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Quantitative Analysis of Programs:

Comparing Open-Source Software with Student Projects

Abstract

The lack of quantitative measures is a common problem in a programming course. Even
though most students understand the importance of comments and good program structures,
there is no quantitative “rule of thumb” to guide students in determining whether their
programs have sufficient comments or are well-structured. For example, an instructor may
require one line of comment for every ten lines of codes. These numbers are determined
without sufficient scientific support; hence, students may resist the requirements and treat
them as burdens.

Open-source programs are widely used today and they can be considered as samples for
teaching programming. We analyze 6 open-source software projects with 6233 files and 3.27
million lines of code to discover their commonalities. The projects are python, gdb, emacs,
httpd, kde, and doxygen. These open-source programs are used and contributed by many
programmers. These particular programs are selected as examples of high quality code by
virtue of their extensive and successful use in industry and academia. These programs are
used also because it is difficult to obtain large-scale non-trivial programs from companies
and sample programs from textbooks are usually very small. Because quality measures are
often subjective, we focus on quantitative measures that can be objective and obtained by
software tools.

In our analysis of open source software, we find that the average length of codes between
comments is fewer than one hundred characters, or only a few lines. Most comments are
short, only one or two lines. While global variables are often considered detrimental to
program organization by instructors, global variables are actually frequently used in open-
source programs maintained by multiple programmers. Hence, instructors should not use the
presence of global variables as the sole indication of poor program structures. The 6 projects
are written in C or C++ and functions are the fundamental unit of C/C++. In these
projects, most functions call only a few other functions. This study shows strong similarities
in these different projects and suggests the possibility of using a quantitative approach to
teaching programming. We compare the results with the programs written by the students
in a senior-level software engineering course. We discover that their programs have similar
properties as open-source programs. Hence, we hypothesize that students may benefit by
using these quantitative measures from open-source programs as samples and learn better
programming skills and styles.

Introduction

Open-source software provides abundant opportunities to study the properties of successful
software projects. These projects are considered successful because they enjoy a large pop- P
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ulation of users and are still being improved. The history of open-source projects can be
traced to analyze the organizations and progression of software development. For example,
Dinh-Trong et al.5 analyze the CVS repository and email archive of FreeBSD. Mockus et
al.11 discover that Apache has a small core group of 15 people that contribute more than
80% of the project. Even though most open-source projects have separate documentation,
such as README and ChangLog, the source codes still present the most up-to-date information
for a new contributor to understand the projects. Because open-source programs are often
developed by volunteers that are geographically distributed, it is imperative that the codes
are understandable to new developers.

Lakos9 suggests that physical properties, in particular the dependency among files, indi-
cate the quality of the software. The physical properties are different from logical properties
because the former do not consider the design, performance, or robustness of the software.
Physical properties are the first impression a new developer sees, for example, whether the
directory and file structures are reasonable or the comments are sufficient. In contrast to log-
ical quality, physical quality can be more easily extracted and analyzed by tools for software
metrics. Metrics have not been widely accepted in software engineering, partially because
they can be misleading. One example is using thousand lines of codes (KLOC) to quantify
the complexity of software. The same functionality can be implemented in different ways
and they may change KLOC dramatically. However, quantitative analysis can serve as “rules
of thumb” for successful software projects. The literature contains qualitative rules8,10 but
they do not provide enough quantitative information. One example is adding comments to
codes. Every software developer knows the importance of adding comments to source codes.
However, few evidences have been provided to suggest how many and where comments should
be added. A manager or an instructor may require one line of comment for every ten lines of
codes. These numbers are determined arbitrarily without sufficient scientific support; hence,
developers or students may resist the requirements and treat them as burdens.

Analyzing the quality of software is usually considered a difficult task. Many factors can
influence the evaluation of quality. These factors can be subjective by individual software
developers due to their past experience or domain knowledge of the problems to be solved.
Judgment of quality is also affected by developers’ familiarity of the tools that can help
the developers understand or improve the software. Some rules are advocated to improve
software quality; for example, global variables are considered a potential factor to degrade the
quality of software. Another rule is to avoid or eliminate cyclic dependence among classes or
files. However, these rules are usually presented without sufficient data from real successful
software projects. We aim to provide quantitative measures of the easiness for developers
to understand, modify, and improve programs. This paper examines several widely used
open-source programs to extract the commonalities among these programs.

