
 Session 3532

A Practical Introduction to Digital Signal Processing
through Microsoft Visual C++ and LabVIEW Programming *

Richard R. Schultz
University of North Dakota

rschultz@nyquist.ee.und.nodak.edu

Abstract

Conventional wisdom has relegated the introduction of digital signal processing (DSP) fundamentals to
the senior year of the electrical and computer engineering curriculum, since a background in complex
variables is required for the frequency domain analysis and design of digital filters. However, practical
aspects of DSP can be taught to students at the sophomore level, since only a minimal proficiency in
mathematics is required to understand concepts such as analog-to-digital (A/D) and digital-to-analog
(D/A) conversion, sampling, and data analysis. “Computer Aided Measurement and Control” has been
taught to electrical engineering sophomores at the University of North Dakota during the past several
years. This course has evolved as a means of not only introducing students to the C++ and LabVIEW
programming languages, but also as a practical introduction to DSP fundamentals. Students begin the
course by learning programming skills, writing simple Microsoft Visual C++ programs which perform
linear circuit simulation, random number generation and the calculation of statistics, digital function
generation, and digital filtering. These experiments pave the way for discussions on A/D and D/A
conversion and sampling. Next, the National Instruments NI-DAQ software library is linked with the
students’ C++ object code to perform relevant instrumentation experiments using the Lab-PC-1200 data
acquisition card. Finally, LabVIEW, a graphical programming language developed by National
Instruments specifically for instrumentation purposes, is introduced as an alternative to writing text-based
source code. Since LabVIEW incorporates the same programming constructs as C++, namely selection
structures and loop control statements, students are able to quickly grasp the design of LabVIEW virtual
instruments. In addition, the visualization capabilities provided by LabVIEW help the students achieve
an intuitive understanding of sampling, time-frequency duality, and filtering. The natural progression of
exposure to (1) Microsoft Visual C++ programming; (2) practical DSP fundamentals; (3) the NI-DAQ
software library; and (4) LabVIEW provides the students with a number of real-world engineering skills
that can be applied in any instrumentation laboratory.

1. Introduction

Traditionally, digital signal processing (DSP) has been taught to electrical and computer engineering
(ECE) seniors and graduate students from the classic text by Oppenheim and Schafer1 or a similar text
which relies on the Z-transform to aid in the analysis and design of digital filters in the frequency
domain. More contemporary DSP textbooks, such as the text by Mitra2, use MATLAB and other
computer tools to aid in the visualization of sampled signals in both time and frequency. For these texts,
a high degree of mathematical proficiency--particularly in the area of complex variables--is required to

* This work was supported in part by the National Science Foundation Faculty Early Career Development
(CAREER) Program, grant number MIP-9624849. In addition, this material is based upon work supported in part by
the U.S. Army Research Office under contract number DAAH04-96-1-0449. P

age 3.37.1

understand the concepts and to participate fully in the digital filter design process. However,
understanding the basic concepts behind discrete signals, including sampling, signal processing, and data
analysis, are skills required by all engineering students at an earlier stage of their academic careers, since
computers have become fixtures in the instrumentation labs of all engineering disciplines. There is a
growing trend to write more intuitive DSP texts for this audience, beginning with the excellent overview
of digital audio and computer music by Steigletz3, and, more recently, the text by Lyons4 which uses a
plethora of examples to promote an understanding of basic concepts. One of the most innovative papers
presented at the 1997 ASEE Conference by M. A. Yoder5 boldly claimed that students should be exposed
to DSP in an introductory electrical engineering course before they are exposed to analog circuit theory,
since “computers are prevalent and easy to work with.” Inspired by this highly logical, yet seemingly
revolutionary idea, the course Computer Aided Measurement and Control at the University of North
Dakota has been revised to incorporate a modified version of “DSP First5.”

