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Abstract 

A graphically oriented MATLAB program, written by the authors, facilitates teaching real-world 
DSP concepts such as quantization of digital filter coefficients that occur in fixed-point 
processors.  While many universities own or plan to buy, the inexpensive floating-point 
TMS320C31 DSKs for pedagogical reasons, this MATLAB program fully supports that decision by 
allowing filter coefficient quantization effects to be demonstrated using either fixed-point or 
floating point filtering algorithms on a single DSP device.  This program eliminates the need to 
purchase expensive specialized software programs or additional DSP hardware.  The program 
described in this paper provides an interactive graphical user interface, which communicates 
directly with the DSK, and demonstrates in real-time how both coefficient quantization and filter 
implementation affect filter performance.  All of this is accomplished without the need for tedious 
programming of the DSK.  The latest version of the software allows the floating-point 
TMS320C31 to directly implement the fixed-point filtering algorithm.  This enhancement 
represents a considerable cost and timesavings for both the student and professor since only one 
type of digital signal processor is required. 
 
1.  Introduction 

Modern software tools such as MATLAB greatly facilitate the professor's ability to demonstrate the 
concepts of digital signal processing (DSP) in class, and to assign realistic projects to reinforce 
these concepts.1–3  An increasing number of DSP textbooks are available which take advantage of 
this ability,4–9 and a growing trend is for DSP concepts to be introduced earlier in the 
curriculum.10  These concepts can be further reinforced, and greater interest generated by the 
students, if they can be easily implemented in real-time on modern DSP hardware.  Affordable 
hardware is now available to schools: Texas Instruments, for example, markets DSP Starter Kits 
(DSKs) for $99.11  While fixed-point processors are more prevalent in industry,12 floating-point 
processors are becoming more popular for schools for pedagogical reasons.  We will examine 
how MATLAB, already accepted as a powerful learning tool for DSP, can be closely integrated 
with a DSK for teaching purposes while avoiding the tedium of manually programming the DSP 
processor. 
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1.1  Teaching with MATLAB 

MATLAB is an excellent learning tool for DSP education, enabling an easier transition from theory 
to practice for the student.  This greatly facilitates a student’s ability to apply signal processing 
concepts to real-world DSP hardware such as the widely-used Texas Instruments TMS320C 
series of fixed-point and floating-point DSP microprocessors.  In particular, the sptool program is 
supplied with the latest release of the latest Signal Processing Toolbox (version 4.3).  The Student 
Version of MATLAB (release 11) does not come with the Signal Processing Toolbox; however, 
students may purchase this and other toolboxes at a very reasonable price. This program provides 
an excellent interactive graphical user interface (GUI) for designing both FIR and IIR digital 
filters.13  The sptool program also allows interactive viewing and analysis of signals and their 
spectra, but this paper concentrates on the filter design capabilities. 
 
A discussion of using sptool in DSP education can be found in a previous paper by Wright and 
Welch.14  Various filter specifications are easily selected by the student, with an immediate 
customizable display of the resulting magnitude response.  For a more complete analysis of the 
filter design, the student can click the “View” button from the filter column of the main sptool 
window, executing the Filter Viewer tool, which displays magnitude, phase, impulse response, 
step response, poles and zeros on the z-plane, group delay, etc., all at the click of a button.  The 
student can switch back to the Filter Designer tool with a click of the mouse to modify the design 
parameters and interactively see the results.  By clicking the “Apply” button from the filter column 
of the main sptool window, the student can also process any stored signal with the desired filter 
and view the resulting output signal and its associated spectrum.  The sptool program encourages 
the student to pursue “what if?” explorations to satisfy their intellectual curiosity and gain a more 
complete understanding of the underlying DSP concepts. 
 