In this paper, we analyze the physical properties of the source codes from a new de-
veloper’s view point. The analysis includes popular open-source projects, such as emacs

and python. The physical properties can be obtained using a compiler front end without
manually reading and understanding the meanings of the codes. We extract the quantita-
tive measures among these projects; the analysis can provide a foundation to quantify the P
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quality of other software projects. In particular, if a project’s physical properties are too
far away from the properties presented in this paper, the project may not enjoy the same
degree of success of the projects we analyze. Using physical properties to infer quality is still
a relatively new approach. We discover some strong similarities among these projects. For
example, there is a comment every several lines of codes. Most comments are shorter than
one hundred letters. The majority of files are only several hundred lines. Global variables
are frequently used so they should not be considered as a primary source of degraded qual-
ity. Finally, most functions call only a few other functions; thus, simple dependence exists
among most functions and unit tests can be conducted more easily. We extend the study
beyond open-source programs and analyze the programs written by students in a senior-level
software engineering course. The students wrote programs to compete in a network-based
game. Each group included five or six students and they could choose the languages as long
as their programs could communicate through the network. Our findings indicate that the
students’ programs have similar quantitative properties as open-source programs. Hence, we
hypothesize that these properties can be taught to improve students’ code quality.

Previous Work

Quality Analysis

Whittaker et al15 review the history of software development in the past 50 years; they
explain that 1970s were the turning point of software quality. In 1970s, computers became
cheap enough and accessible to more people; meanwhile, more companies started using
computers to solve non-numerical problems. Software quality suffered due to the combination
of more complex problems and less trained developers. Several studies have demonstrated
the feasibility of using simple rules to evaluate the quality of software. Lakos9 quantifies
quality based on the coupling among files using the concept of levelization. If a file is well
tested and believed working, it is labeled as level zero. Standard C header or library files
are examples of level-0 files. A file is level n if the file needs files of level n− 1 or smaller for
compilation or linking. Cyclic coupling is considered as a sign of inferior design. Arisholm
et al.1 point out that static analysis of codes coupling cannot be directly applied to object-
oriented software due to polymorphism and run-time binding. Thus, they analyze dynamic
coupling of object-oriented software. They discover that dynamic export coupling can be an
effective indicator of change proneness.

Basili et al.2 classify errors into several types such as incorrect requirements and misun-
derstanding of the environment. The study discovers that up to 72% errors can be attributed
to design errors of single components. There is not clear correlation between the sizes of
modules and the error density. Shen et al.14 analyze software to determine how to allocate
resources for testing. Their study compares five products written in Pascal, PL/S, and as-
sembly. They find that smaller modules do not necessarily have lower error density. Error
density can be a size-normalized indication of program quality for only the modules with
more than 500 lines of codes. Thus, they conclude that error density is not an effective way P
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to measure quality. Withrow16 analyzes the error reports of an Ada program with 362 mod-
ules across 114000 lines. When a module’s size is 250 lines the error density is the lowest,
approximately 0.5 error per thousand lines of codes. Withrow offers one explanation why a
larger module may have a lower error density: the large module is not completely tested.

Yu et al.18 consider coupling through global variables in Linux. The hypothesis is that
global variables can degrade the code quality. Their study classifies global variables into five
categories depending on whether a variable is defined or used in kernel codes or not. They
find 99 global variables occurring in over 15000 instances. Xie et al.17 use redundant codes
as an indication of severe defects. The premise is that developers do not intentionally write
codes that have no effect. One example of redundancy is an assignment whose value is never
used. This may occur if the variable’s name is mistyped later and it happens to be another
valid variable. Another example is dead codes that can never execute; this suggests incorrect
control flow in the program. The third instance of redundant codes are conditions that are
always true, such as comparing an unsigned integer and a negative constant.