Computer Aided Measurement and Control is a required sophomore-level electrical engineering
(EE) course, introduced originally as an avenue for teaching undergraduate students the C programming
language and instrumentation applications using a data acquisition card. The decision to place the course
within the sophomore year of the curriculum was two-fold: first, learning a programming language early
helps students think logically and develop their creativity, skills which must be applied later in more
design-oriented courses; and secondly, a large number of students participating in the cooperative
education program after their sophomore year are involved in writing software, often using the C and
C++ programming languages. The author started teaching this course in the fall semester of 1995, and
has since been directly involved in three evolutions of the course. Computer Aided Measurement and
Control still, in essence, concentrates on fundamental programming skills; however, the languages that
are taught are now C++ and LabVIEW. Laboratory assignments have evolved to the point where each
experiment exposes students to some practical aspect of digital signal processing, including proper
sampling rate selection during data acquisition, digital filtering, and data analysis. Unlike courses based
on practical DSP texts which cover sampled signals in both time and frequency, students enrolled in
Computer Aided Measurement and Control are introduced to discrete mathematics in the time domain
only. Improving the students’ programming skills is still the number one priority of the class, but they
also obtain a practical knowledge of DSP through the laboratory assignments.

This paper is organized as follows. Section 2 explains the philosophy behind teaching practical
DSP concepts to sophomores rather than waiting for students to reach their senior year so that they have
the mathematical proficiency necessary to understand the theory and design methodologies associated
with digital signal processing. Section 3 specifies the hardware and software configuration used in the
Computer Aided Measurement and Control laboratory, while the C++ and LabVIEW programming
experiments are described in Section 4. A brief summary of the paper along with the planned course
evolution is provided in Section 5.

2. Teaching Practical Digital Signal Processing Concepts

As alluded to previously, Computer Aided Measurement and Control is not a conventional DSP course,
in the sense that students are not introduced to the Nyquist sampling theorem, the Z-transform, and
methodologies of digital filter design in both the time and frequency domains. The original intent was to
provide electrical engineering students a course in C programming as an alternative to the FORTRAN
course formerly required of all engineering students at the University of North Dakota. As the instructor
of Computer Aided Measurement and Control, the author feels that all engineering students, particularly
electrical engineering undergraduates, need to learn a high-level programming language and obtain P

age 3.37.2

practice in writing software for a variety of applications. Thus, the main priority remains that of
providing software engineering experience, a highly marketable skill in today’s engineering companies.
No room in the EE curriculum existed to teach an additional required course in DSP fundamentals,
although this is also a necessary component of a modern electrical engineering undergraduate education.
Under these constraints, the solution was to modify the programming assignments in Computer Aided
Measurement and Control, such that the students would be exposed to practical DSP concepts while
simultaneously gaining experience in the use of selection structures and loop constructs. An emphasis is
placed on helping the students achieve an intuition into the use of various signal processing tools, rather
than teaching them theoretical concepts. With the proliferation of computer instrumentation in all
technical fields, engineers will almost certainly be involved in the design of hardware/software systems
to perform automated data acquisition and digital control at some point in their careers. Laboratory
exercises were designed so that the students are exposed to a number of real-world DSP applications that
they will face in the future, namely:

• Data Analysis and the Computation of Signal Statistics;
• Time Domain Mathematical Representation of Discrete Deterministic Test Signals;
• Selection of Data Acquisition (DAQ) Cards;
• Microsoft Visual C++ and National Instruments LabVIEW;
• Software Libraries for Use in Accessing DAQ Card Functionality;
• Sampling Rate Selection and the Visualization of Aliasing Artifacts;
• Digital Signal Processing Applied to Digital Speech and Music;
• Finite Impulse Response (FIR) Digital Filters; and
• Digital Image Processing Applied to Multidimensional Signals.

Certainly, this is not an exhaustive list of DSP concepts, but it is representative subset of the most
important practical applications that will be encountered in an instrumentation laboratory.

3. Laboratory Hardware and Software Configuration

In this section, the computing hardware, test equipment, and software required for the Computer Aided
Measurement and Control laboratory is described. Initial expenditures are somewhat high, so an
alternative, lower-cost strategy is also discussed.