Note that sptool is actually an easy to use GUI that executes m-file programs for filter design that 
existed in previous versions of the Signal Processing Toolbox of MATLAB.  The only really new 
aspect is the interactive GUI.  Students tend to use the sptool GUI much more frequently than 
they ever used the collection of individual m-files from previous versions.14  
 
1.2  Teaching with DSKs 

Another powerful tool to energize and excite students is the ability to implement a particular 
signal processing technique in real-time on a DSP microprocessor such as one of the Texas 
Instruments (TI) TMS320 series.  When a student speaks into a microphone and hears their 
“personally designed” digital filter algorithm working in real-time, they are often “hooked” on 
DSP.  The recent availability of affordable DSP Starter Kits (DSKs) has made this feasible for 
most schools.  The `C31 DSK described in this paper costs only $99 and contains on a single 

55.3 × inch circuit board the following items, 
 

§ TMS320C31 DSP microprocessor (capable of up to 50 MFLOPS) with a 50 MHz clock 
oscillator.  The C31 contains 2 K words (a word is 32 bits) of on-chip RAM, and can also 
be used with external memory on an add-on card. 

§ TLC32040 analog interface chip (AIC), which combines a selectable cutoff frequency anti-
aliasing filter (which can also be bypassed), a selectable sampling frequency (up to 20 kHz 
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but can be used at higher frequencies), 14-bit analog-to-digital converter (ADC), a digital-
to-analog converter (DAC), a reconstruction filter, and a small output power amplifier 
which can drive loads ≥ 300 Ω.  The analog input and output are intended for audio line-
level (± 3 V peak) connections. 

§ Regulated power supply that accepts either 7–12 VDC or 6–9 VAC input.  
§ Host logic for the PC parallel port communication (IEEE 1284). 
§ Various connectors: RCA jacks for the analog in and out, DB25 parallel port, a 2.1 mm 

power jack, and four 32-pin headers which can connect all `C31 signals to custom add-on 
cards. 

 
The C31 DSK comes with an assembler, debugger, and assorted documentation.  An optimizing 
C compiler and a wide variety of other development tools are available at extra cost.  An 
interesting addition to the TI provided tools, winDSK, was developed by Morrow15, and is 
available at, 
 
URL: http://wseweb.ew.usna.edu/ee/LINKS/EE_Links.htm 
 
The C31 DSK is inexpensive, easy to set up, and can greatly enhance a DSP class.  There are 
obstacles to using DSKs, however.  The learning curve for programming modern DSP 
microprocessors is a significant hurdle for most students.  They must contend with specialized 
topics such as parallel instruction execution, block-repeat, bit-reversed addressing, and the often-
unfamiliar Harvard architecture—and must usually program at the assembly language or C 
programming language level.  These issues frighten away many students.  While fixed-point 
processors are more prevalent in industry due to their cost, speed, and power advantages, they 
add additional problems: coefficient quantization, scaling, and other fixed-point ALU and register 
effects.  From a pedagogical perspective, fixed-point processors (such as the widely-used TI 
TMS320C5x series) tend to be harder to teach in introductory courses compared to floating-point 
processors such as the TMS320C3x and TMS320C4x.  For this reason, many schools are opting 
to buy floating-point DSP hardware (such as the C31 DSK from TI described above) for teaching 
purposes.  While the fixed-point effects are important concepts for students to grasp, many 
schools would appreciate a way to teach and demonstrate these topics without having to buy 
additional hardware.  The program described below integrates MATLAB closely with the C31 
DSK, eliminates the need to create individual assembly language or C programs to manipulate the 
hardware, and allows the primary fixed-point effects to be simulated in real-time on the floating-
point DSK.  Direct implementation of the fixed-point algorithm on the floating-point processor is 
also available.  If the student desires to load and run a digital filter design on the DSK without the 
added effects of fixed-point processors, that is also easily accomplished. 
 