Open-Source Software

Open-source software represents an approach different from traditional ways for building
large-scale commercial software. Successful examples such as Linux, Apache, and gcc provide
examples for further studies about the characteristics of successful software. Some studies
focus on the “macro behavior” of the projects, such as the number of people involved, the
volume of email correspondences, the frequencies of version changes, and the number of bug
reports. The sources of these analysis often come from CVS repositories, ChangeLog, or the
archives of newsgroups and mailing lists. Dinh-Trong et al.5 perform a case study FreeBSD
to reconstruct its 10-year history from the CVS repository, the email archive, and the bug
database. Their report highlights some important processes adopted in the FreeBSD project,
for instance, the release procedure. The analysis also indicates that many people contribute
to the project: top 15 people contribute only 56%; 80% of the contribution comes from
50 people. In contrast, Mockus et al.11 find that 15 people contribute more than 80% of
the codes for Apache. Their study also discover that file ownership is not prevalent; many
files are modified by multiple people. Approximately half of problem reports are resolved
within a day and 75% are resolved within 42 days. The study is expanded to Mozilla;12

the development environment of Mozilla is different because it is supported by a company,
Netscape. Over four hundred people contribute to the CVS repository of Mozilla and nearly
seven thousand people report bugs. In Apache, there is no strict rule about code ownership;
in Mozilla, ownership is enforced.

Capiluppi et al.4 analyze 406 open-source projects, including the numbers of subscribers
of the mailing lists, stable and transient developers, and the domains of these projects. Over
66% of the projects build tools for other developers, in particular for the Internet. Docu-
mentation is critical for open-source programs in order to help new developers understand
the programs. More than one third provide documentation including README, UNIX-like
manual pages, user manuals and API specifications. Capiluppi et al. discover that among P
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these projects 41.5% use C; 14% use C++ and another 14% use Perl. In another study,
Capiluppi3 analyzes 12 open-source projects from the 406 projects by excluding those that
are no longer actively updated. The 12 projects are classified into three categories: large,
medium, and small based on the numbers of participants of the projects. The paper presents
the relationship among the number of developers, the rate of changes in project sizes, the
number of versions, and so on. Based on this analysis, the author proposes an empirical
linear formula to characterize the relationships. Ferenc et al.6 developed a tool to extract
information from open-source programs. The information includes the number of methods in
each class, the depth of inheritance, number of children in each class, and coupling between
classes. Their study finds that Mozilla has an average of 13.4 methods per class; the stan-
dard deviation is 14.9. The average depths of inheritance is 1.32 while the longest depth is 9.
On average, a class requires 6.8 other classes either through member data or methods. The
study also examines several hypotheses about fault proneness from these numbers through
7 different versions of the codes. Godfrey et al.7 study 96 versions of Linux kernel and
discover super-linear growth in code sizes and lines of codes across five years. The amount of
codes grows substantially over the five years, at a rate much higher than the other parts of
Linux. The median of file sizes for both .c and .h files grow over time but they are confined
within narrow ranges. The median sizes of .c files are between 400 and 600 lines after mid
1994. The median sizes of .h files are between 80 and 120 lines after late 1995. Paulson et
al.13 compare three open-source projects and three closed-source projects; evidence shows
that open-source projects enjoy better creativity from developers and quicker defect fixes.
Meanwhile, the projects have comparable growth rates, simplicity in implementation, and
modularity.

Contributions

This paper presents several quantitative measures of the structure of the source codes from
6 open-source projects. We discover strong similarity among these projects; hence, we hy-
pothesize that these quantitative measures form a basis to evaluate the quality of a software
project. If the quantitative measures of a project deviates from our discovery, the project
may suffer low quality. Our study is based on a developer’s viewpoint: whether the source
codes are easy to understand, modify, or extract useful portions for further improvement.
Our analysis is static and can be easily implemented in a compiler front end; this study does
not consider the run-time behavior, such as robustness or correctness. Because of wide use
of the software projects studied in this paper, these projects are assumed to be robust and
correct.