3.1. Computing and Instrumentation Equipment
The hardware required in the instrumentation laboratory represents the largest expenditure.

Eight instrumentation benches are currently in use, each containing the following devices:

1. A personal computer (PC) containing at least 64 MB of RAM, a 2 GB hard disk, and the Microsoft
Windows NT operating system is the workstation of choice. A Gateway 2000 Pentium-based PC
with a clock speed of 200-MHz retails for under $2,000 (January 1998 price list), and prices are
dropping on a monthly basis. Workstations running at the highest clock speeds available are not
required for this educational laboratory; a substantial savings can be obtained by buying a cluster of
PCs which are approximately a year behind the computational speed of state-of-the-art machines.

2. The National Instruments Lab-PC-1200 data acquisition card (formerly the Lab-PC+ card6) was
purchased with a terminal block and interface cable for approximately $700 with an educational
discount (June 1997 price list) This DAQ card is Plug and Play ISA-compatible, and it has the
following input/output (I/O) specifications: sampling rates up to 100,000 samples/sec; eight analog
input channels with 12-bit resolution; two analog output channels with 12-bit resolution; and 24
digital I/O lines, with the TTL lines grouped as three 8-bit ports. The Lab-PC-1200 card was chosen

P
age 3.37.3

for several reasons: (1) National Instruments manufactures DAQ cards which are controllable by
linking Microsoft Visual C++ source code with the NI-DAQ software library; (2) National
Instruments provides device drivers for its DAQ cards which interface with the LabVIEW graphical
programming language; and (3) the Lab-PC-1200 is the lowest cost DAQ card manufactured by
National Instruments with a sufficiently high sampling rate and the diverse functionality required for
use in an educational instrumentation laboratory.

3. Conventional electrical engineering test equipment is required at each station, including a
combination multimeter, DC power supply, function generator, and frequency counter test instrument
(approximately $500) and an analog oscilloscope (approximately $1,000, reconditioned). With this
set-up, the DAQ card can be used to sample analog input signals with variable frequency, amplitude,
and DC offset, as well as output digital signals that have been generated or filtered by a computer
program for visualization on the oscilloscope screen.

The total cost of all hardware for a single instrumentation test bench is approximately $4,200. If cost is a
significantly prohibitive factor in setting up the laboratory, all signal input and output can be simulated.
In this case, the only hardware cost is the PC workstation for under $2,000. However, this does severely
limit the real-world exposure students receive in digital signal processing applications, since they cannot
access an actual DAQ card in the laboratory assignments.

3.2. Required Software Packages
Software costs are extremely low in comparison to the instrumentation equipment expenditures.

The following five software packages are used in most of the experiments, with alternative choices
suggested as appropriate:

1. Microsoft Visual C++ has been chosen as the compiler used in Computer Aided Measurement and
Control. Through educational pricing, this compiler can be purchased for approximately $50 per
license (August 1997 price list). For the C++ laboratory assignments, students write Win32 Console
Applications that execute in a DOS shell. In this course, the students do not become involved in
writing more complex Windows applications. With Microsoft Visual C++ installed in the laboratory,
more advanced software utilities can be developed by the students for subsequent courses and design
projects. Furthermore, this compiler was chosen since Microsoft Visual C++ object code can be
linked with the NI-DAQ software library7 to access the Lab-PC-1200 DAQ card functionality. In this
manner, data acquisition and digital control applications can be written in C++, with low-level
sampling and data transfer handled by the NI-DAQ utility functions. Although Microsoft Visual
C++ was selected for use in the laboratory, Microsoft Visual BASIC and Borland C++ can also be
used to control the Lab-PC-1200 card via the NI-DAQ library.

