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Abstract

Mechanical engineering students designing  machinery are confronted with the lack of a reliable
method in determining if the machinery will move after assembly, and under what conditions
assembly is possible at all. Gruebler’ and Chebyshev’s formulas found  in the majority of
American textbooks are unreliable. A simple, though almost unknown,  loop analysis developed
by Ozol can solve the problem.
The loop analysis allows one not only to check if the mechanism can move, but also provides a
valuable insight into the design of self-aligning mechanisms  insensitive to manufacturing and
assembly errors.

Introduction

One of the most important tasks in designing a mechanism is checking if the proposed device
constitutes a mechanism and not a rigid structure.  In the language of mechanical engineers, the
procedure is called checking the mobility of the mechanism. 
The mobility of the mechanism is defined as the number of degrees of freedom that the
mechanism possesses with respect to one arbitrarily chosen link.  One can determine the
mobility of the mechanism by “fixing” links  one by one,  until the mechanism is not able to
move.  The number of fixed links  that immobilizes whole mechanism is equal to its mobility.
The Gruebler’s and Kutzbach’s formulas for the mobility of a plane mechanism and found in
majority of textbooks on kinematics, [1], [2], [3], although they are known to produce
misleading results.

The second task of the designer is  to formulate geometric conditions (parallel axes, tight
tolerances on some dimensions, etc.) to make assembly possible. The geometric conditions
imposed in this stage on the links of the mechanism are also known as the  redundant
constraints. An example of a system with redundant constraints is a four-leg table placed on a
warped floor. To avoid shaking of the table one of its legs  must have a strictly defined length.
 
Unfortunately, parts are machined with errors. If errors are too large, the assembly may not be
possible, or would require force to connect its parts together. Reshetov [4], gives examples of
when bad geometry of links caused internal loads on the parts that exceeded many times the 
loads for which the machine was designed. To visualize the problem, compare two sets of links
for two  four-bar linkages  shown in Fig 1. The set shown on the left can be easily assembled
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Figure 1 On the left, the links of a four-bar linkage with axes of all holes parallel to each
other. On the right, the links with serious geometric errors.

because the axes of the holes in the links are made parallel to each other. The set shown on the
right  will resist assembly unless links are bent.

The longer the list of geometric requirements for the mechanism , the  more expensive it will be
to make (cost of jigs,  measuring equipment, etc.). Additionally, such a mechanism will be
sensitive to thermal effects and  deformations caused by the load. Binding is a frequent
phenomenon in mechanisms that have redundant constraints. 
It is possible to design mechanisms so that they are insensitive to geometric errors. Such
mechanisms have no redundant constraints and are called self-aligning. A self-aligning four-bar
linkage  can be easily  assembled even if its links are severely deformed (even as badly as those
shown in Fig. 1b).
A simple procedure was developed by Ozol [4]  to determine  mobility and the number of the
redundant constraints of any mechanism (two and three-dimensional) . This procedure can be
used as a tool to design  self-aligning mechanisms.

Kinematic Pairs (joints)

Mechanisms are composed of links connected together in a way that makes their relative motion
possible. In the analysis that follows, the links will be considered as perfectly rigid bodies with
perfect geometry (zero clearances in pin joints and so on). Because of this assumption,  their
geometry will not change even under extremely large loads. 
A connection of two links that permits their relative motion is called a kinematic pair or a joint. 
There are many different types, or classes, of kinematic pairs (joints) used in machinery which
ensure specific types of contact between the mating surfaces (point contact, line contact, etc.). 

In the part that follows, a brief classification of kinematic pairs (joints) is presented. This
knowledge is a prerequisite to understanding the procedures used in determining the mobility of
a mechanism and the existence of the  redundant constraints. 

In a three-dimensional space, any link (rigid body) has six degrees of freedom: three translations
and three rotations about the axes of a fixed system of coordinates.  The motion of the link in
space can be a simple translation or a simple rotation, or any simultaneous combination of these
motions.  When one link is connected to another link, it looses some of its degrees of freedom. 
To see the effect the connection has on the degrees of freedom, it is convenient to fix one link,
and  to study the motion of the other link.  By making a connection between two links, we
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Figure 2  Free body (2) in
space.

Figure 3 Kinematic pair 
of I class.

impose geometric constraints on both links.  To explain it better, let us consider the situation
shown in Fig. 2.  

