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ABSTRACT

The formulation and explicit integration of the stiffness matrix for the two-node one-dimensional
washer element are examined.  An example problem is presented to illustrate the effectiveness of
using various numerical integration methods for obtaining the element stiffness matrix when
nearly singular integrations (for elements very close to the axis) are involved.  Numerical
examples are given for the two-node washer axisymmetric elasticity element.  Errors in nodal
displacements from the finite element solutions are compared for different integration methods.
Integrating nearly singular axisymmetric washer elements the authors find that using a few
sampling points with regular Gauss quadrature is inadequate and recommend new guidelines for
numerically integrating these elements’ stiffness matrices.

1.  INTRODUCTION

Axisymmetric finite element (FE) models may be used to represent three-dimensional (3-D)
structures exhibiting symmetry about a central axis of rotation.  For conventional axisymmetric
elements to be acceptable for modeling a structure, the body’s geometry, loading, boundary
conditions, and material properties must all be independent of the T coordinate.  Three common
types axisymmetric elasticity elements include the two-node washer, the three-node triangle, and
the general (distorted) four-node quadrilateral.  Structures commonly modeled using
axisymmetric elasticity elements include thick-walled pressure vessels, soil masses subjected to
circular footing loads, and flywheels rotating at constant angular velocities.

The stiffness matrix for general axisymmetric elasticity elements is of the following form1:

KE   = 
V
³³³ BT D B r dr dT dz              (1)

where B is the kinematic matrix relating element strains to element nodal displacements (H = B
uE), D is the material law (Hooke’s law in this case) relating element stresses to element strains
(V = D H), superscript T denotes the transpose operation, and V is the element volume.  In
axisymmetric elements the hoop strain Hr is not constant; it is a function of 1/r that varies with
radial position in the element.  For this reason, B contains 1/r terms, as does the BT D B r
product.

Prior to proceeding further with the axisymmetric problem, the designation of integrals as
regular, singular2, or nearly singular3,4 must be explained.  A regular (or proper) integral has
finite lower and upper limits of integration, and its integrand remains finite over these limits.  A
singular (or improper) integral may have at least one of its integration limits as infinite (rf) or
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its integrand may become infinite at one or more points within finite limits of integration. A
nearly singular (or quasi-singular) integral has an integrand that behaves very strongly or
changes rapidly near one of the integration limits but does not diverge.  In a strict mathematical
sense, nearly singular integrals are no different from regular integrals; however, nearly singular
integrals are not always handled correctly by numerical integration (as is discussed later).

Since the BT D B r product is integrated over the radial coordinate, the integral in (1) becomes
improper as r approaches zero.  Figure 1 shows how the integral classifications discussed above
arise for axisymmetric elements.  For elements on the axis of rotation, the integral is singular or
improper; for elements very close to the axis of rotation, the lower limit of integration for the
radial coordinate is almost zero, and the integral is nearly singular (since 1/r behaves very
strongly near r = 0).  For elements farther from the axis, the integral is regular or proper.

Figure 1:  Integral Classification Based on Element Location.

Expression (1) may be evaluated numerically for any shape of element.  The most commonly
recommended numerical integration technique in FE analyses is Gauss (or Gauss-Legendre)
quadrature1,5,6, in which the integrand is evaluated and multiplied by a weight at pre-selected
sampling points.  These weighted values are summed to yield, in general, an approximation of
the integral.  A Gauss quadrature rule using n sampling points integrates exactly a polynomial of
up to order 2n-1.  Gauss quadrature is inexact for the integrand in (1), which is not a polynomial
because of the 1/r terms.  In isoparametric formulations, the standard practice is to use a 2-point
quadrature rule for two-node line elements and a 2 x 2 quadrature rule for four-node quadrilateral
elements5,6.  However, the authors believe these conventions were developed for one-
dimensional (1-D), linear bar and two-dimensional (2-D), plane stress or plane strain cases,
respectively, and not specifically for axisymmetric elements, which are unique because of the 1/r
terms.  Expression (1) for axisymmetric elements far from the axis may be integrated very
accurately using Gauss quadrature since the 1/r function changes slowly as r varies for large
values of r and may be accurately approximated by a polynomial.

