
Session 1253

From C++ to Mathcad: Teaching an Introductory Programming Course
with a Non-Traditional Programming Language

K. P. Brannan, J. A. Murden
 The Citadel

Abstract

Mathcad has replaced C++ as the language of the introductory programming course taught in the
Civil and Environmental Engineering Department at The Citadel. Advantages and disadvantages
associated with the switch are discussed in the paper. A comparison is made between the
Mathcad-based programming course and the previous versions of the course taught using
traditional programming languages. An evaluation of students’ use of Mathcad a year after
completing the Mathcad-based course is included and compared to those students who had taken
the C++ version of the course. In addition, the classroom approach taken to teach the course is
discussed.

Introduction

Over the past few decades, engineering schools have placed a high priority on incorporating
computer technology into the engineering curriculum. This has been no incidental achievement.
The invention of the computer and the impact that the computer has had on numerical,
informational, and graphical methods in teaching and research were included by the ASEE
Centennial Recognition Committee in the ten most outstanding engineering education and
engineering technology achievements of the past century1. Many schools began teaching
computer skills early to ensure that students have a thorough exposure to the potential of the
computer in engineering applications.

Introductory computer courses have historically involved the use of traditional computer
languages such as FORTRAN, BASIC, Pascal, or C++ to solve engineering problems. Although
FORTRAN has been in use for over forty years, it has undergone many changes and is still the
language of choice of many engineering departments. As the use of the personal computer has
grown, alternatives to FORTRAN such as BASIC and eventually Visual BASIC have gained
acceptance. Currently, C++ is often considered the “language of choice” by many in the
computer industry.

The introductory programming course in the Department of Civil and Environmental
Engineering at The Citadel has undergone a number of transitions in the last ten to fifteen years.
After teaching FORTRAN and/or BASIC on a VAX system for a number of years, an emphasis
on desktop computing led to the adoption of QuickBASIC in 1990 as the department’s standard
programming language. In 1994, the Department adopted C++ as its standard programming
language after a detailed evaluation2. C++ provided more extensive multi-platform support than
had been available with the previous languages and also supported Object Oriented
Programming. P

age 3.296.1

Considering the popularity of C++ in the computer industry and the power and versatility of the
language, there was no expectation that another change would be made for some time to come.
Moreover, because of strong beliefs in the value of programming to a student’s academic
development and education, the idea of using anything other than a traditional programming
language in an introductory course would have been rejected a few years ago. However, in
recent years, a number of microcomputer application packages have been developed that
combine numerical, graphical, and programming features which provide the user with
unprecedented power for solving a wide variety of engineering problems and producing excellent
desktop publishing. In the Fall of 1996, the department selected one of these packages (Mathcad
6+ Professional) as the primary tool for teaching engineering problem-solving and fundamental
programming concepts. This paper will describe the reasons for the change to Mathcad along
with the advantages and disadvantages of using Mathcad in an introductory programming course
as compared to a traditional computer programming language. In addition, the classroom
approach to teaching the course, including active learning techniques and team-teaching, will be
described. Finally, an evaluation of student use of the package during the year following the
course will be provided.

Goals Associated with Teaching a Programming Language

One of the potential benefits of learning a programming language is that it can help a student
enhance skills for solving engineering problems. Specifically, development of a full complement
of programming skills requires a student to be able to examine a problem, develop logical
approaches to solving the problem, select a solution, and test the solution. In addition, by
learning to program, a student acquires the skills to develop custom tools to address unique needs
for solving problems. Finally, programming provides the power to move well beyond what
could be done manually, such as analyzing large amounts of information in a more exhaustive
manner. All of these skills, associated with learning to program, can be valuable to an engineer
in any discipline. Regardless of whether a traditional or a non-traditional programming language
is used in an introductory programming course, the language should provide these opportunities.
Thus, before the change to Mathcad was made, the faculty scrutinized the package to ensure that
these goals could be met. Although a few disadvantages were noted that are discussed in later
sections, it was felt that Mathcad clearly met these fundamental goals.