2. The NI-DAQ software library is a set of compiled functions which handles low-level DAQ card
operations such as A/D and D/A conversion, memory management, and timing. This library and its
associated documentation7 are enclosed with the Lab-PC-1200 card at no additional cost. For
simplicity, essentially two functions are used by the students: AO_VWrite() performs a single
D/A conversion to handle digital signal generation and control applications, and Lab_ISCAN_Op()
performs multiple A/D conversions and places the samples into a buffer array for data acquisition
applications.

3. The Student Edition of National Instruments LabVIEW8, 9 is installed on each computer to implement
instrumentation algorithms using a graphical programming language. The student edition was chosen
since a single copy can be purchased for under $80 (August 1997 price list), while the professional
version is significantly more expensive. Obviously, National Instruments provides a device driver

P
age 3.37.4

for the Lab-PC-1200 card to interface with LabVIEW. Currently, the Student Edition of LabVIEW
will not operate properly within the Windows NT environment, so each computer also requires a
Windows 95 boot partition to accommodate LabVIEW. With an educational discount, Windows 95
can be obtained for less than $50 per license (August 1997 price list).

4. Microsoft Excel is a spreadsheet utility integrated with the Microsoft Office software package. This
program is used for plotting digital signals that have been generated or processed by C++ programs
and written to output text files. Each Gateway 2000 computer is delivered with Microsoft Office
installed on the hard drive, so Excel does not contribute any additional expense. Any spreadsheet
software package can be used in the place of Excel, since all spreadsheet programs are capable of
importing text files and plotting the sample values.

5. Microsoft Word is the word processing utility integrated with Microsoft Office, used by the students
to generate laboratory reports. Again, no additional expense is incurred, since Microsoft Office is
included in the purchase of the computer. Alternatively, any word processing package can be used
instead of Word.

Total software costs are approximately $180 for each workstation configured in this manner. In
summary, each instrumentation laboratory set-up, including all hardware and software, can be obtained
for approximately $4,380.

4. Laboratory Assignments

The first 12 weeks of Computer Aided Measurement and Control are dedicated to teaching C++ text-
based programming using Essential C++ for Engineers and Scientists by J. R. Hanly10, and the four
remaining weeks of the semester are spent teaching LabVIEW graphical programming from The
LabVIEW Student Edition User’s Guide by L. K. Wells8. LabVIEW is a graphical programming
language which allows for the development of an integrated hardware and software instrumentation
environment. Data acquisition, digital control, data analysis, and data logging can all be performed quite
easily by building virtual instruments (VIs) and connecting them together. LabVIEW utilizes dataflow
program execution, in which an individual system module executes only after all data and parameters
have arrived at the input to the module. This mode of execution is quite similar to that of a real-world
signal processing or control system. Since the students understand C++ programming constructs by the
time they are introduced to LabVIEW, they find graphical programming to be rather intuitive. Students
are taught to think in terms of implementing algorithms using both C++ and LabVIEW. Figure 1 shows a
C++ function which computes the sample values for a digital sine wave and places the values into a 1-D
array. The Front Panel and the Block Diagram of a LabVIEW VI which performs the same operation are
shown in Figure 2. This shows how a for loop can be implemented in either language. Likewise, the
C++ function and the LabVIEW VI shown in Figures 3 and 4, respectively, describe how selection
structures (if-else in C++, Case Structure in LabVIEW) are used to implement a square pulse.

Students enrolled in Computer Aided Measurement and Control are exposed to a number of
programming and instrumentation laboratory assignments which provide an intuitive understanding of
digital signal processing and data analysis. In this section, the Microsoft Visual C++ and LabVIEW
experiments are described, along with the primary C++ and DSP-related concepts learned through each
assignment.

P
age 3.37.5

void Sine(double array[1024], double amplitude)
{
 const double PI = 3.1415927;

 for (int i=0; i<1024; i++)
 array[i] = amplitude*sin(2.0 * PI * 0.01 * i);
}

Figure 1: C++ function to generate a 1-D array containing digital sine wave sample values.

