
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Session 1520

Building A Web Based System for Automated
Grading of Computer Modeling Assignments.

Bob Fithen

Arkansas Tech University

Abstract

Arkansas Tech University like most Engineering programs requires a computer
programming and application course. One major challenge in handling such a course is
reflected in the grading methodologies for the assignments. Simple and loosely specified
assignments by the professor lead to unorganized responses by a majority of students. In
contrast, highly specific problem statements give the professor the flexibility to use these
specifications to determine the grade on a particular assignment. The major problem with
this approach is twofold. First, the professor must write a detailed specification for each
assignment. Second, the professor must carefully assess each assignment to determine if
in fact the student satisfied the given specifications. The second item requires the most
time and effort. Traditionally students simply handed in printouts of their computer
codes, outputs and some descriptive comments. As a result of the written presentation
skills of some students, large amounts of time is required to determine if the given
specifications were actually met. In response to this issue the author has written a
dynamic web based system that automatically grades each homework assignment. Each
assignment will be grade entirely based on meeting the given specifications. For each
assignment a grading code must be written which meticulously checks each submission
for correctness. Since each assignment may have multiple specifications, partial credit is
possible for those multi-part assignments. When each student submits his or her
assignment the code is stored in a predetermined location on the web-server and the
grading code is automatically launched. The student is given immediate feedback through
a set of diagnostic messages. In addition the student’s grade for each assignment is
immediately stored on the web-server and the student may check his or her grade on their
own individual web page.

1. Introduction

This paper describes a web-based system built by the author that accepts, grades, and
tracks student’s progress through an engineering based computer-modeling course. This
computer-modeling course uses Matlab as is central programming language.

P
age 6.248.1

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Traditionally students are given assignments consisting of problem statements, code
requirements and presentation specifications. Upon completing these assignments the
professor is left with the task of determining if the algorithm itself is correct. In addition
the professor must determine if the student has properly understood the engineering
behind the algorithm. The professor can determine the student’s comprehension by
observing written description, plots, data outputs from the assignments, etc. In this “one-
pass assignment collection” method the student must complete an algorithm using Matlab
and use this algorithm to develop plots and write interpretations of his or her results. The
correctness of student’s plot and written descriptions are contingent on writing a correct
algorithm. Students tend to concentrate on either the algorithm itself or the interpretation
of the results. However, concentrating on the results produced from an incorrect
algorithm will yield the entire assignment incorrect. For this reason, the author began a
project which grades the algorithm prior to any interpretations written by the student. In
essence, this approach can be thought of as a “two-pass assignment collection” method.

2. System Description

The “two-pass assignment collection” method is very well suited to web development.
The first pass has as its focal point, algorithm development. The process begins by
students reading a web page containing a complete specification of the algorithm. The
web page also contains a form available for students to submit their algorithms. Upon
submittal of their Matlab program, a perl1,2 script on the web server will take in and save
their submission. This perl script will then launch a shell script, which in turn will launch
Matlab. The Matlab code will load a grading script calling the students submission as a
subroutine and test their routine against the given specifications. After completing this
process a grade associated with the algorithm development is recorded and available for
inspection by the student. Part of a typical web page specification is shown in figure 1.

Figure 1. Graphic problem statement.

P
age 6.248.2

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Figure 2. Written problem specification.

This figure contains a picture associated with the assignment. The actual problem
statement with specification is shown in figure 2.

The “two-pass assignment collection” method allows the student to concentrate first on
meeting the algorithm goals of the assignment. This process also relieves the professor
from the tedious task of determining whether the student accomplished the algorithm
correctly. Once the algorithm goal has been met, the student may progress with full
knowledge that his or her Matlab program is correct. This confidence will allow student
to concentrate on the results given by their Matlab code. Students will alter input data in
order to observe how particular output variables change. This process will allow student
to learn the physics behind the each example.

3. Web Server Description

The web system is developed around a Linux Mandrake system. However, the web
system was an additional component using OpenSSL3 and SSLmod4 operating under the
Apache5 web server. All three software packages are available freely on the web. This
secure system was used primarily for protection of the student as well as protection of the

P
age 6.248.3

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

professor’s course material. Around this web server the entire system works within the
context of the perl programming language and Microsoft’s FrontPage. Once a professor
develops a FrontPage web, the directory structure is stored in a location on the Linux
machine not directly accessible by the web server. All files and directories contained
within the FrontPage web must be readable by “nobody” since all web based cgi codes
are run as user “nobody”. Students enter the web system by visiting the web page shown
in figure 3. Notice the lock, , at the bottom of this web page. This symbol indicates a
secure connection between the web browser and the web server thereby minimizing the
possibility of intrusion into the communication.

Figure 3. Secure web page login.

Upon entering the correct User Name, Password, and course number a perl code is
executed on the server when the submit button is hit. This perl code will attempt to set
three per-session cookies available for retrieval in the directory https://mengr.atu.edu/cgi-
bin/Web_Testing/ . These three cookies are username, engineering course number and an
encrypted version of the password. The password is encrypted via the crypt command.
These three cookies will allow the user to maneuver around within the web site without
reentering their information. These cookies will expire upon closing the browser; hence
no one can access the system by re-launching the browser and searching through the
history. After entering the correct information the browser is redirected to the main
location as shown in figure 4.

