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Abstract
In this paper we will briefly review  the simulated annealing algorithm, an algorithm with applications in
optimization and pattern recognition used extensively in artificial intelligence. In earlier papers the authors analyzed
a simulation of the  annealing of a solid, a dodecahedron in particular. Our use of this algorithm, which is
based in the field of combinatorial optimization, reflects properties of Boltzman machines -  a neural network 
characterized by massive parallelism.

We will demonstrate two implementations of this algorithm in simulated annealing. Each of the implementations
depends upon a neighborhood structure and a transition mechanism. In the first implementation our neighborhood
structure is a linear transformation of the vector space  of all configurations and the transition probability is
deterministic. In this case, we will use techniques from character theory of finite groups to analyze simulated
annealing. In the second implementation, a special case of which includes the first implementation, our
neighborhood structure is a set-valued function and the transition mechanism is stochastic in nature. In this case, we
use techniques from matrix analysis, in particular properties of doubly stochastic matrices, to analyze simulated
annealing modeled and based on a class of Boltzman machines.

For pattern recognition, we use the simulated annealing algorithm to solve the classic seven-segment display
problem. This is a classification problem which we will solve by choosing an appropriate Boltzmann machine.

1. Introduction.
Annealing is the physical process of heating up a solid and following it by a specified slow
cooling  process. We shall use the simulated annealing algorithm, a method based in the field of
combinatorial optimization, to describe simulated controlled cooling processes. In the annealing
process, one can interpret the states (and free energy) of the solid in the cooling process as
solutions (and cost function, respectively) of a combinatorial optimization problem [1]. Our use
of the simulated annealing algorithm reflects properties of Boltzman machines, a neural network
model belonging to a class of connectionists models and which has massive parallelism as a
feature, amongst others.

Also, we will use an appropriate Boltzmann machine to solve a pattern recognition problem,
namely, the seven-segment display problem. The display of the decimal digits in a hand-watch
for instance uses a seven-segment display. In identifying the digit displayed, we will maximize an
overall measurement of desirability of the Boltzmann machine.

We shall briefly review some aspects of Boltzman machines and the simulated annealing
algorithm. Let (U, C) be a network consisting of units, U = , and a set of

connections, C,  consisting of unordered pairs . A connection in C is said to join

to . Intrinsic to Boltzman machines are the notions of a connection strength s and a P
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configuration k of the network (U, C); respectively, they are real-valued functions defined on C

and U, respectively. The values  and  give us the strength of the connection 

 and the state of the unit , respectively. Thus, a Boltzman machine is a network (U,C)

with a given connection strength s  [1, chapter 8]. An objective of a Boltzman machine is to find
an optimal configuration in the space  S of all configurations k that minimizes the consensus

function defined by

. (1.1)

The values of the consensus function provide an overall measurement of desirability of the
connections and the states of the units. The function in (1.1) is usually called the cost function in
combinatorial optimization.

To optimize (1.1), we will use the simulated annealing algorithm. There are several ways to
implement this algorithm, moreover, each way depends on a neighborhood structure and a
transition mechanism. A neighborhood structure is a function  N from  S into  P( S), the family of
all subsets of  S. A configuration l in  N(k) is called a neighbor of k. To optimize the consensus
(1.1), we need a mechanism which allows a configuration to change.  Given a configuration k, we
shall randomly generate a neighbor l in N(k), with the neighborhood structure being defined at
the outset, and then it will be determined whether l will replace k. Specifically, let X(m) be the
configuration on the mth trial and let be the probability of

accepting configuration l on the mth trial given that the configuration of the (m-1)th trial is k.
Under certain conditions, such as those discussed in [1, page 18, 42, or 46], the sequence of
configurations generated by the simulated annealing algorithm asymptotically converges to an
optimal configuration.

The controlled cooling process is represented by a sequence {c | m=0,1,2,3,...}m 

of real numbers. Following [5], the simulated annealing is described by the algorithm below

Begin Simulated Annealing Algorithm
Initialize:

k  an initial configurationo ;
m = 0; a counter

Do: generate k in N(k ) o

if C(k) C(k ), then k = ko o 

 else if P (m)> Random(0,1), then k = k o 
m:=m+1;

