
Session 2220

Remote Procedure Calls and
Java Based Interprocess Communication

Sub Ramakrishnan, Mohammad B. Dadfar

Department of Computer Science
Bowling Green State University

Bowling Green, Ohio 43403
Phone: (419)372-2337 Fax: (419)372-8061

Email: datacomm@cs.bgsu.edu

Abstract

The growth and expansion of the internet has created opportunities and a need for exploring
internet technologies in a classroom setting. Techniques such as remote procedure calls which
were established more than a decade ago are being revisited as client-server networks become
popular. Developers are also scrambling to build Java based applications that can be deployed
on any desktop.

In the last offering of our data communications course, we did a pilot study and made some
changes to our traditional offering of this course. The focus was more hands-on experience,
exposure to modern technology, and less on theory. The classroom setting was informal and
projects were group-oriented. In this paper we describe two projects that were assigned during
this offering. The first project uses Java to build a client-server application and attempts to
compare the tradeoffs between Java and C++. The second project is an extension of the local
programming paradigm. The students build a network file service protocol using remote
procedure calls.

1. Introduction

It is well-known that data communications and computer networking has become one of the most
important areas in computer science. Computer Science departments offer one or more courses
in this area in their undergraduate/graduate programs. We at Bowling Green State University
have offered a Data Communications and Networks course in our undergraduate program since
early 1980s. This course has become increasingly popular among students and as a result we
have increased the number of sections offered. Moreover, we have introduced an additional
course in operating systems and networks at the junior level which is now a required course for
all students majoring in computer science.

To make the Data Communications course more useful, the practical part of the course is
carefully designed so that students could incorporate the theoretical concepts with current issues
in real-world networking. Since the area is changing rapidly the choice of projects has become a
major task for instructors.

P
age 3.483.1

The growth and expansion of the internet has created opportunities to design practical projects in
this area. Computer Science departments around the country react to such technology trends and
attempt to integrate these concepts in their curriculum. Instructors are motivated to expose
internet-related technologies in a classroom setting. Remote Procedure Calls (RPC), which were
established more than a decade ago are being revisited as client-server networks become popular.
Java based networked applications that can be deployed on any desktop have recently gained the
attention of developers and are also candidates for course projects.
Traditionally, we have covered a considerable amount of theoretical concepts, and some practical
projects that help enhance some of these concepts, in our offering of the data communications
course. In our last offering of this course, we did a pilot study and made some changes. The
focus was more hands-on experience and less on theory. The classroom setting was informal and
projects were group-oriented. In this paper we describe two projects that were assigned during
this offering.

We discuss the motivation in assigning these projects, specific details of the projects, the
problem solving phase and the impact of teamwork on the final product. We also describe
certain extensions to these projects that might be of use to other institutions.

In Section 2, we give an overview of the topics in our data communications course and
preliminary details of the two course projects. These projects are discussed in Section 3 and
Section 4 respectively. Concluding remarks appear in Section 5.

2. Data Communications Course

Our Data Communications and Networks course (CS 429) is a 3 credit hour course and runs for
15 weeks for a total of 45 hours of classroom instruction. (The summer offering is 8 weeks long
and the class meets about six hours per week.) Both senior undergraduates and some graduate
students enroll in this course. The students have already had at least two courses on
programming and data structures, and have been introduced to UNIX systems.

The topics covered in the recent offering of the course include the following: basics of
networking, benefits of resource sharing, network topologies, comparison of packet and circuit
switching, multiplexing, transmission techniques, bandwidth limitation, and transmission
impairments. These topics take up about 30% of the course. Approximately 50% of the class
time is spent on the following topics: OSI model, physical connectivity, ethernet and token ring
standards, TCP/IP protocol suite and related RFCs, domain name system issues, client-server
architectures and remote procedure calls paradigm. About 10% of the class time is spent on
ISDN and broadband ATM networks. The remaining 10% is taken up by three exams giving
during the term and a final exam. A good discussion of the topics covered in the course can be
found in standard textbooks [1, 5, 8, 10, 12].

Usually, we assign about four programming projects and three to five homework assignments in
the course. The projects are designed to provide students with hands-on experience in data
communications and network applications. Many class projects have been proposed in the
literature [2, 3, 6, 7, 9]. This paper describes two projects, offered during the Summer 1997
term, that relate to the middle 50% of the classroom instruction.

The first project is to respond to students' interests in Java and to compare the tradeoffs in
building client-server applications in C++ vs. Java. Java networking mechanisms are direct and

P
age 3.483.2

easy to understand and provide a level of abstraction that is simple for first time network
programmers. Unlike C++, Java error handling is separate from the main code and provides a
number of packaged components to build simple GUI interface without much programming. A
client-server application was used as a model to demonstrate some of these features. The
students built a client application in Java that communicated with the finger daemon on a remote
machine. The machine/port number were all parameterized making the client a general purpose
client. The students were extremely enthusiastic about this project and some students even
suggested useful extensions to the project.