Static Analysis of Open-Source Programs

Selection of Samples

We select 6 open-source projects and analyze them using a compiler front end. These projects
include doxygen, emacs, gdb, httpd, kde, and python.
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• doxygen. Doxygen is a tool to automatically extract documentation from source codes.
It analyzes the source codes and creates html pages with hyperlinks among related
code segments. For example, if a function calls another function, they are associated by
“reference” and “referenced by” links. Users can see both summary pages and colored
source codes with hyperlinks. Doxygen can extract the code structure without any
modification on the source codes. Programmers can also embed doxygen instructions
inside the comments of the source codes. We use the output from doxygen to analyze
the source code used in this study.

• emacs. Emacs is a text editor that is “extensible, customizable, self-documenting real-
time” (from emacs manual). Emacs recognizes many file types, such as C or Latex,
and adjusts the features based on the file types. Users can also extend emacs’ features
through Emacs Lisp; it is a dialect of the Lisp programming language. Emacs can be
used for reading email or news. Emacs can collaborate with gdb so that users can use
gdb to debug a program while editing the same program in emacs.

• gdb. The GNU debugger (gdb) is a source-level debugger for C, C++, and Modula-2.
It can set conditional break points and print the values of variables; Gdb can also
dereference pointers and traverse the call stack. Gdb can detect whether a variable
has changed its value. Gdb is used as the foundation for other debugging interfaces,
such as the data display debugger (DDD).

• httpd. Httpd is a web server in the Apache project since 1995. It is developed by
volunteers; design and implementation decisions are conducted by voting through the
Internet. Apache web server supports virtual hosts and database; users can extend the
functionality by building modules through an API. In February 2005, the Apache web
server is used in over 40 million or 68% sites as the most popular web server (from
Netcraft Survey).

• kde. Kde is a desktop environment for UNIX-based systems to provide user-friendly
easy-to-configure interfaces. Kde starts with the purpose to create an easier environ-
ment for writing applications than X11-based windows. Hundreds of applications have
been written for kde, ranging from network utilities to games. This study considers
the base of the kde environment only.

• python. Python is an object-oriented script programming language. Python supports
modules, classes, exceptions, and allows users to implement new modules using C or
C++. Since 1991, a stable new version of python is released every 6 to 18 months.
Python is used by Redhat to write software for installation and system administration.

Table 1 lists the 6 projects studied in this paper. All of them have been updated many
versions and are still being improved. The number of files are counted before running the
configure tool. We only extract the files from the packages as they are provided. Many
open-source programs include configure tools to generate platform-specific files or to adjust P

age 11.1057.7



the compilation and linking options based on the users’ inputs or tool availability. When
we count the number of lines, we include blank lines because they provide visual effects
separating codes and contributing to easier understanding. From Table 1, we can discover
several patterns. First, the number of .c files is within 0.58 (emacs) and 2.1 (httpd) of the
number of .h files. Second, the ratio of total number of lines of codes (LOC) of .c files and of
.h files is between 2.7 (doxygen) and 7.7 (emacs). In this paper, LOC includes both codes and
comments. Third, the average LOC per .c file is higher than LOC per .h file but their ratio
is between 2.9 (httpd) and 13.3 (emacs). This list intentionally excludes Linux, FreeBSD, or
any other open-source operating systems because they contain many hardware-specific files
and device drivers; these files can be safely ignored if the developers do not use the particular
hardware components. In this paper, we use “project:file name” for a particular file in
the project.

project purpose version last update .c files∗ LOC .h files LOC
doxygen documentation 1.4.1 01/2005 163 217,877 208 80,091
emacs editor 21.3 03/2003 182 318,076 313 41,184
gdb debugger 6.3 11/2004 1473 1,374,740 922 207,773
httpd web server 2.0.52 09/2004 481 226,114 230 37,400
kde desktop 3.3.1 08/2004 890 309,210 930 94,104
python script language 2.4 11/2004 293 313,099 148 51,707
total 3582 2,759,116 2751 512,259

Table 1: The 6 open-source projects studied in this paper. ∗: both .c and .cpp files; LOC:
lines of codes, including blank lines.

