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Abstract
In this paper we will briefl review the simulated anneadialgorithm, an ajorithm with applications in
optimization and pattern regoition used extensivelin artificial intelligence. In earlier papers the authors yred
a simulation of the anneagjrof a solid, a dodecahedron in particular. Our use of tha@iim, which is
based in the field of combinatorial optimization, reflects properties of Boltzman machines - a neural network
characterizedYyomassive parallelism.

We will demonstrate two implementations of thigoaithm in simulated anneatin Each of the implementations

depends upon a miborhood structure and a transition mechanism. In the first implementation ghivorbiood

structure is a linear transformation of the vector space of allgtwafions and the transition probalyilis

deterministic. In this case, we will use techniques from characteytbefinite groups to angize simulated

annealiy. In the second implementation, a special case of which includes the first implementation, our

neighborhood structure is a set-valued function and the transition mechanism is stochastic in nature. In this case, we
use techniques from matrix apsis, in particular properties of doytdtochastic matrices, to ayaé simulated

annealig modeled and based on a class of Boltzman machines.

For pattern reagnition, we use the simulated anneglaigorithm to solve the classgeven-segment display
problem This is a classification problem which we will solwedhoosimg an appropriate Boltzmann machine.

1. Introduction.

Annealing is the plysical process of heatirup a solid and followig it by a specified slow

cooling process. We shall use the simulated anngalgorithm, a method based in the field of
combinatorial optimization, to describe simulated controlled cggmcesses. In the anneain
process, one can interpret the states (and freg\gradrthe solid in the coolmprocess as
solutions (and cost function, respectiyjadf a combinatorial optimization problem [1]. Our use
of the simulated anneadiralgorithm reflects properties of Boltzman machines, a neural network
model beloging to a class of connectionists models and which has massive parallelism as a
feature, amogst others.

Also, we will use an appropriate Boltzmann machine to solve a patteignigao problem,
namey, the seven-segment display probldine displg of the decimal djits in a hand-watch
for instance uses a severgsent displg. In identifying the doit displayed, we will maximize an
overall measurement of desirahyjilnf the Boltzmann machine.

We shall briefy review some aspects of Boltzman machines and the simulated agnealin
algorithm. Let(U, C) be a network consistrof units,U = {u;:i=1,...,n} , and a set of
connectionsC, consistig of unordered pair%ui , uj} A connecti({ni , uj} @nis said tgoin

u; to u; . Intrinsic to Boltzman machines are the notions of a connectiomgtsteeand a
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configurationk of the networlU, C); repectively, they are real-valued functions defined Gn

andU, regectively. The valuess{ U, uj} and(u;) give us the stregth of the connection

{ui : uj} and the state of the unif , pestively. Thus, a Boltzman machine is a netw@kC)

with agiven connection strgjth s [1, chater 8]. An oljective of a Boltzman machine is to find
an gtimal configuration k,,, in the pace Sof all confgurationsk that minimizes the consensus

function defined I
c<k):{u“u%ms{u, g Ky (1.1)

The values of the consensus functppavide an overall measurement of desirapitif the
connections and the states of the units. The function in (1.1) isyusabdld the cost function in
combinatorial ptimization.

To optimize (1.1), we will use the simulated anneglaigorithm. There are several y&to
implement this ajorithm, moreover, each walepends on a nghborhood structure and a
transition mechanism. A rghiborhood structure is a functiod from Sinto P( S) the famil of
all subsets ofS. A configurationl in N(K) is called a nghbor ofk. To optimize the consensus
(1.1), we need a mechanism which allows a gométion to chage. Given a confurationk, we
shall randomy} generate a nghborl in N(k), with the neghborhood structure begrdefined at
the outset, and then it will be determined whetlveil replacek. Specifically, let X(m) be the
configuration on thenth trial and letP, ,(m) = P( X(m) = || X( m-1)= K be thprobability of

acceting configurationl on themth trial given that the condjuration of the(m-1}h trial isk.
Under certain conditions, such as those discussed pagé,18, 42, or 46], the gaence of
configurationsgenerated Y the simulated anneabiralgorithm aymptotically convepes to an
optimal configuration.