The motivation behind the second project is given briefly. Local procedure calls paradigm is
well known in the computer science literature [4]. RPC is an extension of this concept and is
applicable for client-server architectures. Sun proposed this concept and built Network File
Service (NFS) using the RPC paradigm [11]. RPC interface provides a higher level abstraction
than socket based TCP/IP programming. It also bridges the gap between data formats across
heterogeneous computer systems. RPC integrates well within the course framework.

The second project is an extension of the local programming paradigm. The students built an
application to provide remote file service with functionality similar to that of NFS. It included
primitives for remote file manipulation: open, read, write, and close. Like NFS, the application
is stateless. This project helped them appreciate the need for a network representation and the
simplicity and power of stateless servers. Further, they realized that the classroom instruction
provides practical concepts useful in building real world applications comparable to popular
services like NFS.

3. A Client-Server Project in Java

Classroom instruction provides the necessary background in client-server networking. Topics in
this area include: TCP/IP and IP addressing, host and network part, concept of port number,
preliminaries for setting up a stream oriented connection between a client and a server, and the
difference between clients and servers.

In this project students write a client-server communication application in Java. The client
communicates with a well known server such as the finger daemon. The client application
provides a graphical user interface for entering the information the client needs in order to finger
the server. This includes: the server machine name or IP address, server port number, and users
to be fingered.

Students are exposed to Java for the first time in this course. Java instruction takes under two
class periods for our students who are already familiar with C++. We first discuss a simple hello
world program, then a program to compute the average of the numbers entered at the command
line (these programs are not shown here). Syntax and semantics of useful statements such as
System.out.println , extracting command line arguments, computational statements and
flow of control are discussed briefly. Now the students write a few other simple programs on
their own to become familiar with the Sun JDK and debugging tools [11].

In the second class period we discuss how networking is done in Java: the format of Socket
primitive, how to chain Socket's input stream to DataInputStream and to read from a
DataInputStream .

P
age 3.483.3

Briefly, the client does the following: i) connects to the server and creates an instance of
Socket by passing, the server machine name and the port number the server is available on, to
the constructor of Socket and ii) creates an instance of DataInputStream by chaining the
getInputStream method of Socket . At this point, the client can read a line from server by
invoking the method readLine() of the instance that was just created. We also discuss the
methods of the class ServerSocket and how to chain the Socket's output stream to
PrintStream .

Briefly, the server does the following: i) creates an instance of ServerSocket by passing the
port number to the constructor of ServerSocket , ii) accepts connection from client by
invoking the accept method of ServerSocket , iii) creates an instance of PrintStream
by chaining the getOutputStream method of Socket . At this point, the server can use
println method of PrintStream to send data to the client.

Note that the client can also write to the server or the server can read from the client by using the
DataInputStream and PrintStream in both the client and server. It needs to be pointed
out that the server modules are discussed in class but the students do not actually implement
them.

For completeness, we discuss the Java exception mechanisms and the specific exceptions raised
by these calls, and how to handle them. In fact, during the explanation of these primitives, the
students readily figure out how the primitives should be sequenced to get the job done. A sample
code for the finger client is given in Appendix A.

Couple of observations are in order. The client and server code of Java are much simpler than
comparable C++ client-server code. The C++ client code is far too complex. Though the
socket primitive in C++ is easy to understand, the connect primitive is not. It requires
understanding of a suite of structures, network to host formats and carefully marshaling
arguments into these structures. The C++ server code is also complicated. It involves a number
of primitives including socket , bind , listen , accept . The read /write primitives are
quite intuitive. The students do the programming in C++ as well and are in agreement with the
fact that Java client-server mechanisms are straightforward and more intuitive. For brevity, we
do not include the C++ client-server code. The only subtle part of Java is the chaining of input
or output streams that facilitates simpler primitives for reading and writing (readln and
println). But the students seem to get over this difficulty quickly.

4. RPC Client-Server

While RPC concept is easy to understand there are some cumbersome details the students have to
master before building successful RPC applications. Specifically, the following issues need to be
explained in class in order to get a handle on RPC: i) interface specification - format of data that
will be exchanged between client and server, program number, and procedure names and
parameter types of server routines that are callable by the client, ii) compilation mechanisms and
client and server level stubs, iii) slight differences in the way one writes local vs. remote
procedures, iv) how the server registers its presence with the operating system so that the client
can subsequently invoke server procedures. Item (i) provides opportunities for comprehensive P

age 3.483.4

discussion of this topic in the classroom. It also provides the necessary justification why RPC is
a higher level abstraction with primitives that are easier to use as compared to socket level calls.