2.  Combining MATLAB with the C31 DSK 

The authors identified an urgent need for a GUI-based program, which would run under MATLAB, 
be able to directly utilize the benefits of sptool mentioned above, and also communicate 
seamlessly with the C31 DSK.  While the capabilities provided by sptool are impressive and 
greatly facilitate students’ comprehension of various DSP topics, there is no straightforward way 
to use it directly with a DSK.  Also lacking in sptool is the ability to simulate for teaching 
purposes certain fixed-point effects, suitable for presentation to our upper-level EE majors, such 
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as filter coefficient quantization.  MATLAB performs double precision calculations in sptool, thus 
a filter design could perform far differently than expected if implemented on a fixed-point 
processor.14  While floating-point DSP hardware (such as Texas Instruments TMS320C3x series) 
is much easier to present from a pedagogical perspective, the fact remains that fixed-point DSP 
hardware (such as the Texas Instruments TMS320C5x series) is far more prevalent due to it’s 
cost, speed, and power advantages.  It, therefore, behooves the professor to expose the students 
to the important differences between floating-point and fixed-point hardware.  Specialized 
software programs exist which address this design issue, but they are typically expensive, require 
the student to learn another interface, or are not written with educational purposes in mind.  
 
2.1 A Fixed-Point Simulation Using MATLAB 

In response to this need, the authors wrote a MATLAB program that takes up where sptool leaves 
off, adjusting the filter coefficients to simulate fixed-point hardware, allowing interactive analysis 
of the design effects, and seamlessly downloading the filter code to a C31 DSK when the user is 
ready.  This allows the floating-point DSK to demonstrate filter coefficient quantization effects 
using floating-point algorithms or implement both the filter coefficient quantization effects and 
fixed-point register/ALU effects using fixed-point algorithms.  The program allows the student to 
interactively compare the theoretical filter performance with the real-world performance that 
would be encountered using any fixed-point DSP microprocessor, yet still make full use of 
sptool.  The actual performance of the student’s filter design can be observed in real-time with 
the click of a mouse button, which loads and runs the filter on the C31 DSK.  The program 
eliminates the need for the student to learn another software interface, eliminates the need for the 
students to manually program the DSK, and is perfectly suited to educational use.  While it runs 
outside of sptool, the program easily exchanges information in both directions by using the same 
data structure defined by sptool.  

 
2.2  A Typical Example 

In order to examine the effects of digital filter coefficient quantization, the student merely designs 
a filter to the desired specifications using sptool in the normal manner.  The student then exports 
the filter from sptool to the MATLAB workspace and runs our program by typing qfilt at the 
MATLAB command prompt.  This brings up the custom GUI shown in Figure 1 which allows the 
user to select with the mouse the simulation constraint method (rounding or truncating 
quantization, and implemented either as a Direct Form Type II transpose or as second-order 
cascaded sections), number of bits (8 to 32 for floating point implementation or 8 to 16 for fixed-
point implementation), plotting preference (magnitude vs. frequency, phase vs. frequency, or 
poles and zeros on the complex z-plane), and Q format (Q12 to Q15) for fixed point 
implementation. The GUI also allows control over the DSK, and the user can select the port to 
which the DSK is connected (LPT1–LPT3), the sampling frequency of the AIC (fifty choices 
from 4509 Hz to 20292 Hz), and control whether or not the anti-aliasing filter is in the signal 
path.  The input and output gain windows allow for pre-scaling and post-scaling during fixed-
point implementation.  Any value may be entered, however, the value will be rounded to the 
nearest power of 2.  The GUI regions labeled “Eqn 6.99”, “Eqn 6.102”, and “Eqn 6.104” refer to 
the scale factors discussed in Oppenhiem and Schafer’s text16.  These scale factors are calculated 
and displayed as soon as the “Apply” button is clicked with the mouse. 
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The original version of this program14 used a command line interface and had no ability to 
communicate with a DSK.  Another version of this program17 added the ability to communicate 
with the DSK with filter coefficient quantization effects demonstrated using floating-point 
algorithms.  We have found the GUI version to be far more appealing to our students and the 
ability to run their filters in real time on a DSK has been very motivational.  When the “Apply” 
button is clicked with the mouse, the program automatically generates and displays any of the 
three selected plots with each comparing the floating-point vs. fixed-point filter implementations.   
 