The controlled coolig process is neresented Y a sguence{c .| m=0,1,2,3,...}
of real numbers. Followm[5], the simulated anneafins described ypthe agorithm below

Begin Simulated Annealing Algorithm
Initialize:
K,. an initial configuration
m = 0; a counter
Do: generate kin N(k ) o

ifC(k) <C(k), thenk =Kk,

elseif P (m)> Random(0,1), thenk =k
m:=m-+1;
Until:  Calculate Stop Criterion (c );
end,
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2. A Special Case : Cooling of a Dodecahedron
Our first implementation is the simulated annagabha dodecahedron, i.e., gutar solid with
12 faces which we choose because of its inhegantrsety.. We start with a networfdJ ; ,C, )

consistig of units that are connected in someywbhe setU ; = {ui |i=1, ..12} represents the
set of faces of a dodecahedron. A connec{immuj} C4dn  is sgaintay; tou; . For

computational purposes, let us suppose the follgywairs of faces are opposite of each other
uandy, 4 andy ,,u and,u ,
upandy,, § andgqu,,u andu (2.2)
In describimg a coolirg process for the dodecahedron, we labellh&aces of the dodecahedron
with real numbers. These numbersypdliae role of the temperatures of the faces. Let us suppose
in this coolirg process, that the numbers (or temperatures) gehawvey minute. At the first
minute , initially, assume for eadhn {1,...,12}that faceu; is labeled with the number

representig its temperature. On the second minute, the numbers on each of the fages chan
accordimg to a specified schedule. That is, on the second minute the number an face  becomes
the averge of the first minute's numbers except those that werg@ on  and on the face opposite
. 112, . .
u, . For example, on the second minute, the number onu@ace—0 ys wsince  is the face
i=3
oppositey; then the numbers on the second minutg on usand must be equal. Also, the

. o 1 12 .
number on the third and tenth faces on the second mingiteisby — Si . We continue
i=1,i#3,10

with this process and on the third minute, the number onface  becomes tige a¥v¢na
second minute's numbers except those that were on  and on the face apposite  gRepeatin

this process for four minutes, we find that the numbers on the facgisemdy (rounded to 1
decimal place)

Min {u, [u, |us; fu, Jusg Ug M; Mg Ug U, Uy U,
1 1 2 3 4 5 6 7 8 9 10 11 12
2 75 [75 65 63 6.1 64| 6.2 |64 6.2 65 6(3 6.1

3 6.3 6.3 65 65 6.6 65| 6.6 |65 [6.6 6.5 6/5 6.6

4 65 65 65 65 63 65 6565 |65 65 6/5 6.5

2.3)

In particular, the numbers (or temperatures) for the first four minutes oruface 1, 7a6¢ 6.3,

and6.5 For each face, note that the number on the fourth minute is approyit&fethich is
the averge of the intgers1,...,12.Then as the number of minutes increases (or as more trials or
iterations are done) the numbers on the faces shall all be approyisguel t06.5.

vey's abed



Session 2520
To find the “equilibrium or optimal state' of the dodecahedron, i.e. the configuration when the

temperatures on the faces are all equal, we shall seek to minimize
12

5 (k(uw) = m(K)° (2.4)

i=1
12

where m(k) = % S k(y) over all configuratioris To implement the simulated annealing
i=1

algorithm, we need to interpret (2.4) as the consenskisTaf do this, we shall need to define an
appropriate connection strength. Simplifying (2.4), we obtain

12 12

5 (k(u) = m( K)* :% T K y)? —% > K 4) k y) and by defining the connection strengtn
i=1 i=1 i<

C according to

011

075 if u=v
sfuvp)= 04 2.5)
%— 5 otherwise

we find that the consens@k) in (1.1) and cost function in (2.4) become equal. Next, we
provide a neighborhood structuxgfor the cooling process given in (2.3). In this first
implementation, the values of the neighborhood struchishall be singletons instead of being
set-valued in general. Given a configuratiptet N(k) be the configuration defined by

N(K@)=555 Ky ) (2.6)

where the sum is taken over all faces , exegpt  and the face opposite . If we define the

transition probabilities by

o if N(k)=1
otherwise

for all trialsm, then together with the program for the simulated annealing algorithm given at the
end of the introduction we have described a cooling process of the dodecahedron.