Link 1 has a perfectly flat surface and is considered as stationary.  Link 2, having the shape of an
ideal sphere,  “floats” above.  In this state of levitation, the sphere has all six degrees of freedom. 
Now, let’s impose a constraint on the sphere so that it must touch link 1 ( a ball resting on a
plane in  Fig.3).  In this connection  link 2  has now five degrees of freedom with respect to link
1.  One degree of freedom – the translation in the direction of the normal to the plane-- is lost
(constrained).  Because one degree of freedom for the sphere was removed, the connection will
be classified as a kinematic pair of the first class (class I).  In the convention which will be
adopted,  the class of a kinematic pair is equal to the number of independent degrees of freedom
removed from the movable link.  The reader should be warned here that a different convention is
used in works of other authors. In that convention  the class of a kinematic pair corresponds to
the number of the retained degrees of freedom. 
According to the  convention used in this paper, all possible joints create  five classes only.

Classification of Kinematic Pairs

A  class I joint was explained in the previous section, and is not restricted to a sphere and a
plane. Any two bodies making contact at one point create a class I kinematic joint.
In a kinematic pair of class II, if one link is fixed, than the movable link must have  two degrees
of freedom removed.  The possible combinations are two translations, two rotations, or a
translation and a rotation.  The second combination cannot be realized because any kinematic
pair requires at least one point of contact between parts.  The possible forms of the class II are
shown in Table 1 : a sphere inside of a tight fitting round tube, and a cylinder resting on a plane. 
In the latter case some rotations of the cylinder are forbidden because they change the contact
between the links from line to point.

The class III joints are shown in the third row of Table 1.  The possible combinations of
constrained degrees of freedom are three translations (joint shown in the first column), two
translations and one rotation (the joint shown in the second column), or one translation and two
rotations (the joint shown in the third column).  The examples of the joints satisfying the criteria
for class III are shown in the table.  The first form, which constraints all three translations, is the
commonly used ball-and-socket connection.  In the model representing the second form, the ball
is constrained by a pin inserted through the slot machined in the fixed link. 

P
age 5.540.3



Table 1  Classification of kinematic pairs

The slot constrains the rotation of the ball about the x-axis, but allows rotations about the z and y
axes.  The length of the slot does not have to be large.  In many technical cases, a little amount
of rotation or translation is considered to be a sufficient degree of freedom.  For example, 0.5
degree rotation of the self-aligning commercial bearing is all that is needed to avoid the
excessive stress due to deformation of the shaft caused by the load.

The class IV joints are characterized by four degrees of freedom lost by a movable link.  There
are three possible forms for this class, and all three are shown in the fourth row of Table 1. 
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Figure 4 A mechanism with six links.

While the first two forms are self-explanatory, the third one requires a comment.  In this form,
the link --considered as movable (a doughnut shaped ring)-- can spin about its own axis of
symmetry, and can rotate about the vertical axis of symmetry of the fixed ring.  Only two
available degrees of freedom imply that four out of six degrees of freedom were removed,
therefore the connection is of class IV. Technical applications  of the IV class pairs include two
teeth of mating spur gears, or a cam and roller of a follower.

The joints classified as class V connections must allow one degree of freedom in relative motion.
Possible forms for this class are shown in the last row of Table 1.  The first form is a typical
hinge (pin) joint that permits single rotation.  The second form, often referred to as prism joint,
allows for single translation.  The third form represents a screw-and-nut connection.  The screw
has only one degree of freedom.  When it is rotated, it has to move along the rotation axis, but
this motion is not independent from the rotation.

Loop Analysis

The method   is based on a simple observation that all  mechanisms (with the exception of open
loop mechanisms like manipulators) are made of loops of links connected by joints. If a
mechanism is designed without redundant constraints, then even if  the links are deformed, it
should be possible in assembly to close each loop without  use of force.

The number of independent loops, L, can be calculated with the formula:

L = j - (n-1)

where j is the total number of joints, and n is the total number of links in the mechanism (base
included).
An independent loop corresponds to a chain of links that starts and ends at the same joint.  One
can physically trace a loop on the mechanism by the following selected links from joint to joint. 
As an example, let us  consider a mechanism shown in Fig. 4. 

The mechanism has n=6 links and j=7 joints,
and therefore the number of independent loops
is L=7-(6-1)=2.

