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Abstract 
 
Model-based feedback control algorithms for robot manipulators require the on-line evaluation 
of robot dynamics and are particularly sensitive to modeling inaccuracies. This paper presents an 
adaptive technique for practical implementation of model-based robot control strategies and 
introduces a novel adaptive algorithm, which makes the design insensitive to modeling errors. 
The design incorporates an on-line identification technique to eliminate parameter errors and 
individual joint controllers to compensate for modeling inaccuracies. An illustrated example will 
be given to demonstrate the development of the proposed algorithm through a simple two-
dimensional manipulator. 
 
I. Introduction 
 
The continuously increasing demands for enhanced productivity and improved precision have 
imposed special requirements on the control of industrial robots and caused a shift of emphasis 
towards the dynamic behavior of manipulators. This shift has led to the development of model-
based control algorithms, which incorporate the dynamic model of the manipulator in the control 
law in order to decouple the robot joints. The underlying principle is to: (1) design a nonlinear 
feedback algorithm that will effectively linearize the dynamic behavior of the robot joints; and 
(2) synthesize linear controllers to specify the closed-loop response. 
 
The critical assumption in model-based control is that the robot dynamics are modeled accurately 
based upon precise knowledge of the kinematic and dynamic parameters of the manipulator. 
Unfortunately, this assumption is not always practical. Inevitable modeling and parameter errors 
may degrade controller performance and even lead to instability. Modeling errors are introduced 
by unmodeled dynamics or simplified models that are designed to reduce the real-time 
computational requirements of the controller. Parameter errors arise from practical limitations in 
the specification of numerical values for the kinematic and dynamic robot parameters or from 
payload variations. 
 
The objective of this paper is to introduce an adaptive design to improve the performance. The 
proposed design augments the model-based robot controller with an adaptive identifier of robot 
dynamics to reduce parameter errors. The identifier estimates the dynamic parameters of the 
manipulator from measurements of the inputs and outputs (joint positions, velocities, and 
accelerations) and calibrates adoptively the model in the controller. 
 
II. Problem Statement 
 P
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The matrix-vector formulation of the closed-form dynamic model for a robot with N joint axes1 
is: 

D(q, ϕ) q&&  + h( ,, qq & ϕ) = F(t)                      (1)  

In (1), q(t), q& (t), and q&& (t) are the joint position, velocity and acceleration vectors; ϕ is the 
vector of dynamics parameters; D(q, ϕ) is the inertial matrix; h( ,, qq & ϕ) is the coupling vector 
that incorporates the centrifugal, Coriolis, gravitational, and frictional force/torque vectors; and 
F(t) is the vector of actuating (motor) joint forces/torques. 
 
The structured closed-form dynamic robot model in (1) provides physical insight into the 
nonlinear system and is thus very appealing from the control engineering point-of-view. The 
state of the robot is defined, at any time instant, by the N joint positions q(t) = [q1, q2,…,qN]T and 
the N joint velocities q& (t) = [ q& 1, q& 2,…, q& N]T. These 2N independent physical state-variables can 
be measured directly with currently available transducers. 
 
In general, the parameter vector ϕ is unknown, although the convex subspace in which it lies 
may be well defined. The parameter vector depends on the inertial and mass properties of the 
links as well as on the payload. We assume that an initial estimate of the parameter vector can 
be computed from engineering drawings or other design information about the robot links1. 
In the next section, we demonstrate that the problem of estimating ϕ is one of solving a set of 
linear equations. Consequently, the assumption that an initial estimate ϕ is available is not 
critical to the convergence of our algorithm. However, a reasonable initial estimate does 
increase the rate of convergence, thus decreasing the learning period of our algorithm. 
The control objective is to drive the robot along a desired trajectory qd(t). The objective can be 
accomplished by generating the following model-based actuating signal: 

F(t) = D(q, φ̂ )u(t) + h( ,, qq & φ̂ )                    (2) 
where the commanded-acceleration is defined as:  

 
 u(t) = r(t) – kv q& - kpq                          (3) 

Model-based robot control algorithms differ in their specification of the reference signal r(t). In 
(2), the caret signifies the estimated parameter vector implemented in the controller. 
If the robot dynamics are modeled perfectly; that is, ifφ̂  = ϕ, then the controller in (2) and (3) 
guarantees that qd(t)=q(t). This is due to the positive-definiteness of inertial matrix, D(q, φ̂ ), 
for all q. The performance of the model-based robot controller degrades as the error in the 
estimates of the dynamics parameters increases. In practice, with a priori uncertain about the 
parameter vector, adaptive control provides natural solution to this problem. 
 
We seek to increase the performance of the model-based robot control algorithm by 
augmenting it with an adaptation mechanism. The purpose of this mechanism is to calibrate 
the actuating signal in (2) on the basis of on-line accumulating information about the behavior 
of controlled system. A block-diagram implementation of the proposed concept is presented in 
Figure 1. The adaptive mechanism is discussed in the following section. 