Py (m)= (2.7)

The neighborhood structuMin (2.6) completely describes the simulated annealing of the
dodecahedron as described in [6]. In particular, the equation in (2.6) defines a linear

transformationN from the complex vector spavg(consisting of all configuration{xul, ...,ulz}

whereu; is a complex number) into itself. Certain invariant subspaces and eigenvalues of the

linear transformation are identified by using techniques of character theory (for instance); which
in turn lead us to conclude that iterates of this operator converges to a multiple of the identity

operator. In particularfim N " :% l,, wherg, is the identity operatov.ofhus, as we

m- o
have shown in [6], if the initial numbering (or set of temperatures) df2ii@ces is given by the
sequenc¢B°, B°, ~ B° ) ofrreal numbers, i.e., faag is labeled (or has the temperature)

.....
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B?, then after several minutes or iterations each number (or temperature) on the face shall be

) 112 o
approximately— ¥ B;
12 i=1

3. Using Matrices in Simulated Annealing
In this section, we generalize the results (as derived in [4]) of the previous section.
LetU :{ui i :1,...,n} and letC :{{ui, uj} 1<, < n} be a network representing a Boltzman

machine, wheren =2 . For the connection strersgthie consider

-1 .. . .
g — f i=]
s{ui,uj}:m n (3.8)
[J- = otherwise
0 n

An optimal configuratiork,,, minimizing the consensus (1.1) with connection strength (3.8)

necessarily and sufficiently minimizes
n

2
3 (k(u) = m( ) (3.9)
1=
over all configuration& where m(k) = % % k(u) .
i=1
O A 10
To generalize the results in section 2, a few preliminaries are necessahy, I;%\/I O I‘% be

H A 1o
the n-by-n matrix whose entries are dlk. For instanceN,, isE-by-12 matrix. One says that

ann-by-n matrix, Q, isdoubly stochastid the entries of) are nonnegative, and the sum of the
entries in each row and columnlisin the previous section, the neighborhood structure in (2.6)

when thought of as a linear transformation can be represented by the mgtli)%(le - ZQ)

whereQ is the doubly stochastic matrix given by
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55 0 0 0 0 0 0 0 0 0 (
55 50 0 0 0 0 0 000 %
%0.5.50000000%
M 0 5.5 0 000 0 0 0 @
@000.5.500000%
M 0 0 0.5.50 0 0 0 0 O
D 00000.5.5000 § (3.10)
M 0 0 0 0 0.5.50 0 0 (O
%)0000000.5.50%
%0000000.5.50%
@ 0 0 0 0 0 0 0 0 0.5 5
0 000000 O0O0 0.5.85

To enlage the neghborhood structure in section 2, let

N(k):%]lTC(Nn—cQ):Qisadoubly stochastic matrix ard< @%@ (3.11)

Once gain in utilizing the simulated anneagiralgorithm, we need to define a mechanism for
generatiig a neghborl in N(k) of k. If {Er r=1,...,n } is the set of alh-by-n permutation

matrices, then each doyldtochastic matrix) can be expressed in the form

Q=3ak (3.12)
r=1

n!
where Y a, =1 ,a, 20 [3, Theorem 8.7.1]. This implies tyaten c <% , we can stochasticall
r=1

generate a double stochastic ma@iby stochasticayl choosimg ann!-tuple (a, ) and then

constructiig the matrix in (3.12). Furthermore, to implement the simulated angeddorithm
we shall have to define a transition probagilFor one, letP, |(m) =a; wheré ON (k) is

n!
giventylzL n—cya.E
n—==«=¢ r=1

Supposk is an initial confguration of a Boltzman machirie), C ). By realizirg k as a column

vector, then the corguration in the second trial BI—(N N lel)k and the cgofation
n=¢
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) ) .. 01 O 1 O n
in the third trial isG———(N . —c¢ [——(N,-¢ Ok forsomé <c,,c, <— and doybl
Dn—Cg( n ZQZ)D]n—Cl( n 1Q1)D 162 <5 y

stochastic matrice®_1, Q_2In [4], provided eaclt; satisfie®s< c; <%—e for soree 0 ,

we have shown that after several trialsritle configuration shall be approxima;el% N, (k),

i.e., lim H - 1C (N, =¢,Q)(k) =%Nn(k) . As a special case, whenl2, ¢, =2 , and eaclg;
moowi=lll =
is the matrix in (3.10) for all we obtain the simulated annedgliof the dodecahedron in section
2; that is, lim []——(N, —¢.Q)(K) = lim NI'(K=— 1, .
m_,ooi:]_n_Ci mo o 12

4. Classification: Identifying Digits

A class of optimization problems that can be gaslved ly human beigs but vey difficult for
computers are the so-called classification problems - these are problems on agsipesis
with subsets. Classification problems have themgiosiin pattern reggmition. A specific pattern
recaynition problem we will solve with combinatorial optimization and Boltzman machines is
the seven-segment display probldrhis particular problem is extensiyaliscussed in

[1,Section 10.3].