Standard Gauss quadrature also often yields incorrect results for nearly singular integrals,
especially when only a few sampling points are used3.  Therefore, the usual 2-point (1-D) or 2 x
2 (2-D) Gauss quadrature conventions may be insufficient for evaluating the integral in (1) for
nearly singular elements.  However, no FE textbooks present special rules for addressing the
nearly singular case for axisymmetric formulations; the conventional Gauss quadrature rules are
recommended for all elements, regardless of proximity to the axis of rotation.  Only Cook7

suggests using more sampling points in the standard Gauss quadrature routine for elements close
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to the axis of rotation.  However, this reference does not specify how many additional points
should be used or how close the elements must be to the axis to merit the use of these extra
points.

Because conventional Gauss quadrature often yields erroneous results for singular and nearly
singular integrations, various modified quadrature rules have been developed for evaluating these
kinds of integrals.  This paper examines the use of one such modified Gauss quadrature rule,
developed by Telles3,4, employing a cubic transformation that shifts the sampling points closer to
the singularity.

2.  AXISYMMETRIC WASHER ELEMENT

The axisymmetric washer element, obtained from Problem 10.6 in Cook et al.6, is shaped like a
thin, flat metal washer.  This element is examined in detail because of the simplicity of its
stiffness matrix, KE (which has only four terms).  The following subsections define the washer
element, present this element’s integral formulation of KE, and discuss the application of explicit
and numerical methods to obtain the integrated KE.

2.1 Element Definition
The cross-section of the axisymmetric washer element, shown in Figure 2, includes two nodes,
with nodes 1 and 2 located at radial coordinates r1 and r2, respectively.  The complete element is
this cross-section rotated about the z-axis.  Each node has a single translational degree of
freedom (DOF) in the radial direction, denoted as u1 and u2 for nodes 1 and 2, respectively.  The
assumptions for this element include the following: geometrically symmetric about the z-axis;
loadings and boundary restraints symmetric about the z-axis; element of constant thickness t;
element is thin, i.e., no axial normal stress and no shear stresses; material is isotropic,
homogeneous, and behaves in linear elastic manner.

Figure 2:  Washer Element and Cross-Section.

2.2 Element Stiffness Matrix Formulation
A linear radial displacement function, u(r), is assumed for this element.  The strains are the radial
Hr and hoop HT, and the stresses are radial Vr and hoop VT.  The element stiffness matrix for the
washer element is given as
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2.3 Explicit Integration of K E for the Washer Element
Each term in the BT D B r integrand in (2) contains terms with r in the denominator.  As the
lower limit r1 approaches zero (or as the element location shifts closer to the axis of rotation),
these terms behave very strongly, and the integral becomes nearly singular, for an element very
close to the axis, or singular, for an element on the axis (refer to Figure 1).  For the non-singular
case (includes nearly singular), expression (2) may be integrated explicitly to yield the following:

KE  = 
2

12 1
2 2

11 12

21 22

S Et

r r v

k k

k k( ) ( )� �

ª

¬
«

º

¼
»             (3a)

where

k v r r v r r r r
r

r11 2
2

1
2

2
2

1 2 2
2 2

1

1 2 1 � � � � � �( )( ) ( )( ) ln     k k r r
r

r12 21 1 2
2

1

  � ln                             (3b)

k v r r v r r r r
r

r22 2
2

1
2

1
2

1 2 1
2 2

1

1 2 1 � � � � � �( )( ) ( )( ) ln

2.4 Numerical Integration of KE for the Washer Element
For expression (2) to be integrated numerically using Gauss quadrature, the integral is written in
terms of the natural coordinate, s, rather than the axisymmetric coordinate r, using the following
linear transformation from r to s:
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The Jacobian for this transformation is