Once these details are resolved in class students may be given a simple but complete example of
an RPC code that works. Appendix B is an RPC based sort program; the client passes an array to
be sorted and the server returns sorted output. The interface specification file (B.1) provides a
program number, version number, and a number for each procedure in this program. Further, it
defines an integer array with 5 elements and defines the parameter type of the procedure
sortnum . The client makes a TCP connection with the server program (SORTPROG) using the
primitive clnt_create (see B.2). It then invokes the procedure sortnum whose input is the
numbers to be sorted and the output is the sorted array (note that it is consistent with the interface
specification file, B.1). The client then prints the numbers.

It is worth noting that the server program (B.3) is quite similar to a 'local' sort procedure. The
only difference is that the procedure has a number that is associated with it. By convention,
pointers are used for input and output. We usually go through a program like this in class to
make sure students understand the complete details of RPC. Now we are ready to discuss the
RPC project.

The students write an RPC based remote file server. The server responds to file open, read,
write, and close calls from an RPC client. The server performs the requested operation at the
server side and returns the result. Naming conventions for these primitives are kept as close as
possible to local file access primitives. The following primitives are to be supported:

- ropen : Open a file on the server. Input arguments are: file name, mode (read/write).
Semantics are similar to open call. Returns the file descriptor for the file that was
opened.

- rread : Read off of a file on server. Input arguments are: file descriptor and number of
bytes. Returns the string read.

- rwrite : Writes to the file. Input arguments are: file descriptor, buffer to write, and length
of the buffer. Returns none.

- rclose : Close the file.

We spent some time in class going over the details of this assignment. We also gave some hints
on the interface specification file. There is a great deal of interaction in class when students are
asked to figure out the description of the interface specification file: primitives, parameters and
data types. This topic also provides opportunities for a discussion of stateful vs. stateless servers.
The assignment is a bit of challenge initially but most students like the challenge. Once they
code one primitive completely other primitives are straightforward and easily accomplished. The
assignment is particularly well suited for a group-project since there are several interacting but
somewhat independent modules. The students spend about 15 hours to complete this
assignment.

5. Concluding Remarks

In this paper we examined a recent offering of our Data Communications and Networks course
and explored hands-on project options for this course. We discussed a Java based client-server
project and a project based on RPC. The projects integrate well with classroom discussion of

P
age 3.483.5

client-server architectures. The projects are practical and is of moderate complexity and help
students understand how networked applications actually work. These are assigned as group
projects and students like the opportunity to interact with their peers and learn from each other.

Couple of observations are in order. Exposure to modern technology that integrates well with
real world applications provides a big motivation for students and keeps their level of interest
high. By involving students in the material being covered, a broad range of topics can nicely be
covered in the course. Since students have different learning styles, some additional help outside
of regular office hours was also given for those in need to get everyone on board. The overall
reaction from students was quite favorable.

These projects can be easily expanded to meet other needs. For example the client-server project
can focus on host to IP address translation, keeping the connection a bit longer and exchanging
multiple messages (as in the case of an SMTP protocol) and robust exception handling. The
RPC assignment may include mechanisms for dynamic program registry, for the server to call
back the client when the work is done instead of the client being blocked while work is in
progress at the server, and for the client to automatically discover the services offered at a
specific machine.

P
age 3.483.6

Appendix A: Java Based finger Client

import java.net.*;
import java.io.*;

// finger client.
// Command line arguments: port # of finger server, server machine
// User to be fingered is hard coded -- may be changed
// Print message received from host -- the time on host
// Read from server may be expanded to a loop

public class finger
{
 public static void main(String[] args)
 {
 Socket theSocket;
 String hostname;
 DataInputStream receiveDataStream;
 PrintStream sendDataStream;
 if (args.length == 0) {
 System.out.println("Usage: progName serverDayTimePort serverHost" +
 " Purpose: Call server @serverDayTimePort & get time");
 System.exit(1);
 }

 if (args.length == 2) {
 hostname = args[1];
 }
 else {
 hostname = "localhost";
 }

 try {
 theSocket = new Socket(hostname, Integer.parseInt(args[0]));
// Chain socket's input stream to DataInputStream
// DataInputStream is better for reading ASCII text than getInputStream

 receiveDataStream = new DataInputStream(theSocket.getInputStream());

// Chain socket's output stream to DataOutputStream
// DataInputStream is better for writing ASCII text than getOutputStream

 sendDataStream = new PrintStream(theSocket.getOutputStream());
 sendDataStream.println("Hello");

// Read a line off of server
 String theTime = receiveDataStream.readLine();
 System.out.println("It is " + theTime + " at " + hostname);
 } // end try

 catch (UnknownHostException e) {
 System.err.println(e);
 }
 catch (IOException e) {
 System.err.println(e);
 }
 } // end main
} // end daytimeClient