Figure 2: LabVIEW sine wave generator VI, showing the Front Panel (left) and Block Diagram (right).

void Pulse(double &y, double x)
{
 if (x>=0 && x<=5.0)
 y = 5.0;
 else
 y = 0.0;
}

Figure 3: C++ function to calculate a square pulse sample value.

P
age 3.37.6

Figure 4: LabVIEW digital pulse generator VI, showing both possible cases within the Block Diagram.

4.1. Microsoft Visual C++ Programming Assignments
All Microsoft Visual C++ programming assignments are implemented as Win32 Console

Applications which execute in a DOS shell within Windows NT. Windows programming is not
introduced in Computer Aided Measurement and Control due to time considerations, although this
feature is available for students to use in later course work and design projects. Although most
experiments are DSP-related, they have been designed to provide students with practice in each of the
important C++ programming topics.

Lab #1: Editing, Compilation, And Execution of Microsoft Visual C++ Source Code
This laboratory acquaints students with the use of the Microsoft Visual C++ editor and compiler.

An example program is provided, which the students type into the editor verbatim, compile, and execute
in a DOS shell. Primary programming topics: (1) exposure to the Microsoft Visual C++ integrated
development environment (IDE); and (2) introduction to the main() function and elementary C++
syntax.

Lab #2: Circuit Simulation of the Maximum Power Transfer Theorem
Students verify the maximum power transfer theorem by examining a resistive Thevenin

equivalent circuit and calculating the resistive load which results in maximum power delivery. A loop is
used to compute the power dissipated for a range of load resistances, and an output text file is written
with a list of these values. Primary C++ programming topics: (1) while loop construct; (2) C++
mathematical function syntax; (3) keyboard input; and (4) text file output. P

age 3.37.7

Lab #3: Computer Generation of Uniform and Gaussian Random Variables
Uniform- and Gaussian-distributed random variables are generated through computer simulation.

Students calculate the mean, variance, and standard deviation of each random variable, and write an
output text file containing a histogram of the samples which is plotted using Microsoft Excel. Primary
C++ programming topics: (1) for loop construct; (2) file I/O functions; and (3) mathematical operators.
Primary DSP topics: (1) data analysis; and (2) the computation of signal statistics.

Lab #4: Implementation of a Digital Function Generator
Digital sine, square, and triangular wave sample values are generated using the discrete time

domain mathematical representations of the periodic signals. The digital function generator allows the
user to select the DC voltage offset, amplitude, period, and sampling interval for each discrete signal.
Primary C++ programming topics: (1) modular programming using functions; and (2) loop constructs.
Primary DSP topics: (1) time domain mathematical representation of discrete deterministic test signals;
(2) introduction to signal sampling and sampling rate selection; and (3) preparation for understanding
D/A and A/D conversion.

Lab #5: Introduction to Digital Signal Processing
Simple finite impulse response (FIR) digital filters are implemented and applied to the sampled

sine, square, and triangular signals generated in Lab #4. In addition, PCM-encoded (pulse code
modulated) sample values contained within a WAV digital audio file are filtered; students may listen to
the original input signal and the digitally filtered output signal to hear the effects. Three-tap lowpass and
two-tap highpass filter implementations are applied to the sampled data. As the programs become more
involved in the course, a C++ source code framework is provided by the instructor in which the students
are required to fill in missing functions and essential algorithms. The source code framework handed out
to the students for Lab #5 is included as an appendix at the end of this paper. Primary C++ programming
topics: (1) object-oriented programming; (2) classes and objects; and (3) 1-D arrays. Primary DSP
topics: (1) 1-D FIR digital filters; (2) exposure to the WAV digital audio format; and (3) discussion of
digital audio sampling rates.