J = 
dr

ds

r r
 

�2 1

2
 (5)

The limits of integration in the natural coordinate system become r 1.  To use Gauss quadrature
to obtain KE for the washer element, (4) and (5) are substituted into (2), and the integral becomes
(not expanded)

KE = 2
1

1
S t

�

³ BT D B r J ds = 2
1

St
i

n

�

¦ BT(si) D B(si) r(si) J wi              (6)

where J is given by (4), n denotes the number of Gauss points, i signifies the Gauss point and w
is the weight.

2.5 Application of the Telles Transformation for the Washer Element
The cubic transformation by Telles3,4 improves upon the accuracy of standard Gauss quadrature
for  nearly singular integrals by shifting the sampling points closer to the location of the
singularity, thus accounting for the strong behavior of the integrand in the proximity of the
singular point.  When the transformation is used for the washer element, the sampling points
move closer to r = 0 as the integral becomes more nearly singular.  For regular integrals, the
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transformation degenerates to conventional Gauss quadrature, with the usual sampling points;
therefore, the transformation technique may be safely applied to all elements in a mesh, whether
regular, singular, or nearly singular.  To apply this transformation technique, expressions (4) and
(5) are substituted into the expanded BT D B r product from (2).  The entries in the BT D B r
product are then divided into constant terms, terms linear in r, and terms of the order 1/r.  The
constant and linear terms are integrated using conventional Gauss quadrature, each evaluated at
the usual Gauss-Legendre sampling points.  The 1/r terms are evaluated at the transformed
(Telles) sampling points and are then multiplied by the Jacobian of the cubic transformation
(different from the Jacobian in (4)).  The location of the singularity in the s-domain (required to
employ the transformation) is found by setting r = 0 in (3).  The authors caution that the
transformed sampling points found using the singularity at r = 0 may not be applied to every
term in every entry of the BT D B r matrix.  Only the terms of order 1/r are undefined at the
singularity point and can be evaluated at the transformed points.  Thus, a major drawback in
applying this technique is that the transformation must be used selectively on certain terms in the
expanded BT D B r product.  For the washer element, the three unique entries (k11, k12, and k22)
in the BT D B r product are fairly short, and applying the rule is not too difficult.  However,
symbolically expanding the BT D B r integrand for more complicated elements (such as the 8 x 8
integrand for the four-node quadrilateral) and applying the rule to all the 1/r terms is much more
tedious.  In this study, when the Telles transformation was used, all terms in the integrand,
whether requiring the conventional Gauss or the transformed sampling points, were evaluated
using the same number of sampling points (the same order of quadrature).

3. EXAMPLES AND RESULTS

Figure 3 shows the axisymmetric problem used to judge the effectiveness of employing the
conventional Gauss quadrature rules to obtain the element stiffness matrix for nearly singular
elements.  The problem consists of a flywheel (or disk) rotating at constant angular velocity Z.
The disk's cross-section has length L and uniform small thickness t. Numerical values for all
constants in the model--t, L, Z, and material properties--are included in Figure 3. A disk with a
small hole (or pinhole) was used to model the nearly singular case.  The hole size was varied in
terms of element lengths in the radial coordinate; the smaller the hole, the more nearly singular
the stiffness matrix integrand for the innermost element in the FE mesh.  Gravity forces in the
axial direction were neglected, leaving the centrifugal forces in the radial direction as the only
forces acting on the body.  The element body force vector was evaluated exactly for this study.
The FE analyses were performed using the MATLAB software package, with codes based on
programs from Kwon and Bang8.  Only errors in nodal displacements in the FE solutions were
considered since once the nodal displacements are found, the stiffness matrices are no longer
used.  Errors in strains and stresses were not considered because these are determined directly
from the nodal displacements; additional errors not reflected in the nodal displacements due to
the inaccurate integration of KE are not introduced during strain and stress calculations.