Codes and Comments

Adding comments among codes is one of the most advocated practice to improve software un-
derstandability. Writing comments also provides an opportunity for a programmer to think
about the key information for understanding the implementation. Comments offer another
channel to enhancing quality: if the comments and the codes are inconsistent, the prob-
lem may be discovered more easily. Some professors in introductory programming courses
require that students add comments regularly, for example, every 10 lines of codes. This
number would appear to be determined arbitrarily, causing developers or students to resist
the requirement as being extra work with little benefit.

We analyze the length of a code between comments and the length of a comment between
codes in .h and .c (and .cpp) files. Table 2 shows the results of our analysis. For all
projects, the average length of codes is between 200 and 400 letters between comments.
The median is significantly shorter, between 33 and 96 letters. Short codes are common for
variable declaration. For example, in doxygen:doxytag.cpp, many variable declarations are
immediately followed by a comment: P
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char *yy_ch_buf; /* input buffer */

Meanwhile, we also discover that the standard deviations are very large because of
machine-generated codes. For example, doxygen:scanner.cpp contains 823707 letters with-
out comments; however, this file is generated by flex (fast lexical analyzer generator). Sim-
ilarly, in python the longest code segment contains 652866 letters and it is generated by Qt.
Other long code segments tend to be tables. A table in emacs:macfns.c is used for color
maps and the code spans nearly 800 lines without any comments. We remove the shortest
and the longest 10% codes and recompute the means and the standard deviations. In the
table, we also show the middle 80% of lengths. The columns show that the average lengths
of codes are very uniform across all 6 projects, from 33 letters (python) to 77 letters (doxy-
gen). The standard deviations are also significantly reduced to smaller than 227. Among
all projects, the average number of letters per line for .c and .h files is between 28.8 (emacs)
and 32.9 (doxygen). We use the average lengths of codes and divide them by the average
numbers of letters per line and obtain that on average a comment occurs every 3.3 (doxygen)
to 7.7 (python) lines of code.

The analysis performed on comments indicates that most comments are also short. The
average lengths of comments are 62 letters (python) to 125 letters (httpd). Unlike codes, the
standard deviations of comment lengths are significantly smaller: 192 to 506. We interpret
this as the lack of “machine-generated comments”. If the shortest 10% and the longest
10% comments are removed, the standard deviations are much smaller: between 22 and 66.
This suggests that in open-source programs, the lengths of comments are short and highly
uniform. If we divide the average lengths of comments by the average lengths per line, most
comments are within three lines long.

program code length comment length
mean median STD mean∗ STD∗ mean median STD mean∗ STD∗

doxygen 245 59 6088 77 92 72 42 203 47 24
emacs 214 84 504 77 124 110 61 192 77 48
gdb 219 41 8083 46 120 82 37 257 46 32
httpd 285 96 592 73 158 125 50 215 78 66
kde 342 81 810 47 227 105 43 506 47 27
python 454 33 6224 33 143 62 25 194 33 22

Table 2: Code Length: the lengths (letters) of codes between comments. Comment Length:
the lengths (letters) of comments between code. STD: standard deviation. ∗: the shortest
and longest 10% removed.

Figure 1 shows the distributions of code and comment lengths. In all figures, the shortest
and the longest 10% lengths have been removed. The curves show that all projects have very
similar distributions of code lengths and comments lengths. More than 80% codes contain
few than 600 letters; more than 80% comments are shorter than 150 letters. Our analysis
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Figure 1: (a) Distributions of code lengths. (b) Cumulative distribution of code lengths.
(d) Cumulative distribution of comment lengths. The shortest and longest 10% have been
removed.

suggest strong similarities among these projects and the similarities can be used as a basis
to quantify a software project. If the project’s code lengths are substantially longer, more
comments should be added to improve the understandability. The figure also shows that there
is no strong correlation between the distributions of code lengths and comment lengths.

File Size

The second set of analysis considers the number of lines in each file. Table 3 lists the
averages and the standard deviations of file sizes. One question is whether machine generated
files should be distributed in the open-source programs. On one hand, these files should
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Figure 2: (a) Distributions of C file sizes. (b) Cumulation of C file sizes. (c) Cumulation of
H file sizes. The shortest and longest 10% lengths have been removed.

be included because users may not have the tools to re-generate the files. On the other
hand, these files should not be included to prevent inconsistency: if the source files have
been modified and the machine-generated files are not updated. One solution is not to
include these files and to generate them when executing make. The purpose of our study is
to automatically obtain programs’ properties without manually inspecting individual files.
Consequently, we include machine-generated files in our analysis because the files are included
in the originally downloaded packages.

