modules that use animation,
graphics, and sound. The most important
] capability of the software is that the modules
oet ewt et 0 md et et | oan e made interactive; the simulations
Figure 5 - Simulation 5: Pulse Shapes that meet thé¢hemselves can be designed and run from
Nyquist Zero Intersymbol Interference Criteria within the courseware modules.
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The five different simulation exercises described here were written to be performed using
Mathcad [4], although other mathematical computation packages would also provide a suitable
platform. The advantage of the electronic courseware

modules is their use in overcoming the student learning curve in the use of the particular
mathematical computation package being used. The electronic courseware developed is,
therefore, specific to Mathcad, the computation package of the exercises. The simulations that
the student would produce for each of these exercises are shown in Figure 1 through Figure 5.

The five courseware modules developed were:

Digital Fourier Transform Concepts

Distortionless Transmission through a Linear Channel

Pulse Distortion due to Low-Pass Filtering

Quantization Noise without Companding

Pulse Shapes that meet the Nyquist Zero Intersymbol Interference Criteria

arwNPE

The exercises themselves are broken down into four to six steps. The courseware modules for
each exercise then designed based upon these steps. Each module includes:

1. Title slide with a brief description of exercise

2. Objectives slide listing three or four goals of the exercise

3. A group of at least four slides for each step of the exercise
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A group of slides is required for each step because each step must be initially described, then
explained, then demonstrated, and finally performed by the student. In addition, the student is
usually expected to answer a short question about what has been done. Figure 6 (a-f) shows give
example slides from the first module. [5]

The demonstration of the step requires at least some graphical demonstration, and often makes
use of the animation capabilities of the mathematical simulation package. The actual
performance of the step requires the student to activate the simulator from within the courseware.
The short-answer question regarding the step just performed can easily be included, allowing the

student to receive immediate feedback regarding the correctness of the answer.
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Figure 6 - Sample slides from Module 1. a) Title slide b) Objectives c)-f) Group of slides for

Step 1
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Conclusion

The five electronic courseware modules are to be used to enhance student laboratory experiences
within the senior-level required course in communications systems at USD in the Spring 1998

semester. Student experiences with the modules can be evaluated after the completion of that
semester.
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