Lab #6: Data Acquisition and Digital Control Using the National Instruments Lab-PC-1200 Card
Students are introduced to the National Instruments Lab-PC-1200 card for use in data

acquisition, computer aided control, signal generation, and digital filtering. Most of the C++ source code
is provided, so that the students can concentrate on learning how to operate the instrumentation
equipment. Exposure to D/A conversion is provided, in which functions written in Lab #4 are used to
generate digital sine, square, and triangular waves; the appropriate NI-DAQ library functions are called
to convert the digital samples to analog signals using the Lab-PC-1200 card; and the periodic test signals
are viewed on the oscilloscope screen. Exposure to A/D conversion and data acquisition is also
provided, in which the students use the computer to sample a 100 Hz sine wave produced by an analog
function generator. Different sampling rates are applied to the analog signal by the students, and the
corresponding digital samples are written to an output text file for visualization in Microsoft Excel.
Aliasing artifacts are identified, and practical methods of selecting a proper sampling rate for a signal of
a particular fundamental frequency are discussed. Primary C++ programming topic: 1-D arrays.
Primary DSP topics: (1) selection of data acquisition cards; (2) introduction to NI-DAQ software library
functions for A/D and D/A conversions; and (3) sampling rate selection and the visualization of aliasing
artifacts.

Lab #7: Introduction to Digital Image Processing
In each undergraduate course taught by the author, at least one experiment is provided which

deals with image processing to give students an introduction to his research interests. Students receive a P
age 3.37.8

source code framework which implements several image processing algorithms that may be applied to
grayscale (8-bit) images. Students write functions to compute a digital negative image; calculate the
mean, standard deviation, minimum, and maximum of the image samples; and perform lowpass and
highpass FIR filtering using 3 x 3 element convolution masks. The portable gray map (PGM) image
format is used, due to its simplicity. Primary C++ programming topics: (1) multidimensional (2-D)
arrays; and (2) nested for loops. Primary DSP topics: (1) digital image processing; (2) exposure to the
PGM digital image format; (3) 2-D FIR digital filters; and (4) data analysis and the computation of signal
statistics.

4.2. National Instruments LabVIEW Programming Assignments
The final two assignments in the course utilize LabVIEW. A comparison between text-based

C++ programming and graphical programming using LabVIEW is emphasized. Students are taught that
the LabVIEW Front Panel is analogous to the input and output parameters of a C++ function, while the
LabVIEW Block Diagram is similar to the actual C++ source code which implements the function.

Lab #8: Introduction to National Instruments LabVIEW
Students write a simple LabVIEW VI to become familiar with the Front Panel and Block

Diagram interfaces, and they learn basic LabVIEW programming by experimenting with example VIs
included within the Student Edition of LabVIEW. Primary LabVIEW programming topics: (1) exposure
to the LabVIEW Front Panel and Block Diagram interfaces; (2) writing an icon-based graphical program;
(3) LabVIEW For Loop construct; and (4) LabVIEW Case Structure construct. Primary DSP topic:
exposure to an alternative software package used in signal processing system development.

Final Project: Implementation of a Digital Filter Using Microsoft Visual C++ and LabVIEW
A five-tap FIR digital lowpass filter is implemented and applied to actual voltage waveforms.

The digital filter is implemented twice, first using Microsoft Visual C++ and a second time using
National Instruments LabVIEW. In this manner, a direct comparison between these two instrumentation
tools with respect to ease of algorithm implementation and user-friendliness can be made. Primary
LabVIEW programming topics: (1) For Loop construct; and (2) Shift Register construct; Primary DSP
topics: learning how to access the I/O channels of the Lab-PC-1200 DAQ board through LabVIEW
virtual instruments.

5. Conclusion and Course Evolution

Computer Aided Measurement and Control is a required course for electrical engineering sophomores at
the University of North Dakota. It is a rather unique course, in that students are taught many practical
DSP concepts by completing the programming assignments. Microsoft Visual C++ and National
Instruments LabVIEW are used to implement a digital signal generator, examine the output of 1-D and 2-
D FIR digital filters, calculate statistics for data analysis purposes, and perform data acquisition and
digital control applications by interfacing a DAQ card. This course is a modification of the “DSP First”
concept, in that students are introduced to time domain sampling and real-world applications of digital
signal processing at an early stage in the curriculum; however, they are not exposed to the Z-transform
and frequency domain analysis techniques associated with the design of digital filters.