Emacs has the largest average .c file size, over 1000 LOC per file. Emacs contains 8 .c
files with more than 10000 LOC. The longest file is emacs:xdisp.c with 15136 lines for
updating the display. The second longest file is emacs:xterm.c with 14756 lines; the file is
also related to display. These two files are written by the same person. Seven of the eight
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program C file length H file length
mean∗ STD∗ mean∗ STD∗

doxygen 742 718 269 355
emacs 1024 1081 88 58
gdb 523 500 127 102
httpd 311 257 104 69
kde 260 168 80 34
python 655 611 108 90

Table 3: File sizes (lines). ∗: the shortest and longest 10% removed.

longest files handle display for different window systems, including W32, X, and Mac. None
of them appears to be machine generated. Among all 182 .c files in emacs, 65 have more
than 1000 LOC. This may simply be the convention adopted in emacs by using fewer but
longer files.

In contrast, the lengths of .h files are much closer in the 6 projects. The average lengths
span between 88 lines (emacs) and 269 lines (doxygen). Figure 2 shows the distributions of
the file lengths. The data show no strong relationship between the lengths of .c files and .h
files. The average length of .c files in emacs is the largest but the average length of .h files
is the second smallest. The data indicates that the average file length of a software project
should be several hundred lines for .c files and shorter than three hundred lines for .h files.
If the average length is too small, the project is scattered into too many files (suppose the
total project size is the same). If the average file length is too large, unrelated code may be
put into the same file and degrade understandability.

Function Calls

Software engineering practice emphasizes modularity. One indication of successful modu-
larity is the degree of coupling among functions. File dependence can be used to quantify
program structures.9 The premise is that high-quality structures should be “levelizable”:
files are levelizable if there is no circular compile-time or link-time dependence. If two or
more files have circular dependencies, unit tests on individual files are impossible. However,
files are not an appropriate level to determine dependence— a programmer can put all func-
tionalities inside a single file and eliminate all circular dependence among files. Thus, we
study the dependence among functions, instead of files. If a function calls another function,
the former is a caller of the latter; the latter is a callee of the former.

We analyze the number of functions called within other functions. If a function (callee) is
called by multiple functions (caller), the callee is counted multiple times. If a callee is called
in multiple places inside the same caller, the callee is counted once. For example, consider
the call relationship shown in the sample code:

A () B()
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{ {

B(); C();

C(); }

B();

}

In this example, there are two callers: A and B. B is called only by A so B is counted once.
C is called by both A and B so C is counted twice. Table 4 shows our results. We obtain this
table by using doxygen to analyze each project. Doxygen works as a compiler front end to
analyze the relationship among functions. The table shows that doxygen has 1398 functions
that call other functions. Totally, 8801 functions are called and each caller calls 6.3 functions
on average. A high percentage of functions have single callees. The table shows that 15.89%
of functions in doxygen have only single callees. Similarly, 34.76% of functions in emacs have
only single callees. This table considers only functions defined in the project and does not
include library functions, such as printf. From this table, we can see that there is strong
commonality among these six projects. The average number of callees per function spans
between 2.62 and 6.30. This result suggests that if a software project has a much higher
number of callees per function, the project may be more difficult to maintain due to the
complex dependence relationships among functions. This table also shows the maximum
number of callees of a function in each project. We do discover, however, a few functions
have many callees. For example, the main function gdb calls 720 functions. In most of the
instances of these projects, the largest caller of functions is the main function. In the instance
of gdb, its main function has to set many variables during usage, open files, and interpret
debug information from the files it has opened. This data shows a fairly consistent average
of two functions called within each user defined function. Doxygen has the highest callee /
caller ratio. This can be explained by multiple machine generated files similar to previous
instances. These files use lookup tables and constantly refer to functions to perform lookups
on these tables for comparison. This data provides a good basis for programming where
only a small set of functions constitute the majority of functions called in lower levels of the
code hierarchy. The second largest group of function callees drops by around one third in
most cases showing that the largest groups a very much extremes in almost all cases. Figure
3 shows the distribution of callees of each function with the top and bottom ten percent
removed.