There are different ways to choose loops, as
demonstrated in Fig. 5 a, b, and c. 
Information about a loop can be represented in
the form of a code.  The code is a sequence of
letters corresponding to the joints in the
selected  loop.  For example, the loops shown
in Fig. 5 a can be written as O1-A-C-O3-O4-
O1 and O2-B-C-O3-O4-O2.  Point O4,
intentionally located in the vicinity of the
slider, is used to show that the loop continues
through the slider toward  the base.  It is
obvious that the same joint (same label) may
appear in more than one loop code. P
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Figure 5 Possible loops for mechanism shown in Fig.4.

Figure 6  A loop, made of links with geometric errors, before
closing.

For the purpose of the procedure, which has yet to be described, information about the degrees of
freedom of a particular joint will be entered in the calculations of the mobility of the mechanism. 
To avoid counting the same degrees of freedom twice, the restriction is made that a joint can be
taken into consideration only once.  To show which joints are excluded from a loop (to avoid a
double count), a letter corresponding to the relevant joint is enclosed by parentheses, like in this
example: O1-A-C-O3-O4-(O1) and O2-B-(C)-(O3)-(O4)-(O2).  It is arbitrary which joint will
be counted in which loop.  In the considered case, we could as well exclude joint C from the first
loop and make it available for counting in the second.  The only requirement is that a loop
should have at least one joint that will be counted.

Rationale of the Method

Let’s now consider a partly
assembled loop, as shown in
Fig. 6.  The loop needs to be
closed at joint D to make a
four-bar linkage.  Because link
BC is twisted, the centers of the
holes D’ and D” cannot be
aligned.  To align the parts, and
make closing of the loop
possible, the joints of the loop
must provide translations and
rotations.   Merely overlapping
points D’ and D” is not enough,
rotations in a partly assembled
loop are needed to make plane
P’ coincide with plane P”.  
Any three-dimensional open
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loop of links needs six degrees of freedom in order to be closed:

tx = 1  rx = 1
ty = 1  ry = 1
tz = 1  rz = 1

where tx, ty, tz, and rx, ry, rz represent the number of required degrees of freedom in translation
(letter t) or rotation (letter r) with regard to arbitrarily located and fixed  x, y, and z axes. These
translations and rotations come from the degrees of freedom available in the joints of the links
making the loop.
Lack of any of the six degrees of freedom is an indication of the existence of redundant
constraints. 
For example, in  the following situation for a loop:

 tx = 0  rx = 1
ty = 1 ry = 0
tz = 1 rz = 1

the presence of two zeros indicates the existence of two redundant constraints.
In order to have mobility of the loop after closing to create a four-bar linkage that can move, the
joints must provide at least one additional degree of freedom. 

 For example, an open loop with the following degrees of freedom:

                                                                   
 tx = 1  rx = 1
ty = 1  ry = 2
tz = 1  rz = 1

will have mobility equal to one after closing.  The mobility comes from the “surplus” degree of
freedom in rotation about y-axis (ry = 2).

What is interesting is that the surplus rotational degrees of freedom can compensate for the
missing degrees of freedom in translation in the loop.  This property can be explained with the
help of Fig.6.  The chain of links that needs to be closed has three rotational degrees of freedom
about the y-axis --each pin joint contributes one degree of freedom.  In this case point D’ can be
moved in, say,  x direction by properly rotating links in joints A, B, and C.  A better study of this
phenomenon leads to the principle that a missing translational degree of freedom can be
compensated for by a surplus rotational degree of freedom about the axis that is perpendicular to
the direction of translation.  This means, for example, that an additional rotational degree of
freedom, rz, can be used in lieu of one of the translational degrees of freedom, tx or ty, should
one of them be missing.  To make things clear, here is another example.  

The loop  described below is equivalent to the first loop in this section in the sense of degrees of
freedom, and therefore can be closed: P

age 5.540.7



tx = 0 rx = 1
ty = 1  ry = 1
tz = 1 rz = 2

One of the two rotational degrees of freedom, rz, can be “transferred” to the missing
translational degree of freedom, tx.  An important observation made by Ozol was that the
surplus rotational degrees of freedom available in one loop can be used to compensate the
missing translational degrees of freedom in other loops. These concepts can be used to develop a
procedure to determining the mobility of the mechanism and the number of redundant
constraints.  The procedure will be explained in an  example.