The boundary condition of zero radial displacement at the innermost node is not applicable for
nearly singular elements, so the problems with numerical integration of KE are not so easily
solved.  The goal for the study of the nearly singular washer element was to determine a
universal quadrature rule to apply to every element in the FE mesh, based on the distance of the
innermost element to the axis of rotation.  This distance is normalized in terms of the ratio rm/lE,
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Figure 3:  Rotating Flywheel Problem.

where rm is the radial coordinate (in the global coordinate system) of the centroid of the element
(the midpoint of the innermost element for the washer) and lE is the length of the element (the
integration domain).  Figure 4 defines rm and lE for meshes of one, two, four, and eight equal-
sized washer elements.  A rm/lE value of 0.5 denotes a singular element, with a node at r = 0.
Nearly singular elements have rm/lE values slightly greater than 0.5.  The minimum rm/lE value
considered for this study (of the nearly singular case) was 0.51, corresponding to a disk having a
hole with a radius of 1/100 of the length of an element.  The authors believe that stronger nearly
singular cases (0.5 < rm/lE < 0.51) are unlikely to occur in practice.  Errors in the nodal
displacement u1 at the innermost node were determined using both standard Gauss quadrature
and the Telles quadrature rule (applied only to the 1/r terms, with conventional Gauss quadrature
applied to the other terms, as described in Section 2.5) for integrating KE.  Relative percentage
errors were calculated in comparison to the FE solution obtained for u1 when explicit integration
was used to evaluate KE (the explicit integral is given in Equations (3)).  Errors in nodal
displacements were most profound at the innermost node, and were less significant for nodes
farther from the z-axis, hence the focus on error in u1.

Figure 4:  Washer Element Models of Flywheel.
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Figures 5a-d compare, for meshes of one, two, four, and eight elements, the error in u1 when the
usual 2-point regular Gauss rule5,6 and the 1- and 2-point Telles rules are used to integrate KE.
The lower limit of the ordinate for Figures 5a-d is 0.51; at this lower limit, eu is nearly 100% for
the 2-point Gauss rule for the one-element mesh.  These figures show that the conventional 2-
point Gauss rule is inadequate for nearly singular elements, and that using the Telles
transformation results in much higher accuracy for low ranges of rm/lE.  The 2-point rule by
Telles offers significant improvement over the conventional 2-point Gauss rule for rm/lE < 1.5.
Even the 1-point Telles rule betters the 2-point Gauss rule for rm/lE < 0.75.

  a: One-Element Mesh.   b: Two-Element Mesh.

  c: Four-Element Mesh. d: Eight-Element Mesh.

Figure 5:  Displacement Relative Percentage Error (eu) for u1.
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Figure 6a shows the number of sampling points required by the conventional Gauss method and
by the Telles method to achieve less than 1% error in u1 in a one-element mesh, for 0.51 d rm/lE d
0.80.  The number of sampling points required for an accurate value of u1 increases as the rm/lE
ratio decreases, i.e., as the hole shrinks, the stiffness matrix integrals become more nearly
singular.  When this ratio is 0.51 (the lower limit of the figure), standard Gauss integration
requires 13 points for eu < 1%, but the Telles method requires only 3 points.  In Figure 6b the
upper limit of the ordinate of Figure 6a is extended to rm/lE = 10.