Global Identifier

Global identifiers, especially global variables, can be detrimental to a successful project
depending on the ratio to local variables and frequency of use.17,18 Within a given scope,
a global variable should be either read or written but not both. If a global variable is
both read and written in the same scope, it should be a local variable. Yu et al.18 note
that within the Linux kernel more than one tenth of the global variable definitions and
instances are “unsafe”: If a modification is made to the original code, this can break the
code that references the global variable. Global variables can make a program more difficult
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Figure 3: Distribution of function callees

program Callers Callees Ratio Single Callee Maximum Callees Second Maximum
doxygen 1398 8801 6.30 15.89% 152 94
emacs 1441 4148 2.88 34.76% 140 33
gdb 12033 43019 3.58 27.97% 720 95
httpd 1385 3625 2.62 38.23% 139 123
kde 5567 15740 2.83 35.37% 256 102
python 7795 23468 3.01 33.22% 84 47

Table 4: Function callers and respective number of callees.

to understand because different parts of the program become inter-related by writing and
reading the variables. Meanwhile, global variables allow different parts of the program to
communicate more easily. If a global variable has a well-defined meaning and only a few
places may modify the value, reading the variable is a convenient way for communication.
This is especially true if a variable represents a status of the program. A C program has
several ways to create an identifier that is visible to all files and functions (i.e. global). One
example is to define a constant by a macro:

#define ACONSTANT 100

In our analysis, such a global constant is not counted. However, a constant is counted if
it is defined in the following way:

const int ACONSTANT = 100;
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A global constant or variable in this instance is defined as any constant or variable that
is defined outside any bracket pair and is used throughout an entire project. This includes
the standard integer types as well as characters, arrays, and pointers.

project Global Variables Globals* Numerals chars Total LOC Ratio Ratio*
doxygen 2032 815 90 6 297968 146 356
emacs 4983 3686 639 32 359260 72 97
gdb 33568 8596 1407 106 1582513 47 184
httpd 3969 2033 155 15 263514 66 129
kde 2086 588 69 3 403314 193 685
python 3752 1378 156 20 364806 97 264
Total 50483 17181 2516 182 3271375 64 190

Table 5: Number of global variables in the 6 open source projects. Globals* is with static,
constant, and enum variables removed. Ratio: LOC/Globals

Table 5 shows the analysis of global variables. From this table, we can see that global
variables are widely used in these projects. In fact, gdb contains over thirty thousand global
variables. Most of these global variables are used for handling many different architectures
and has many global tables depending on the architecture used. This greatly increases the
total number of global variables compared to other projects. From this table, we hypothesize
that global variables in a software project, even thousands of global variables, do not provide
a clear indication of the project’s success. However, nearly two thirds of global variables are
limited to file scope (static) or constants (const or enum). The majority of global variables
used are not of the standard integer, float, long, or char types. Many global variables are
user-defined struct. In doxygen, “dictionary” types are used as a pre-defined library for
their own data types. While the majority of variables are not of standard types, those that
are standard are usually of a numerical type. This is most likely used for debug values to
change a behavior at runtime, or in the case of gdb, to access specific memory locations such
as the stack pointer. Our study does not support the common belief that global variables
are harmful to successful software projects.

Analysis of Students’ Programs

We analyze the programs from five groups of students in a senior-level course on software
engineering. In this course, the students were divided into five teams, each with five or six
students. The project was to build a “Yali” game that could compete through a network.
Yali is a two-player board game. Each player has 8 marbles; the winner is the first one
that moves all marbles to the other side of the board. The game uses the board’s center of
gravity to determine which player to move. Because the teams competed through a network,
they could choose any programming language as long as their programs could communicate.
Among the five teams, four chose C/C++ and one chose Java. The first four teams also

P
age 11.1057.15



used Phython as the “glue” language. One team used OpenGL to create 3-dimensional user
interface and another team used Qt library. Because most code in the OpenGL and Qt
libraries are computer-generated or written by programmers outside the class, we analyze
only C/C++ and Java programs. Even though the five teams used different languages, the
code sizes were close, between 10.8 and 21.8 KLOC. During the semester, the instructor and
the two teaching assistants frequently inspect students’ code and encouraged the students
to write more comments and to improve their code structures.