Computer Aided Measurement and Control has evolved from its origination as a course in C
programming with simple data acquisition experiments to a more comprehensive course in C++ and
LabVIEW programming with instrumentation assignments that provide students an intuitive
understanding of DSP concepts. In future iterations of the course, 12 weeks will be devoted to C++ and P

age 3.37.9

four weeks will be devoted to LabVIEW, as this allowed enough time to teach the important concepts in
each language. Once the students are proficient in using C++ selection structures and loop constructs,
they quickly learn how to use the analogous constructs in LabVIEW. The DSP-related programming
assignments will be refined, with the possible addition of experiments in signal construction using the
truncated Fourier series, utilizing the fast Fourier transform (FFT) to compute the frequency spectrum of
a sampled signal, infinite impulse response (IIR) digital filtering, and the real-time processing of digital
speech and music signals.

References

[1] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Prentice-Hall, Inc., 1989.

[2] S. K. Mitra, Digital Signal Processing: A Computer-Based Approach. The McGraw-Hill Companies, Inc.,
1998.

[3] K. Steigletz, A DSP Primer: With Applications to Digital Audio and Computer Music. Addison-Wesley
Publishing Company, 1996.

[4] R. G. Lyons, Understanding Digital Signal Processing. Addison Wesley Longman, Inc., 1997.

[5] J. H. McClellan, R. W. Schafer, and M. A. Yoder, “Experiences in Teaching DSP First in the ECE
Curriculum.” Presented at the 1997 American Society for Engineering Education Annual Conference, Session
1220 Digital Signal Processing, (Milwaukee, WI), June 15-18, 1997.

[6] National Instruments Corporation, Lab-PC+ User Manual: Low-Cost Multifunction I/O Board for ISA. Part
Number 320502B-01, June 1996 Edition.

[7] National Instruments Corporation, NI-DAQ Function Reference Manual for PC Compatibles, Version 4.8.
Part Number 320499C-01, May 1995 Edition.

[8] L. K. Wells, The LabVIEW Student Edition User’s Guide. Prentice-Hall, Inc., 1995.

[9] L. K. Wells and J. Travis, LabVIEW for Everyone: Graphical Programming Made Even Easier. Prentice-
Hall, Inc., 1996.

[10] J. R. Hanly, Essential C++ for Engineers and Scientists. Addison Wesley Longman, Inc., 1997.

RICHARD R. SCHULTZ received the B.S.E.E. degree (summa cum laude) from the University of North Dakota in
1990, and the M.S.E.E. and Ph.D. degrees from the University of Notre Dame in 1992 and 1995, respectively. He
joined the faculty of the Department of Electrical Engineering at the University of North Dakota in 1995, where he is
currently an Assistant Professor. In 1996, Dr. Schultz received a National Science Foundation Faculty Early Career
Development (CAREER) award to integrate his image processing research and educational activities. Dr. Schultz is
a member of the ASEE, IEEE, SPIE, Eta Kappa Nu, and Tau Beta Pi. His current research interests include digital
signal, image, and video processing.

P
age 3.37.10

Appendix

Lab #5: Introduction to Digital Signal Processing
C++ Source Code Framework

/**
 EE 304 Computer Aided Measurement and Control
 University of North Dakota
 Fall Semester 1997

 Author: R. R. Schultz (rschultz@nyquist.ee.und.nodak.edu)
 File Name: lab05.cpp
 Lab Number: 5
 Lab Title: Introduction to Digital Signal Processing
 C++ Source Code Framework
**/
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <math.h>

// Macros
#define SQ(x) ((x)*(x))

// Constants
const int LP=1;
const int HP=2;
const int STATS=3;
const int NUM=8192; // maximum number of samples allowed
const double PI=3.1415927;

// Function prototypes
void GetFileName(char []);
int DspOperation(void);