Using Mathcad versus a Traditional Language

The department’s introductory programming course focuses on developing solutions to problems
using language independent algorithms. This is accomplished by using programming constructs
that are common to most traditional languages. The programming fundamentals included in the
three most recent versions of the programming course are presented in Table 1. A comparison of
the topics covered in the different versions of the course clearly shows that the capabilities
provided to the students have been consistent for all of the languages used. Because more topics
are covered in the Mathcad based course, the percentage of time allocated to strictly
programming topics has been somewhat less. On the other hand, Mathcad requires much less
time and effort to document the solution and to format the output than traditional programming
languages. Prior to adopting the Mathcad based course, some faculty expressed concern that
students may be at a disadvantage later if faced with a situation where a traditional programming
language was needed. Examples were offered such as developing stand-alone design tools as

P
age 3.296.2

senior projects or software development to support graduate research efforts. Ultimately, it was
decided that the advantages of using Mathcad in the language-independent approach outweighed
any perceived disadvantages. If at a later time students need to move from the Mathcad
environment to a traditional programming language environment, it is a straightforward
transition. Further, there is no need to try to anticipate the language that the students may need
to use in the future.

Extensive discussions have been held among the department’s faculty members and also with
engineering faculty from other institutions who are involved in educational software
development. The software development manager of a large pharmaceutical firm who was
conducting an Internet applications development workshop at the 1996 ASEE Southeastern
Section Meeting made an interesting comment. After viewing some of the Mathcad solutions
developed in the course, he was asked if they would be considered programming. He replied,
“They look like the things we do in C or Java, so I’d call them programs.”

The following is a portion of an assignment that was given during the Fall of 1997. The students
were to develop a Mathcad solution using a multi-line function with for-loops and block-if
statements that would read several years of daily readings from a disk file; then check to see if
the weekly average of the readings exceeded some limit. For those weeks exceeding the limit,
the weekly average and the week number were to be returned by the function. Mathcad
statements from a typical solution to this portion of the assignment are shown in Figure 1.

Units may be conveniently incorporated, in general dimensional form, into Mathcad-based
solutions. Students can take advantage of Mathcad’s ability to monitor and convert units. When
units are used, the dimensional consistency of the solution is ensured. By automatically
converting units, Mathcad allows the values in a problem to be defined using the units that are

Table 1. Introductory Programming Course Topics using Mathcad, C++ and BASIC

Mathcad C++ BASIC

Numerical variable types, units data types variable types
Problem organization and printing input and output input and output
Branching (if, otherwise) branching (if, if-else) branching (IF-THEN-ELSE)
Looping (while, for) and
implied loops(range variables)

looping (while, do-while, for) looping (WHILE-WEND,
DO-LOOP, FOR-NEXT)

File input and output sequential files sequential files
Vectors and matrices (single and
double-dimension arrays)

single and double dimension arrays single and double dimension
arrays

User-defined functions functions functions and subprograms
2D graphing, 3D graphing
(surface and contour plots)

graphics graphics

Data analysis and presentation
(statistical functions, scatter plots,
curve fitting, and histograms)

Symbolic, numerical, and
graphical solutions

P
age 3.296.3

most convenient; for example, lengths in feet,
cross-sections in square inches, and loads in a
user-defined unit, kips.

Symbolic manipulations can be performed in
Mathcad. A strong argument can be made that
the relationships in a system are best seen in a
purely symbolic expression since all elements
remain identifiable. One of the authors
(Murden) emphasizes the value of symbolic
solutions to students with the phrase “letters
are your friends.” With the availability of
Mathcad to perform symbolic manipulations
almost effortlessly, the students have accepted
this phrase a bit more readily!

Graphing is well supported in Mathcad.
Students routinely incorporate a graphical
display of results into the problem solutions
that have been developed using Mathcad. This
can generally be accomplished with only one
or two additional statements. Continuous
functions and discrete data can be plotted
conveniently. A wide range of graph types is
available: x-y plots (linear or logarithmic
scales), polar plots, surface plots, contours, 3D
bar plots, 3D scatter plots and vector field
plots.

Unfortunately, some things were lost with the shift to Mathcad. The most obvious is that the
students no longer learn a traditional programming language. Second, stand-alone applications
can not be created; Mathcad must be available to execute the worksheets that have been
prepared. Third, since the contents of a worksheet are visible, the details of a solution cannot be
hidden.