Until:    Calculate Stop Criterion (c ); m
end;
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2. A Special Case : Cooling of a Dodecahedron
Our first implementation is the simulated annealing of a dodecahedron, i.e., a regular solid with
12 faces which we choose because of its inherent symmetry..  We start with a network (  , )

 consisting  of units that are connected in some way. The set  represents the

set of faces of a dodecahedron. A connection  in is said to join  to .  For

computational purposes, let us suppose the following pairs of faces are opposite of each other
u  and u ,   u  and u ,  u  and u ,1 2 3 10 4 11

 u  and u ,   u  and u ,  u  and u     (2.2)5 12 6 8 7 9

In describing a cooling process for the dodecahedron, we label the 12 faces of the dodecahedron
with real numbers. These numbers play the role of the temperatures of the faces. Let us suppose
in this cooling process, that the numbers (or temperatures)  change every minute. At the first
minute , initially, assume for each i in {1,...,12} that face  is labeled with the number i

representing its temperature. On the second minute, the numbers on each of the faces changes
according to a specified schedule. That is, on the second minute the number on face becomes

the average of the first minute's numbers except those that were on  and on the face opposite

. For example, on the second minute, the number on face  is ; since  is the face

opposite  then the numbers on the second minute on  and  must be equal. Also, the

number on the third and tenth faces on the second minute is given by . We continue

with this process and on the third minute, the number on face  becomes the average of the

second minute's numbers except those that were on  and on the face opposite . Repeating

this process for four minutes, we find that the numbers on the faces are given by (rounded to 1
decimal place)

Min u u u u u u u u u u u u1 2 3 4 5 6 7 8 9 10 11 12

1 1 2 3 4 5 6 7 8 9 10 11 12

2 7.5 7.5 6.5 6.3 6.1 6.4 6.2 6.4 6.2 6.5 6.3 6.1

3 6.3 6.3 6.5 6.5 6.6 6.5 6.6 6.5 6.6 6.5 6.5 6.6

4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
(2.3)

In particular, the numbers (or temperatures) for the first four minutes on face  are 1, 7.5, 6.3,

and 6.5. For each face, note that the number on the fourth minute is approximately 6.5, which is
the average of the integers 1,...,12. Then as the number of minutes increases (or as more trials or
iterations are done) the numbers on the faces shall all be approximately equal to 6.5.
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To find the `equilibrium or optimal state' of the dodecahedron, i.e. the configuration when the
temperatures on the faces are all equal, we shall seek to minimize  

(2.4)

where  over all configurations k. To implement the simulated annealing

algorithm, we need to interpret (2.4) as the consensus of k. To do this, we shall need to define an
appropriate connection strength. Simplifying (2.4), we obtain

 and by defining the connection strength s on 

C according to 

(2.5)

we find that the consensus C(k) in (1.1) and cost function in (2.4) become equal. Next, we
provide a neighborhood structure N for the cooling process given in (2.3). In this first
implementation, the values of the neighborhood structure  N shall be singletons instead of being
set-valued in general. Given a configuration k, let N(k) be the configuration defined by

(2.6)

where the sum is taken over all faces , except  and the face opposite . If we define  the

transition probabilities by

(2.7)

for all trials m, then together with the program for the simulated annealing algorithm given at the
end of the introduction we have described a cooling process of the dodecahedron.

The neighborhood structure N in (2.6) completely describes the simulated annealing of the
dodecahedron as described in [6]. In particular, the equation in (2.6) defines a linear
transformation  N from the complex vector space V (consisting of all configurations 

where  is a complex number) into itself. Certain invariant subspaces and eigenvalues of the 

linear transformation are identified by using techniques of character theory (for instance); which
in turn lead us to conclude that iterates of this operator converges to a multiple of the identity

operator. In particular,  where  is the identity operator on V. Thus, as we

have shown in [6], if the initial numbering (or set of temperatures) of the 12 faces is given by the
sequence (B B B )  of real numbers, i.e., face  is labeled (or has the temperature) o o o

1, 2,..., 12

P
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, then after several minutes or iterations each number (or temperature) on the face shall be

approximately .

3. Using Matrices in Simulated Annealing
In this section, we generalize the results (as derived in [4])  of the previous section.

Let  and  let  be a network representing a Boltzman

machine, where . For the connection strength s, we consider

(3.8)

An optimal configuration  minimizing the consensus (1.1) with connection strength (3.8)

necessarily and sufficiently minimizes 

(3.9)

over all configurations k where .