Based on Figures 6a and b, the authors recommend the quadrature rules presented in Table 1.
For the washer element, the rm/lE value of the innermost (most nearly singular) element is used to
select the integration rule to be applied universally to all elements in the mesh.  Note that the
suggestions in Table 1 are conservative since they are based on a one-element mesh.  Also be
aware that use of Table 1 for a different problem does not guarantee less than 1% error in the FE

   a: 0.51 d rm/lE d 0.80   b: 0.51 d rm/lE d 10

Figure 6:  Number of Sampling Points for eu<1%, One-Element Mesh.

solution; the 1% value applies only when comparing the FE solutions for explicit and numerical
integration of KE for this specific flywheel problem.  Nevertheless, adhering to these guidelines
for strongly nearly singular washer elements in other axisymmetric problems should provide
much higher accuracy than the conventional 1- or 2-point regular Gauss quadrature rules.  The 1-
point Telles rule is not recommended since it is less accurate than the 2-point Gauss rule for 1.50
d rm/lE d 4.50.  Recall that the Telles rule may be applied safely to all elements in the mesh since
the modified rule degenerates to conventional Gauss quadrature for elements far from the axis of
rotation.  If equal-sized elements are used, nearly singular washer elements benefiting from the
Telles transformation will not occur in a model of a solid disk.  This is because the rm/lE value of
the second element from the axis of rotation is 1.5, which requires only a 2-point regular Gauss
integration for acceptable accuracy, as suggested in Table 1.  Should the FE analyst/programmer
prefer not to employ the Telles transformation technique, a large number of Gauss sampling
points is required for acceptable accuracy for rm/lE values very close to 0.50.  Table 2 presents
reliable integration orders for washer elements when only regular Gauss quadrature is used,
based on the results shown in Figures 6a and 6b.  The quadrature rules suggested in this table
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may be applied separately to each element in a mesh (based on that element’s rm/lE value).  This
was done in order to cut down on the computational effort that would be required if a large
number of sampling points were used for integrating every element stiffness matrix.

Table 1.  Numerical Integration Orders in Evaluation of Stiffness Matrices of
Regular and Nearly Singular Washer Elements.

Location of Innermost Element Reliable Integration Order*
0.51 d rm/lE < 0.54 3-point Telles & Gauss
0.54 d rm/lE < 1.50 2-point Telles & Gauss
1.50 d rm/lE < 4.50 2-point Regular Gauss

rm/lE t 4.50 1-point Regular Gauss
*Note:  Same rule to be applied to all elements in a mesh.

Table 2.  Numerical Integration Orders in Evaluation of Stiffness Matrices of
Regular and Nearly Singular Washer Elements,

Applying Conventional Gauss Quadrature Exclusively.

Location of Innermost Element Reliable Integration Order*
0.51 d rm/lE < 0.52 13-point Regular Gauss
0.52 d rm/lE < 0.53 9-point Regular Gauss
0.53 d rm/lE < 0.54 8-point Regular Gauss
0.54 d rm/lE < 0.55 7-point Regular Gauss
0.55 d rm/lE < 0.57 6-point Regular Gauss
0.57 d rm/lE < 0.62 5-point Regular Gauss
0.62 d rm/lE < 0.72 4-point Regular Gauss
0.72 d rm/lE < 1.50 3-point Regular Gauss
1.50 d rm/lE < 4.50 2-point Regular Gauss

rm/lE t 4.50 1-point Regular Gauss
*Note:  Rule may be applied separately to each element in a mesh.

4. CONCLUSIONS

The authors found that the using the conventional 2-point Gauss quadrature for integrating the
element stiffness matrix for nearly singular washer elements (with a node close to the axis of
rotation) yields unacceptable accuracy and suggest two approaches.  The first integration
approach is based on using a modified quadrature rule by Telles.  Table 1 presents recommended
universal quadrature rules to be applied for all elements in a washer element mesh, based on the
closeness of the innermost element to the axis of rotation and the length of the element in the
radial direction.  The second integration approach is based on using the conventional Gauss
quadrature.  Table 2 gives the recommended rules to be applied selectively to each element in the
mesh based on that element's distance from the axis of rotation and length.  Because the washer
element can only be used to model simple, 1-D axisymmetric problems, this type of element is of
limited use to the practicing engineer.  Therefore, this study needs to be extended to other, more
practical elements such as the four-node quadrilateral.
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