To demonstrate the process a student would use, a digital filter was designed using sptool with 
the following parameters: lowpass elliptic IIR, sample frequency Fs = 10,000 Hz, passband 500 
Hz with 1 dB ripple maximum, stopband 750 Hz, and stop band attenuation of ≥80 dB.  The 
resulting design produced by sptool is of 7th order.  When the filter coefficients have been 
quantized by qfilt to 16 bits (as would be the case with the Texas Instruments TMS320C5x) and 
implemented as a Direct Form Type II transpose, the result is shown in Figure 2 through Figure 4. 
 
The student can immediately see that with quantization effects, the filter performance is altered 
radically.  There are significant changes to the originally calculated magnitude (Figure 2) and 
phase (Figure 3) response of the filter, which were predicated on the assumption of floating-point 
processing.  But this isn't the whole story!  
 
There is always a danger in relying too heavily on the results of computer simulations and blindly 
accepting the results.  The filter used for the example above clearly demonstrates this, as even the 
filter magnitude and phase response after quantization can be misleading.  It is evident in Figure 4 
that due to the quantization process, some poles have moved outside the unit circle on the 
complex z-plane.  Assuming this is a causal filter design, this implies that the region of 
convergence for the z-transform does not contain the unit circle, meaning the filter design is 
unstable.  We can verify this by importing the quantized filter back into sptool and examining the 
impulse response.  As expected, the filter “blows up” and is unstable.  Yet the quantized filter 
magnitude response in Figure 2, while no longer meeting the design specifications, doesn't look 
unstable.  How do we explain this discrepancy?  We routinely tell our students that no matter how 
fast the computer simulation may be, the students are smarter than the computer, and to always 
perform a “sanity check” on any results.  In this case, Figure 4 would indicate a stability problem.  
MATLAB evaluates the magnitude and phase response of a discrete transfer function by 
substituting ωjez =  (mathematically equivalent to evaluating the discrete-time Fourier transform 
(DTFT) of the filter).  The student should know that if the unit circle is not contained in the 
region of convergence of the z-transform, then the DTFT does not exist, and the magnitude and 
phase response as calculated by MATLAB is meaningless.  Since MATLAB only recently started to 
check for this condition, we added a routine in qfilt that detects it and warns the user by showing 
the plot with a red background and a special plot title.  If no poles move outside the unit circle as 
a result of quantization, or we are dealing with FIR filters (which have no poles), then the 
calculated magnitude and phase response will be valid; in that case the plot background would be 
white.  
 
The student might then explore whether the same filter would behave any differently if it were 
implemented as a cascaded second order section (referred to in some DSP texts as “biquads”).  
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The student simply selects this with the mouse and clicks the “Apply” button once again for the 
various plots.  As can be readily seen in Figure 5 and Figure 6, the filter is now stable (note the 
plot titles and background color) and comes so close to matching the floating-point performance 
that the differences are virtually indistinguishable.  Without qfilt, the student would assume that 
the filter design from sptool meets the desired specifications.  By using our program, however, 
the student gains a better understanding of the design ramifications of a fixed-point digital filter 
realization, including the significant differences of the direct form versus second-order section 
implementations. 
 
The unquantized filter coefficients and the quantized filter coefficients are available in the 
MATLAB workspace in the data structure named filt1 and filt2 respectively.  If we use the standard 
notation that B represents the numerator coefficients and A represents the denominator 
coefficients of the filter’s transfer function H(z) we obtain, 

original B = 1.0e-003 * [0.1585 -0.5992 0.9131 -0.4655 -0.4655 0.9131 -0.5992 0.1585] 

sos B = 1.0e-003 * [0.1526 -0.5770 0.8792 -0.4482 -0.4482 0.8792 -0.5770 0.1526] 

rounded B = 1.0e-003 * [0.1526 -0.6104 0.9155 -0.4578 -0.4578 0.9155 -0.6104 0.1526] 
 

original A = [1.0000 -6.5302 18.4564 -29.2562 28.0842 -16.3231 5.3183 -0.7493] 

sos A = [1.0000 -6.5302 18.4562 -29.2559 28.0838 -16.3229 5.3182 -0.7493] 

rounded A = [1.0000 -6.5302 18.4564 -29.2562 28.0842 -16.3232 5.3183 -0.7493]. 
 