Team code length comment length
mean median mean∗ mean median mean∗

team 1 257 89 121 51 47 45
team 2 177 81 108 74 26 38
team 3 224 79 137 83 28 47
team 4 255 83 136 57 62 52
team 5 154 73 108 43 34 37

Table 6: Code and Comment Lengths of the Teams

Table 6 shows that most of the groups have very close medians to each other. Team4
is slightly different from the other teams because team 4 used existing FL and OpenGL
libraries to create a 3-dimensional environment. Since these were not written by the teams
themselves the result might be skewed. These standard libraries include many comments
in order to make them easily understood and modified. Even without FL and OpenGL
libraries, the median and mean lengths of code between comments are still longer than the
means and medians found for the open source projects. Similarly, comment lengths were
generally shorter for student code. This suggests that many student projects should use
more commenting to be more easily understood by both future students and teachers.

Team Global Variables Globals* Numerals chars Total LOC Ratio Ratio*
team 1 5 3 0 0 10857 2171 3691
team 2 37 36 17 2 18700 505 519
team 3 10692
team 4 210 176 22 0 21807 103 123
team 5 152 91 20 0 15782 103 173

Table 7: Global variable usage across teams

Table 7 shows the usage of global variables. Four teams use global variables except the
third team, which used Java. Java does not support global variables. The fourth team used
GL libraries and they contained 49 global variables, including 24 constants. Compared with
Table 5, the students’ programs have comparable usages of global variables. Similar results
were also found about function caller-callee relationship, as indicated in Table 8.
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Figure 4: Student’s programs: (a) Distributions of code lengths. (b) Cumulative distribution
of code lengths. (c) Cumulative distribution of comment lengths. The shortest and longest
10% have been removed.

Limitations of This Study

This study selects 6 widely used open-source projects as the samples of high-quality software.
A widely used program does not necessarily have high quality even though it is open-source.
All projects studied in this paper can be classified as “tools for other programmers”, not
programs for end users. Many of them include sample inputs for configuration or testing.
For example, emacs has 759 Lisp files (with .el suffix) for user configuration. Our study does
not include them because the programming language is substantially different from C/C++
studied here. Similarly, there are 1606 python files (.py suffix) in the python package and
these python files are not studied. Because these 6 projects are considered as tools, many
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program Callers Callees Ratio Single Callee Maximum Callees Second Maximum
team1 12 39 3.25 30.7% 11 9
team2 61 187 3.07 32.6% 26 12
team3 54 193 3.57 27.9% 22 19
team4 58 144 2.48 40.2% 30 9
team5 42 85 2.02 49.4% 11 11

Table 8: Function callers and respective number of callees.

users may not modify the C/C++ source code. A user may download python, compile
it, and then start writing python code without reading the implementation of the python
language. We believe this is not a serious problem in our study because all projects are
updated sufficiently often by multiple developers. We rely on doxygen to determine the
caller/callee relationship. Doxygen, however, cannot handle function pointers. Hence, some
calling relationships are not captured because the callers use function pointers. One direction
of our future work is to handle function pointers correctly. Due to the large number of files
we study, we cannot manually select remove every machine-generated files so most of them
are included in this study. Some machine-generated files have been discovered because they
have exceptional characteristics; hence, these remaining files should not significantly distort
the data.

Conclusion

This paper provides quantitative analysis of 6 popular open-source programs of over 3.27
million lines to discover their commonalities. We find strong similarities in the sizes of codes
between comments and the sizes of comments between codes. Most files are only a few
hundred lines. Most functions call only a few callees and global variables are widely used in
these projects. This study provides a set of characteristics that can be common in successful
software. The data provide a basis for future quantitative study of software quality.
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