P
age 6.248.4

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Figure 4. Introduction screen.

Five major areas are available to the student as shown in Figure 4. The “Homework”
section contains all the homework assigned to the student during the course including
locations to submit each assignment. The “Exams” area contains all exams given
throughout the course including on-line as well as paper exams in pdf format. The
“Projects” area contains a location for large homework problems. This section was not
used during the Fall 2000 semester. The “Grades” area contains a dynamic page, listing
grades for the student. When processing this page the perl program will replace a
predefined text screen with the grade for that assignment. An example of the “Grades”
page is shown in Figure 5. All pages are processed through a perl program
“Process_Page.cgi”. This perl program is capable of delivering html, images, and pdf
formatted pages.

 P

age 6.248.5

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Figure 5. Grade section of the web system.

4. Students Data

One key to success of the system is its ability to reduce the bookkeeping required by the
professor. To this end, each student is given his or her own location in the directory
structure. This location will be class dependent and therefore the top-level directory will
be, for example, system_root/ENGR3003. Users directories will be located in, for
example, system_root/ENGR3003/LASTNAME.FIRSTNAME. In each students directory is a
complete list of past submissions, grades, session id index, password, a specialized
message tailored for each student, and a log file containing information about each login.
In addition a directory in the structure contains the solution and a grading code for each
assignment. One of the most powerful features of this system is its ability to give partial
credit for subtask within the specifications, figure 1. In the example shown in figure 1,
each numbered item 1 through 5 carries a different number of points and is graded
individually. This allows the professor to divide the task into subparts for the student.

P
age 6.248.6

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

5. Experiences

The author began writing this web-based system on September 1, 2000. This in itself was
a challenge primarily due to students submitting assignments within a few minutes after
the author completed the grading code. With the exception of a few insignificant
problems, the system performed very well. These minor problems were primarily due to
the grading code being written too stringent. One example of this case involved the
solution of two simultaneous second order differential equations that simulate a low pass
filter. A transient response is required for time between zero and 0.02 seconds. The
author wrote a grading code that compared a cubic spline fit between the correct solution
and the student’s submission. By setting the difference between these two functions to
stringent the web-system returned, to the student, an error when in fact their code was
passable. Because of a quick correction, this problem remained on the system only a few
hours. One other problem involved the ability of students to submit endless loops. This
problem was handled by writing a perl program that constantly check the status of any
Matlab process run by user “nobody”. When these process run beyond a predefined time
the perl code will “kill” this process.

Student’s response to the system has been very favorable. Items in favor include; the
ability to submit their assignment over and over without penalty; the immediate feedback
from the web by posting the grades; The ability to submit assignments 24 hours a day 7
days a week. Negatives include, insufficient diagnostic messages during a failed attempt
at submitting.

6. Conclusions

This paper described a web-based system built by the author that accepts, grades, and
tracks student’s progress through a computer-modeling course. The computer-modeling
course uses Matlab as is central programming language. For this reason the major focus
of this effort is the implementation and testing of a system which takes in students
homework assignments through a web page, grades their assignments and records their
grades in a web based grade book. In order to protect the student’s privacy as well as the
privacy of the course content, the web pages are delivered through a secure connection.
Through this secure web page, the author has written a server-based application interface
using the Perl language. Through this interface the students are required to enter a
username and password to enter the site, thereby limiting access to the site to the intended
audience. Upon entering the site students can observe their grades, submit homework
assignments, submit projects, and take exams. The web-server runs Linux with Apache as
its web server. Apache is configured to operate on port 443 using Secure Socket Layer
(SSL) as it communication pipe. At the core of the entire web system is a Linux version
of Matlab. When students submit an assignment through the web, the Perl interface will
save their submission as a file and launch Matlab. Matlab is instructed to run a grading
script that in turn will call their routine. The grading script is written in Matlab script by
the professor and will grade the student’s submission based on the given set of software
specifications known to the student. Since the specification may include more that one
item, partial credit can be given on any assignment.

P
age 6.248.7

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2001, American Society for Engineering Education

Acknowledgments

The author wish to thank NSF for supporting this project under NSF project #9952284

Bibliography

1. Clinton Pierce, Teach Yourself Perl in 24 Hours, SAMS, 1999.
2. Larry Wall, Tom Christianson and Jon Orwant, Programming Perl, 3rd edition, OReilly
3. Open SSL Web Site: http://www.openssl.org
4. ModSSL Web Site: http://www.modssl.org
5. Apache Web Site: http://www.apache.org

BOB FITHEN
Bob Fithen is an assistant professor at Arkansas Tech University. He received his B.S. in Mechanical
Engineering from Louisiana Tech University, M.S. in Mechanical Engineering from Texas A&M
University, and his PhD in Engineering Mechanics from Virginia Tech University. He spent four years
working at General Dynamics, Fort Worth and a total of five years working in the research division of
Wright Laboratories in Dayton, Ohio. Further information may be obtained at http://mengr.atu.edu

P
age 6.248.8