Additional Benefits Associated with Mathcad

Student response was overwhelmingly supportive of the switch to Mathcad. Mathcad is a tool
that the students begin to apply almost immediately (while they are taking the Mathcad-based
class) in other courses, even without direction from the professors. A survey was conducted of
students enrolled in civil engineering courses. Twenty-nine of the forty-three students who took
the Mathcad-based course in 1996 completed the survey. Thirty-one of the thirty-seven who
took the C++ based course in 1995 completed the survey. No attempt was made to contact
students who had left the civil and environmental engineering department. A partial summary of
the survey responses is presented in Table 2.

Check_week data Limit,() i 0

sum 0

sum sum datar c,

c 0 cols data() 1..∈for

overi 0, r 1

overi 1,
sum

7

i i 1

sum

7
Limit>if

r 0 rows data() 1..∈for

over

BOD READPRN "BOD_Data"()

Wk_Limit 45
mg

liter
.

Check_week
Data

mg

liter

Wk_Limit

mg

liter

,

64

87

151

280

331

438

457

46.135

47.334

47.168

45.135

46.769

46.596

46.348

=

Figure 1. Mathcad program example.

P
age 3.296.4

With 90% of the respondents
who took the Mathcad-based
course indicating that one year
later they still voluntarily use
Mathcad to develop their own
solutions for problems, the
faculty are convinced that this
change has greatly increased
the effective utilization of
computers within the
department. Similarly, nearly
three-fourths of the
respondents who took the C++
based course indicated that
they have learned enough
about Mathcad to develop their own Mathcad solutions to problems. This is in stark contrast to
the 13 % of the respondents (2 from the Mathcad group and 6 from the C++ group) that
developed solutions using C++ or some other traditional programming language on their own
initiative. The most common comment made by those students is “we should have been taught
Mathcad instead of C++.” Significant proportions of both groups make use of Mathcad solutions
made available by faculty members.

Students’ measure of the significance of some of Mathcad’s capabilities can be gleaned from
their responses to additional questions in the survey. Among students who had taken the
Mathcad-based course, graphing, units and creating user-defined functions were the top three
features. The students who had taken the C++ course considered units, symbolic manipulation
and creating user-defined functions to be the most significant. Caution should be used before
drawing conclusions from these differences. The students from the C++ course have been
through an additional year of courses, which almost certainly has altered their perspectives.

The Mathcad environment is excellent for developing, documenting and presenting solutions.
The required “language” is already familiar to the student: mathematics. Just as importantly, the
mathematics look like the mathematics that the students have seen in their math courses. A full
range of mathematical operators, built-in functions, and programming constructs is provided. It
is unlikely that an engineering student will need an operator that would be unavailable. User-
defined functions can be defined to perform “special purpose” calculations. Text capabilities
allow all portions of the solution to be documented. Greek characters are supported in
mathematical and text expressions. The graphical interface provides an onscreen presentation
that corresponds to the printed output. This allows students to create and arrange the various
elements in their solutions until the desired format is achieved prior to printing.

Classroom Approach

The class was taught as a two semester-credit hour course, including one lecture hour and two
laboratory hours. A typical class was designed to meet for a one-hour lecture on Monday
followed by two one-hour laboratory sessions on Wednesday and Friday. Active learning
techniques were used throughout the course, in both lecture and laboratory settings in an attempt

Table 2. Student responses on Mathcad utilization.

Those Taught
Mathcad

Those Taught
C++

I use Mathcad very often 7 24% 7 23%
regularly 12 41% 8 26%

occasionally 8 28% 7 23%
only if specified 2 7% 1 3%

I do not use Mathcad 0 0% 8 26%
Total 29 100% 31 100%

I develop solutions using Mathcad 26 90% 23 74%
I use solutions developed by others 25 86% 20 65%

P
age 3.296.5

to improve learning compared to a "typical" course, improve the grades of weaker students,
increase retention of course material in the classroom, improve self-confidence of students,
encourage supportive interaction among students in the academic environment, and increase
interaction between faculty and students. Most of these are results that many claim can be
achieved through effective cooperative or active learning techniques.

One of the first active-learning “lectures” was on ethical and professional issues associated with
computer utilization. Students were divided into groups and given an ethical situation involving
computer software to analyze. Following most of the elements that have been identified with
effective active-learning groups3, 4, 5, each member of the group was provided with a specific task
to promote positive interdependence and interaction among the members of the group. Individual
accountability was encouraged by randomly calling on any member of any group to explain the
group’s solution. Some of the programming concepts were also taught in this manner, with
groups analyzing or writing program segments.