It is now clearly seen that even though the rounded coefficients are closer in value to the original 
coefficients this does not result in the most accurate pole/zero placement.  Additionally, with the 
A and B coefficient vectors available in the workspace, other MATLAB commands may be used to 
explore these or other effects in more detail.  The application of an input scale factor will also be 
visible in the filter coefficients. 
 
When the filter design is satisfactory, the user can simply click the “Load/Run DSK” button on 
the GUI to download the software to the C31 DSK and run the filter algorithm for a real-time 
demonstration.  No programming is necessary, making this especially attractive for introducing 
students to DSP hardware.  The “Load/Run DSK” button activates a 32-bit dynamic link library 
(DLL) written with Microsoft Visual C++ 6.0 and the MATLAB MEX file process to run under 
Windows 9x; different programs are loaded into the DSK depending upon whether the user has 
selected Direct Form Type II transpose or cascaded second order sections, or floating-point or 
fixed-point implementation.   
 
The filter coefficients are then downloaded to the DSK before running the DSK program.  The 
entire process is accomplished in about 300 milliseconds, and gives the student immediate real-
world implementation of their filter design.  Floating-point filters are implemented on the C31 
DSK using the native floating-point hardware capabilities of the processor.  To stay within the 
memory and processing limitations of the DSK, the maximum filter supported is a 254 order IIR 
Direct Form Type II transpose and a 256 order IIR cascaded second order section.  At high bit 
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numbers (such as the full 32 bit capability of the C31 DSK), quantization effects become 
insignificant. 
 
Fixed point filters are implemented using the C31's 32 bit integer ALU, with coefficients and 
data limited by software to 16 bits in Q12 through Q15 format.  Intermediate multiplication 
results are stored as 32 bit integers in Q24 through Q30 format, respectively, with all final results 
stored as 16 bit integers.  The fixed-point filter implementation is constrained by the DSK’s 
memory and processing limitations to a 254 order IIR Direct Form Type II transpose and a 200 
order IIR cascaded second order section. 
 
A companion program for teaching DSP using MATLAB and the `C31 DSK, which allows 
students to perform interactive adjustment and “what if?” analysis of a pole-zero plot, is described 
in an accompanying paper18 by Welch, Wright, and Morrow. 
 
3.  Conclusions 

The qfilt program written by the authors provides the educator with an easy to use, inexpensive, 
and interactive method for teaching the concepts of filter coefficient quantization.  The program is 
completely compatible with the MATLAB sptool program.  It easily communicates with the C31 
DSK used by many universities, eliminates the need for tedious programming of the DSK, and is 
available free of charge from the authors via our Web site, 
 
URL: http://wseweb.ew.usna.edu/ee/LINKS/EE_Links.htm 
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Figure 1.  Initial screen of qfilt GUI. 
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Figure 2.  Magnitude plot of 7th order IIR Elliptic digital filter, quantized to 16 bits and 
implemented as a Direct Form II transpose using fixed-point algorithms. 
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Figure 3.  Phase plot of 7th order IIR Elliptic digital filter, quantized to 16 bits and 
implemented as a Direct Form II transpose using fixed-point algorithms. 
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Figure 4.  Pole-zero plot of 7th order IIR Elliptic digital filter, quantized to 16 bits and 
implemented as a Direct Form II transpose using fixed-point algorithms. 
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Figure 5.  Magnitude plot of 7th order IIR Elliptic digital filter, quantized to 16 bits and 
implemented as a Direct Form II transpose using fixed-point algorithms. 
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Figure 6.  Pole-zero plot of 7th order IIR Elliptic digital filter, quantized to 16 bits and 
implemented as a Direct Form II transpose using fixed-point algorithms. 
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