The displg of the dgits 0,1,2,3,...,9 often uses a sevegrsent displg. (Imagine two equal
squares where one sits on top of the other square). Each ofjthense can be independentl
assgned 0 (for "off') or 1 (for “on'). We will choose a Boltzman machine which will ideatif
digit displayed. It is possible that thegfire shown in the sevengsrent displg is not a number
but we still would like the Boltzmann machine to gask dpit to the seven-ggnent displg.

We will consider a neural network whose set of units, C, is the union ofu,, ..., u;} , the

input units, and , = {vl,...,vlo} , the output units. The state of a unit is either 0 or 1. In

particular, a confjuration is al7+uple consistig of O's andl's. For each of the tengilis, we
assgn a confguration accordig to the table below.

digit [ut | w2 | ud | uwt | us | w6 | w7 | vi| v2| w3| va| v | wve| vi| v8| vo|vy10
0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
2 1 0 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0
3 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0
4 0 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0
5 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0
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digit | ul u2 u3 u4 us ué u7 vl v2 v3 v4 V5 v6 v7 v8 vo | v10

6 ([0 |2 |]o |1 |1 |12|2|0]|]O0|O| O] O] O 2 0| 0] O

7 (1 |lo |12 |0 |0 |12]|0|O]O|O|O|]O|] O| Of 12| 0] o

8 |1 |1 |1 1 |112|l0|o0ofo0o|l O] 0] O] Of 0 1] o

9 (1 |1 |12 |2 |0 |212]|]O0O|O|O|lO| O] O] O Of 0| 0 1
We will call the given set of configurations above as the classificatiatf set . If each of the

seven input units are assigned a state, we would like the Boltzmann machine to maximize its
overall desirability by assigning states to the remaining units, the outputs units. Observe that each
of the configurations itv ' assigns the state 1 to exactly one output unit. For us, an acceptable
Boltzmann machine will assign exactly one digit to a given configuration of the input units.

For the set of connections, we have the unioﬁigf:{{ u;, l} 1<is<7,1<j< 10} and

Co.o :{{vi, vj} 1<i< < 10} . Note, no connection exists between input units and there are no
bias connections. Following [1, Section 10.3], a connec{t'uprwj} O0C, is said to be excitatory
if there existk OV’ such that(u;)k(v;) =1 ; otherwis{eui : vj} is said to be inhibitory. To

eachv; OU, , letN,/ :{ {u,,v]} is excitator} and lekl . :{ {u,,v]} isinhibitor;&

U g
For the connection strengshwe first choose a positive constant anddet Min LY E
v;0C, NJIE
Note,-y +d <0 . Foreacr{ul, J}DQ’O , let
0 .
0 y+ if u ON,
D ij
u,v,j=0 ¥ (4.15)
O-—2— if u ON;
N— ]
H ‘ Vi

and if {v, , v]} 0G, . let s{ Vi, vJ} be any negative constant number satisfying

—y<s{v,, ]}<—y+6.
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As shown in [1, page 186], if the given set of states of the input units represents one of the digits
0,1,2,3,...,9hen the optimal configuration maximizing the consensus function (obtained by
choosing the optimal configuration of the remaining units, i.e., of the output units) represents and
identifies the correct input digit.

5. Summary

In this paper, we have simulated annealing processes and solved a pattern recognition problem by
using the simulated annealing algorithm and Boltzman machines. These are two types of fields,
combinatorial optimization and pattern recognition (a part of artificial intelligence) amongst

others, where Boltzman machines can be used.

We have interpreted the simulated annealing processes in sections 2 and 3 as minimization
problems; in particular the minimization of the consensus function over all configurations of an
appropriate Boltzman machine. The states of the units represented the temperatures of the units.
The simulated annealing algorithm has close connections with statistical mechanics. In the
annealing process, one can interpret the states (respectively, free energy) of the solid in the
cooling process as configurations (respectively, consensus function) of a Boltzman machine
[1,2].

Pattern recognition, briefly, finds a correct output for a given input. As a combinatorial
optimization problem, the seven-segment display problem is construed as a constrained
optimization problem. An appropriate Boltzman machine with a set of units which can be
separated into two subsets, namely, the subset of input units and the subset of output units.
Giving an input is equivalent to giving a configuration of the input units. Once an input

is given, the objective then is to find a configuration of the remaining units (which are the output
units) which maximizes the consensus function of the Boltzman machine.
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