Let’s consider a structure (we do not know if it is a mechanism) shown in Fig. 4. The task is to
determine the mobility and the number of redundant constraints.
The solution starts from identification  of the joints. There are six joints of the V-th class  created
by pairs of links: 1-2, 2-3, 3-4, 3-5, 5-6, and 1-4. Connection 1-6 belongs to  the IV-th class. All
V-th class joints provide rotations about the z-axis, the IV-th class joint provides both rotation
about the x-axis and translation along the same x-axis.
The mechanism is made of two independent loops, as determined before.  Let’s choose the loops
as shown in Fig. 5a.  We start the procedure by drawing a box for each loop, as shown in Fig. 7,
step 1.  The code for each loop is written in a corresponding box, and the number of degrees of
freedom --translational and rotational-- is determined for each loop.  The degrees of freedom are
counted only for the joints that are included in the loop.  Because loop O1-A-C-O3-O4-(O1)
represents a flat configuration of the links, each joint O1, A, C, and O3  contributes one
rotational degree about the z-axis, so rz= 4.  There is another rotational degree of freedom, rx=1,
contributed by the joint made by links 1 and 6.  The only translational degree of freedom, tx =1,
comes from joint O4, created by the slider and the base.  There are no other degrees of freedom,
so zeros are entered next to proper symbols.

The box for loop O2-B-(C)-(O3)-(O4)-(O2) is filled out in a similar manner.  Because only two
joints are included in the loop, rz=2.  There are no other rotational or translational degrees of
freedom.
In step 2, shown in Fig. 7, the surplus rotational degrees of freedom are converted to
translational degrees of freedom.  Out of four degrees of freedom, rz = 4, two are transferred:
one to translation along the y-axis for the first loop, and the second to translation in the x
direction for the second loop.  This procedure changes values of tx and ty from zero to one.  Out
of two remaining rotational degrees of freedom rz=2 in the second loop, one degree is converted
to translation along the y-axis in the same loop.  All of the described conversions are marked in
step 2  with arrows. After these reallocations, the distribution of the degrees of freedom is shown
in Fig.7 step 3.

 The surplus rotational degree of freedom from the first loop (everything above value of one)
corresponds to the mobility of the mechanism, and is symbolically transferred to the “mobility
counter” located above the boxes (see the broken arrow).  All zero values for the degrees of
freedom correspond to the redundant constraints and are symbolically transferred (see broken
arrows) to the “counter of the redundant constraints “ located below the boxes.
Step 4 in Fig.7 shows the final distribution of the degrees of freedom for the closed loops, the
mobility of the mechanism, and the number of the redundant constraints.  The mobility of the
mechanism is m=1, and the number of redundant constraints is r=5.
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Figure 7  Step by step loop analysis of mechanism shown in Fig.4 (continued
on the next page).

Because r is not equal to zero, the mechanism is not self-aligning.  It will operate if the crank is
rotated, but assembly and operation is possible only if  5 geometric constraints are imposed:

1. The axis of pin joint A must be parallel to the axis of joint O1,
2. The axis of pin joint C must be parallel to the axis of joint A,

 3. The axis of pin joint B must be parallel to the axis of joint A,
4. The axis of pin joint O3 must be parallel to the axis of joint C,
5. The axis of the slider’s guide  must be perpendicular to one arbitrarily

chosen pin joint axis.n the 
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Figure 7 (Continuation from previous page) Step by step loop analysis of
mechanism shown in Fig. 4.
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Figure 8 A self-aligning mechanism obtained by
modification of the mechanism shown in Fig. 4.

Figure 9  Loop analysis for the mechanism shown in Fig. 8.

Making a Self-Aligning Mechanism

To make the mechanism a self-aligning one, more rotational degrees of freedom must be
available at the joints. The simplest way to
do this is to replace some of the joints by
joints of the lower class, for example III-rd
class (ball-and-socket type). These self-
aligning bearings are available from many
bearing manufacturers. The replacement
can be gradual, one joint at a time with loop
analysis performed after each modification
to check if r=0.

In the considered case, three of the pin
joints have to be replaced by self-aligning
joints of the III-rd class to make the
mechanism self-aligning. The modified
mechanism is shown in Fig.8, and the
corresponding loop analysis shown in
Fig.9.