To generalize the results in section 2, a few preliminaries are necessary. Let  be

the n-by-n matrix whose entries are all 1's. For instance  is a 12-by-12 matrix. One says that

an n-by-n matrix, Q, is doubly stochastic if the entries of Q are nonnegative, and the sum of the
entries in each row and column is 1. In the previous section, the neighborhood structure in (2.6)

when thought of as a linear transformation can be represented by the matrix  

where Q is the doubly stochastic matrix given by 
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(3.10)

To enlarge the neighborhood structure in  section 2, let

(3.11)

Once again in utilizing the simulated annealing algorithm, we need to define a mechanism for 

generating a neighbor l in N(k) of k. If  is the set of all n-by-n permutation

matrices, then each doubly stochastic matrix Q can be expressed in the form

(3.12)

where , [3, Theorem 8.7.1]. This implies that given , we can stochastically

generate a double stochastic matrix Q by stochastically choosing an n!-tuple  and then

constructing the matrix in (3.12). Furthermore, to implement the simulated annealing algorithm
we shall have to define a transition probability. For one, let where is

given by

Suppose k is an initial configuration of a Boltzman machine (U, C ). By  realizing k as a column

vector, then the configuration in the second trial is and the configuration

P
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in the third trial is for some and doubly

stochastic matrices Q_1, Q_2. In [4], provided each  satisfies for some ,

we have shown that after several trials the mth configuration shall be approximately ,

i.e., . As a special case, when n=12, , and each 

is the matrix in (3.10) for all i, we obtain the simulated annealing of the dodecahedron in section

2; that is, .

4. Classification: Identifying Digits
A class of optimization problems that can be easily solved by human beings but very difficult for
computers are the so-called classification problems - these are problems on associating objects
with subsets. Classification problems have their origins in pattern recognition. A specific pattern
recognition problem we will solve with combinatorial optimization and Boltzman machines is
the seven-segment display problem. This particular problem is extensively discussed in
[1,Section 10.3].

The display of the digits 0,1,2,3,...,9 often uses a seven-segment display. (Imagine two equal
squares where one sits on top of the other square).  Each of the segments can be independently
assigned 0 (for `off') or 1 (for `on'). We will choose a Boltzman machine which will identify any
digit displayed. It is possible that the figure shown in the seven-segment display is not a number
but we still would like the Boltzmann machine to assign a digit to the seven-segment display. 

We will  consider a neural network whose set of units, C,  is the union of , the

input units, and , the output units. The state of a unit is either 0 or 1. In

particular, a configuration is a 17-tuple consisting of 0's and 1's. For each of the ten digits, we
assign a configuration according to the table below.

digit u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0

2 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0

3 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0

4 0 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0

5 1 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0
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digit u1 u2 u3 u4 u5 u6 u7 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

6 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0

7 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0

8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0

9 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

We will call the given set of configurations above as the classification set . If each of the
seven input units are assigned a state, we would like the Boltzmann machine to maximize its
overall desirability by assigning states to the remaining units, the outputs units. Observe that each
of the configurations in assigns the state 1 to exactly one output unit. For us, an acceptable
Boltzmann machine will assign exactly one digit to a given configuration of the input units.

For the set of connections, we have the union of and

. Note, no connection exists between input units and there are no

bias connections. Following [1, Section 10.3], a connection  is said to be excitatory

if there exist  such that ; otherwise,  is said to be inhibitory. To

each , let and let .

For the connection strength s, we first choose a positive constant   and let .

Note, . For each , let 

(4.15)

and if , let  be any negative constant number satisfying

.
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As shown in  [1, page 186], if the given set of states of the input units represents one of the digits
0,1,2,3,...,9 then the optimal configuration maximizing the consensus function (obtained by
choosing the optimal configuration of the remaining units, i.e., of the output units) represents and
identifies the correct input digit.

5. Summary
In this paper, we have simulated annealing processes and solved a pattern recognition problem by
using the simulated annealing algorithm and Boltzman machines. These are two types of fields,
combinatorial optimization and pattern recognition (a part of artificial intelligence) amongst
others, where Boltzman machines can be used.

We have interpreted the simulated annealing processes in sections 2 and 3 as minimization
problems; in particular the minimization of the consensus function over all configurations of an
appropriate Boltzman machine. The states of the units represented the temperatures of the units.
The simulated annealing algorithm has close connections with statistical mechanics. In the
annealing process, one can interpret the states (respectively, free energy) of the solid in the
cooling process as configurations (respectively, consensus function) of a Boltzman machine
[1,2].

Pattern recognition, briefly, finds a correct output for a given input. As a combinatorial
optimization problem, the seven-segment display problem is construed as a constrained
optimization problem. An appropriate Boltzman machine with a set of units which can be
separated into two subsets, namely, the subset of input units and the subset of output units.
Giving an input is equivalent to giving a configuration of the input units. Once an input
is given, the objective then is to find a configuration of the remaining units (which are the output
units) which maximizes the consensus function of  the Boltzman machine.
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