P
age 3.483.7

Appendix B: RPC Based Sort Program

B.1: Interface Specification File

typedef int Array[5];
program SORTPROG
{
 version SORTVERS
 {
 Array SORTNUM(Array) = 1; // procedure name
 } = 1; // program version number
} = 0x20000099; // program number

B.2: Client Code

#include <stdio.h>
#include <rpc/rpc.h>
#include "sort.h"
// C L I E N T: Written in C
main(argc, argv)
int argc;
char **argv;

/* This sample program does the following:
 (1) Client gives an array (hard coded) to server.
 (2) Server sorts the array and passes it back to client.
 (3) Client displays the sorted array on the terminal.
*/

{
 CLIENT *cl;
 int i, *result;
 char *server;
 Array array;
 array[0] = 4;
 array[1] = 5;
 array[2] = 9;
 array[3] = 6;
 array[4] = 2;

 server = argv[1];
 cl = clnt_create(server, SORTPROG, SORTVERS,"tcp");
 if(cl == NULL) {
 clnt_pcreateerror(server);
 exit(1);
 }

 result = sortnum_1(array, cl);
 if(result == NULL) {
 clnt_perror(cl, server);
 exit(1) ;
 }

 for (i = 0; i < 5; i++)
 printf("\n%d\n", *result++);
}

B.3: Server Code

#include <stdio.h>
#include <rpc/rpc.h>

P
age 3.483.8

#include "sort.h"
// S E R V E R: Written in C
int *sortnum_1(numary)
int *numary;
{
 int iCtr1, iCtr2, Temp;
 static Array result;

 for(iCtr1 = 0; iCtr1 < 5; iCtr1++)
 result[iCtr1] = *numary++ ;
 for(iCtr1 = 0; iCtr1 < 5; iCtr1++)
 for(iCtr2 = iCtr1 + 1; iCtr2 < 5; iCtr2++)
 if(result[iCtr1] < result[iCtr2])
 {
 Temp = result[iCtr2];
 result[iCtr2] = result[iCtr1];
 result[iCtr1] = Temp;
 }
 return(result);
}

References

 [1] Comer, Douglas, "Computer Networks and Internet," Prentice-Hall, 1997.

[2] Dadfar, Mohammad B. , Francis, Jeffrey, and Ramakrishnan, Sub, "Application of Client/Server Paradigm
and web Technologies in a Networking Course," ASEE 1997 Annual Conference, 2220-04.

[3] Dadfar, Mohammad B. and Evans, Stephen, "An Instructional Token Ring Model on the Macintosh
Computer," ASEE Computers in Education Journal, Vol. IV, Number 1, January-March 1991, pp. 28-32.

[4] Deitel, H., and Deitel, P., "C++: How to Program," Prentice-Hall, 1994.

[5] Halsall, Fred, "Data Communications, Computer Networks and Open Systems," (Fourth Edition), Addison-
Wesley, 1996.

[6] Hughes, Larry, "Low-Cost Networks and Gateways for Teaching Data Communications," ACM SIGCSE
Bulletin, Vol. 21, Number 1, February 1989, pp. 6-11.

[7] Kamel, K. and Riehl, A., "An Instructional Model to Build a Computer Network by Adding Nodes," ASEE
Annual Conference Proceedings, June 1992, pp. 1107-1111.

[8] Orfali, R., Harkey, D., and Edwards, J., "Essential Client/Server Survival Guide," Wiley & Sons, 1994.

[9] Ramakrishnan, Sub and Dadfar, Mohammad B., "Client/Server Communication Concepts for a Data
Communications Course," ASEE 1997 Annual Conference, 2520-02.

[10] Stevens, Richard, TCP/IP Illustrated Volume 3, Addison-Wesley, 1994.

[11] SUN Microsystems Inc. JDK 1.1, http://www.javasoft.com/products/JDK/1.1/index.html

[12] Tanenbaum, A. S., "Computer Networks," (Third Edition), Prentice-Hall, 1996.

SUB RAMAKRISHNAN is an Associate Professor of Computer Science at Bowling Green State University. From
1985-1987, he held a visiting appointment with the Department of Computing Science, University of Alberta,
Edmonton, Alberta. Dr. Ramakrishnan’s research interests include distributed computing, performance evaluation,
parallel simulation, and fault-tolerant systems.

P
age 3.483.9

MOHAMMAD B. DADFAR is an Associate Professor in the Computer Science Department at Bowling Green State
University. His research interests include Computer Extension and Analysis of Perturbation Series, Scheduling
Algorithms, and Computers in Education. He currently teaches undergraduate and graduate courses in data
communications, operating systems, and computer algorithms. He is a member of ACM, IEEE, ASEE, and SIAM.

P
age 3.483.10