Many of the lectures were taught in the laboratory using files prepared by the authors. These
files, called electronic workbooks, were located on the department web-server. The workbook
files contained appropriate explanations and interactive examples that provided students with the
opportunity to acquire hands-on experience with the examples as they were discussed. Since the
workbook files were downloaded to a diskette, students could review the workbook files
interactively at any time during the lecture, or while working in the laboratory or in their rooms.
Because Mathcad has a text editor, students had the option of taking notes electronically on the
worksheet. Many students chose to print the workbook files and place them in a notebook.

To promote student-teacher interaction, the authors voluntarily team-taught in all classes held in
the laboratory. This not only allowed more individual attention and more questions to be
answered in class, but it allowed much more variety in classroom presentation, with the two
professors changing “roles” in the presentation of the material. The authors have done this for a
number of years and the students have consistently voiced their appreciation in student
evaluations. The obvious disadvantage is that this takes a considerable amount of time on the
part of the professors, but is felt that the benefits have been worth the effort.

Students were tested on course material in three ways. They solved problems by hand on paper;
they developed Mathcad files on the computer that were printed and then submitted; and the
students took web-based tests. For the web-based tests the students downloaded forms from the
department’s web server and then submitted the completed forms back to the server. Although
not enough data have been collected to draw meaningful conclusions, test performance
associated with the three testing methods appeared to be comparable. The web-based tests
initially took longer to prepare, but this was at least partially offset by the speed at which grading
could be accomplished. It should also be mentioned that it takes time to develop appropriate
questions for this mode of testing. Nevertheless, the authors were encouraged by how well web-
based testing worked for the material in some portions of the course and plan to explore that
testing method more in the future. Student response to the web-based tests was generally
positive. However this may have been partially because of the novelty of the experience.

P
age 3.296.6

Concluding Comments

Although there were a few disadvantages associated with the switch from C++ to Mathcad, in
the opinion of the authors those disadvantages were more than offset by the numerous
advantages provided by Mathcad. Student enthusiasm for the package has been much higher
than has been observed for any of the traditional programming languages taught by the authors.
Almost all of the students surveyed one year after completing the Mathcad-based course were
still voluntarily using Mathcad in their classes. Two thirds of those students claimed to use
Mathcad regularly or very frequently. Moreover, a high percentage of the students who took the
C++ version of the course have been motivated to learn Mathcad on their own. Among the
students from the C++ course, Mathcad is used far more frequently than C++ to develop
computer-based solutions for assignments. Finally, in spite of the striking differences between
the Mathcad environment and the even the newest development environments for traditional
programming languages, programming concepts and algorithm development have been very
successfully taught in a Mathcad-based course.

References

1 Burnet, George and Greisch, Janet Rohler, "The Ten Outstanding Engineering Achievements." Journal of
Engineering Education, (January 1994).

2 Murden, J. A. and Brannan, P. K., “C++ as a First Programming Language for Civil Engineers”, Proceedings,
American Society of Engineering Education Southeastern Section Conference, Greensboro, NC (1994).

3 Smith, K. A., “Cooperation in the College Classroom,” notes prepared in cooperation with David and Roger
Johnson, University of Minnesota (1995).

4 Smith, K. A., “Cooperative Learning: Effective Teamwork for Engineering Classrooms,” IEEE Education
Society/ASEE Electrical Engineering Division Newsletter (April, 1995).

5 Johnson, D. W., Johnson, R. T., and Smith, K. A., “Active Learning: Cooperation in the College Classroom.”
Interaction Book Company, Edina, MN (1991).

Biographical Information

KENNETH P. BRANNAN is an associate professor of Civil and Environmental Engineering at The Citadel. He has
been elected President of the Southeastern Section of ASEE for the 1998-1999 term. He earned B.C.E and M.S.
degrees from Auburn University and the Ph.D. from Virginia Tech. Dr. Brannan is a registered professional
engineer with interests in freshman engineering education, water supply and wastewater treatment systems.

JOHN ALDEN MURDEN is an associate professor of Civil and Environmental Engineering at The Citadel. He
earned the Ph.D. from Clemson University while studying wind effects on structures. Dr. Murden’s technical
interests currently include the effective application of computers in engineering education, system modeling, and
experimental methods in structural mechanics. He is actively involved in the Southeastern Section of ASEE.

P
age 3.296.7