III. Adaptive Algorithm 
 
A characteristic feature of the manipulator dynamic (1) is that the inertial matrix D(q, φ̂ ) and 
coupling vector, h( ,, qq & φ̂ ) are linear in the elements of the parameter vector ϕ. This feature is 
essential for the adaptation algorithm because it allows us to rewrite the manipulator 
dynamics as: 
    F(t) = Ψ( ,, qq & q&& )ϕ       (4) 
 
where Ψ(t) is a nonlinear, time-varying matrix that depends upon the joint positions, velocities 
and accelerations. 
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Our model-based adaptive controller consists of two important steps: (i) estimating the 
dynamics parameters by solving equation (4); and (ii) using the obtained parameters in the 
computed-torque control law. 
 
The Dynamics Parameters are estimated using a least-squares algorithm for multi-output 
system. In general, the least-squares algorithm minimizes the cost function2  
               N  
JN(ϕ) = ½(ϕ-ϕ0)

TP0
-1 (ϕ-ϕ0)+ 1/2∑[F(t)- ψ(t-1)Tϕ]TR-1[F(t)-ψ(t-1)Tϕ]   (5) 

         t=1 
The value of the parameters vector ϕ that minimizes the above cost function is computed 
sequentially from the adaptation algorithm given below3:  
 
φ̂ (t) =φ̂  (t-1) + P(t-2) ψ(t-1)[ ψ(t-1)TP(t-2) ψ(t-1)+R]-1[F(t)-ψ(t-1)Tφ̂  (t-1)]  (6) 
 
P(t-1)= P(t-2)P(t-2) ψ(t-1)[ ψ(t-1)TP(t-2) ψ(t-1)+R]-1[F(t)-ψ(t-1)TP(t-2)]   (7) 
 
Where P(-1) = P0 and R are positive definite matrices, P0 is the initial estimate that can be 
interpreted as a measure of confidence and R is a weighting matrix for past errors. Generating 
the matrix ψ in estimation algorithm requires the knowledge of the joint position q, joint 
velocity q& , and joint acceleration q&& . A characteristic feature of the adaptive mechanism is that 
the control objective will be attained only after the adaptation period elapses. During the 
adaptation period, which constitutes the learning phase of the system, the manipulator motion 
may deviate significantly from the desired trajectory. At the end of the learning process, 
however, the system performance will meet the specification until the identified parameters 
change. 
  
IV. An Illustrated Example 
 
In this section, we demonstrate the development of the paper through a simple two-dimensional 
example. We concentrate on the planar polar manipulator shown in Figure 2 with joint 
coordinates (θ, r). We assume that the motion occurs on a plane perpendicular to the gravity field 
and ignore gravitational and frictional effects. 
 
The dynamic model for this robot can be written as in (1): 
 
F1(t)   J+mr2-mRr 0 d2θ/dt2   2mrdr/dt dθ/dt – mRdr/tddθ/dt    
F2(t) =                +              (8) 
           0         m d2r/dt2       -mr (dθ/dt)2 + 1/2mR (dθ/dt)2 
 
where J is the inertia of the rotational link with respect to z-axis; m is the mass of the 
translational link; mR is the first moment of the translational link with respect to the z-axis. By 
defining the parameter vector as: 

ϕ = [J, m, mR]T     (9) 
  

we can rewrite the equations-of-motion in (8) as in (4): 
 
F1(t)    d2θ/dt2     r2 d2θ/dt2 +2rdr/dtdθ/dt   -rd2θ/dt2-dr/dtdθ/dt   J      
F2(t) =                             m     (10) 
               0         d2r/dt2-r(dθ/dt)2       1/2(dθ/dt)2  mR 
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Figure 1. Adaptive Algorithm Block Diagram 
 
 
 
 

 
 
 

Figure 2. Two-joint Planar Robot 
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We implemented the adaptation mechanism with P(t) = Po = R = I for a fifth-order polynomial 
trajectory sampled at 5 ms. In Table 1, we highlight the initial, final, and true values of the 
dynamics parameters after 20 recursive steps. The robustness of our procedure is clearly 
observed from the fact that the algorithm converged in spite of large initial errors. 
 
Table 1. Simulation Results 
 
parameter Initial Value Final Value True Value 
J(kg-m2) 1.0 1.7523 1.75 
m(kg) 1.0 2.4988 2.5 
MR(kg.m) 1.0 1.4879 1.5 
 
5. Results 
 
Model-based robot control is sensitive to modeling and parameter errors. We developed a 
solution to this problem by augmenting the standard controller with an adaptation mechanism. 
The proposed design incorporates an on-line identifier to eliminate parameter errors and 
individual joint controllers to compensate for unmodeled dynamics. Our approach is particularly 
appealing because it retains the basic structure of model-based robot control. 
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