The analysis shows mobility m=2.  The
original mechanism had mobility m=1.
After modification, link 4 gained additional

mobility. Because it has ball-and-socket joints at both ends, it can be rotated about its own axis.
This additional mobility does not affect the ability of the mechanism to move as before. The
mobility of a link that does not affect the general  mobility of the mechanism is called local
mobility. Because the number of  redundant constraints in the modified mechanism  is r=0, the
links of the mechanism can be fabricated without any special precautions with regard to
parallelity of the joints axes. Also, the axis of the slider’s guide does not have to be
perpendicular to any  axis. No matter how badly  the links are machined, the mechanism will be
easy to assemble and operate because it became self-aligning.
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Place for the Method in the ME Curriculum

ME students taking capstone design courses design complicated mechanisms. Checking if
mechanisms will move as anticipated is sometimes the most difficult task. The author has a
collection of preliminary drawings conceived by the students of devices which ended-up not
moving. One can find in this collection ideas for three dimensional mechanisms of folded wheel
chairs, car jacks, hoists, powered car seats for handicapped drivers, etc. In each case, students
were certain  that the device was correct. One can only imagine the amount of frustration and
material loses if these projects were to be built.  Simply, a three-dimensional imagination of the 
students at this level does not work. The loop method provides an easy solution. The results of
the analysis also gives an insight into how sensitive the device is to geometric errors. The larger
the number of redundant constraints, the more problems the device with cause.

The author of this paper taught the loop method to students taking  MECH 446 Design I, MECH
445/845 Special Concepts of Mechanical Design (design elective course), and in MECH 442
Intermediate Kinematics (technical elective course).
The material presented in this paper requires about three 50-minute periods to be sufficiently
explained. A 20 page handout on the subject, with examples how real engineers design self-
aligning mechanisms, accompanies lectures. 
The main emphasis in assignments is put on training the students to determine classes of  real
joints used in machinery and counting degrees of freedom in the loops. Photographs and
technical drawings of real mechanisms and joints are used in class and home assignments.

In two elective courses, with smaller number of students, in a  hands-on exercise, students build
self-aligning mechanisms and  test their behavior. According to the students,  this part of the
course is an eye opener. 
In a typical  exercise, a small team (3 students) is given a task of conceiving and building a
three-dimensional mechanism with given specifications. Some of the past assignments were:

 * design a four-bar linkage in which the axis of the crank (input) is perpendicular to
the axis of the follower (output),

* design a mechanism in which a single crank imparts motion to two pistons with
skewed axes.  

* design a self-aligning linkage  in which one of the links operates with dwells.
 
At the beginning of the project,  the mechanism is sketched on paper and analyzed for the
mobility and the redundant constraints. Then a self-aligning  version of the same mechanism is
designed . The loop method is the only tool available to the students. 

The  teams build mechanisms  from parts purchased at hardware and hobby stores.  The most
frequently used parts are:  brass tubing with slightly different diameters, used in building joints
of the IV-th class, small self-aligning joints used by hobbyists to build RC cars, brass flats and
miniature screws and nuts (see Fig. 10). 

The cost of parts per team is about $8.00, and money comes from the  laboratory fees paid by the
students. The parts are glued together with a glue gun, the holes are drilled and parts cut with a
small Dremel tool. Some safety precautions have to be taken (safety goggles available for
drilling and cutting operations).  
Fig. 11 shows an example of a  mechanism built by the students in one hour. The advantage of
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Figure 10  Simple parts for building models of self-
aligning mechanisms.

Figure 11 An example of a  self-aligning mechanism built by the students.

self-aligning mechanisms is very obvious
to the students, because with primitive
means of fabrication their mechanisms
work amazingly well.

It is important  to explain  to the students
that modification of a mechanism to
obtain a self-aligning one, whatever the
cost, is not a good engineering practice.
The self-aligning mechanisms should be
built in case of necessity, and only after
cost analysis.

Conclusions

Presented in this paper, and little known (in the United States),  loop method fills a
compromising gap in the mechanical engineering curriculum.  The information about  the
redundant constraints provided by the method allows, in case of need,  to modify the analyzed
mechanism and make it self-aligning. Practical and inexpensive experiments done by the
students in the classroom help build intuition by helping the students understand the concept of
mobility, redundant constraints, and self-alignment.
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