// Class definition
class Wave {
 private:
 int N;
 double x[NUM];

 public:
 Wave(void);
 Wave(int, double []);
 int AccessNumberSamples(void);
 void LowpassFilter(void);
 void HighpassFilter(void);
 void CalculateStatistics(double &, double &, double &, double &);

 friend void WaveRead(char [], Wave &);
 friend void WaveWrite(char [], Wave &);
};

// Default constructor function
Wave::Wave(void)
{}

// Constructor function
Wave::Wave(int num, double array[])

P
age 3.37.11

{
 // **** SOURCE CODE MISSING !!!! ****
}

// Accessor function
int Wave::AccessNumberSamples(void)
{
 // **** SOURCE CODE MISSING !!!! ****
}

// Lowpass filter
void Wave::LowpassFilter(void)
{
 double y[NUM];

 // Lowpass digital filter coefficients:
 // y[n] = a1*x[n-1] + a2*x[n] + a3*x[n+1]
 // a1 = 0.3333
 // a2 = 0.3333
 // a3 = 0.3333

 // **** SOURCE CODE MISSING !!!! ****

 // Output values
 for (n=0; n<N; n++)
 x[n] = y[n];
}

// Highpass filter
void Wave::HighpassFilter(void)
{
 double y[NUM];

 // Highpass digital filter coefficients:
 // y[n] = a1*x[n-1] + a2*x[n]
 // a1 = -1.0
 // a2 = 1.0

 // **** SOURCE CODE MISSING !!!! ****

 // Output values
 for (n=0; n<N; n++)
 x[n] = y[n];
}

// Compute signal statistics
void Wave::CalculateStatistics(double &mean, double &sd, double &min, double &max)
{
 // **** SOURCE CODE MISSING !!!! ****
}

// Signal input
void WaveRead(char filename[], Wave &waveobj)
{
 double sample;

 ifstream infile(filename, ios::in);

P
age 3.37.12

 int num=0;
 for (infile >> sample; !infile.fail(); infile >> sample) {
 waveobj.x[num] = sample;
 num++;
 }

 waveobj.N = num;
}

// Signal output
void WaveWrite(char filename[], Wave &waveobj)
{
 ofstream outfile(filename, ios::out);

 outfile << setiosflags(ios::fixed | ios::showpoint) << setprecision(6);

 for (int n=0; n<waveobj.N; n++)
 outfile << setw(12) << waveobj.x[n] << endl;
}

int main(int argc, char **argv)
{
 Wave waveobj;

 char infilename[81];
 char outfilename[81];

 double mean, sd, min, max;

 // Get name of input file
 cout << "Name of input file:" << endl;
 GetFileName(infilename);

 // Read input signal
 WaveRead(infilename, waveobj);

 // Determine signal operation
 int dsp = DspOperation();

 // Process the data
 switch (dsp) {
 case LP:
 waveobj.LowpassFilter();

 break;
 case HP:
 waveobj.HighpassFilter();
 break;

 case STATS:
 waveobj.CalculateStatistics(mean, sd, min, max);
 cout << "Signal Statistics:" << endl;
 cout << "\t Number of Samples: " << waveobj.AccessNumberSamples()
 << endl;
 cout << "\t Mean: " << mean << endl;
 cout << "\t Standard Deviation: " << sd << endl;
 cout << "\t Minimum: " << min << endl;
 cout << "\t Maximum: " << max << endl;
 cout << endl << endl;
 break;

 default:
 cout << "Should not be possible." << endl;
 }

 // Get name of output file

P
age 3.37.13

 cout << "Name of output file:" << endl;
 GetFileName(outfilename);

 // Write processed signal to a file
 WaveWrite(outfilename, waveobj);

 // Return successfully
 return 0;
}

// Get name of signal file
void GetFileName(char filename[])
{
 cout << "\tFile name (less than 80 characters) >>> ";
 cin >> filename;
}

// Get DSP operation
int DspOperation(void)
{
 int op;

 // **** SOURCE CODE MISSING !!!! ****

 return op;
}

P
age 3.37.14

