
2006-1557: UNFOLDING THE WINGS OF THE BUTTERFLY: AN ALTERNATIVE
EXPLANATION FOR FFTS

Kathleen Ossman, University of Cincinnati
Dr. Kathleen Ossman is an assistant professor in the Electrical and Computer Engineering
Technology Department at the University of Cincinnati. She received a BSEE and MSEE from
Georgia Tech in 1982 and a Ph.D. from the University of Florida in 1986. Her interests include
feedback control systems and digital signal processing.

© American Society for Engineering Education, 2006

P
age 11.1365.1

N − 1

Unfolding the Wings of the Butterfly:

An Alternative Explanation for FFTs

Abstract

This paper discusses an approach to teaching Fast Fourier Transforms (FFTs) to engineering

technology students using a set of graphics that not only illustrates how the FFT algorithm works

but also gives students an idea of how an FFT algorithm might be programmed.

Introduction

One of the most difficult topics to teach in an introductory course in Digital Signal Processing is

Fast Fourier Transforms (FFTs) which are simply efficient algorithms for computing Discrete

Fourier Transforms (DFTs) in real-time. Most textbooks
1-6
 begin with an explanation of how the

data points are divided into specific pairs followed by a set of complicated “subscript heavy” re-

combining equations used to calculate larger FFTs from the smaller subset FFTs. These

equations are typically followed with a Butterfly diagram designed to help visualize an FFT

algorithm. The Butterfly diagram illustrates the progression of the re-ordered data through a

series of interwoven multiply and add operations to reach the final FFT. In this paper, a quick

summary of the traditional textbook approach to FFTs will be presented followed by a handout

developed by the author to make the process easier for students to visualize.

Traditional Approach

Most digital signal processing textbooks
2-6
 present some variation of the following set of

equations. An FFT algorithm simply breaks a DFT down into several 2-point DFTs by

exploiting the symmetry properties of the twiddle factors: WN = e
 – j2π / N =cos(2π/N) – j

sin(2π/N).

XDFT(k) = Σ x(n) (WN)
nk
 = Σ x(2n) (WN)

2nk
 + Σ x(2n+1) (WN)

(2n+1)k

 Even Indices Odd Indices

XDFT(k) =

 Σ x(2n) (WN/2)

nk
 + (WN)

k Σ x(2n+1) (WN/2)
nk
 = Two N/2-point DFTs

n=0 n=0 n=0

N/2 − 1 N/2 − 1

 n=0 n=0

N/2 − 1 N/2 − 1

P
age 11.1365.2

Using the even samples [x(0), x(2), … x(N-2)], compute an N/2-point DFT → X
even
(k)

Using the odd samples [x(1), x(3), … x(N – 1)], compute an N/2-point DFT → X
odd
(k)

For Recombining:

 XDFT(k) = X
even
(k) + (WN)

k
 X

odd
(k) k = 0, 1, … , N/2−1

XDFT(k + N/2) = X
even
(k) − (WN)

k
 X

odd
(k) k = 0, 1, … , N/2−1

Use same procedure to break each N/2-point DFT in half ⇒ Four N/4-point DFTs.

Continue the procedure until problem has been reduced to a set of 2-point DFTs.

These equations are accompanied by an explanation of how input data is broken down to allow

pair by pair or 2-point DFTs which are recombined to form larger DFTs. The most commonly

used visual tool is the Butterfly Diagram shown below for a 4-point FFT.

I have used this traditional explanation for several years in my digital signal processing courses

for electrical engineering technology students. Students were give an assignment or two which

forced them to trace through the butterfly diagram and compute an 8-point DFT by hand. Even

with this assignment, it was clear that they were not getting a good grasp of the concept of an

FFT as an efficient computing method for DFTs. They were overwhelmed by the complicated

mathematical equations and lost in the maze of the butterfly diagram.

Illustrative Handout

In spring 2005, I delivered my traditional lecture of FFTs and once again observed total

confusion in the faces of my students. The next lecture period, I distributed a handout which was

developed to give the students a more visual explanation of the process. The difference between

this lecture and the previous one was amazing: my students were totally engaged, asked lots of

questions, and commented very positively on the handout. They were easily able to visualize the

extension to a 16-point or higher FFT. I was really pleased when two students had enough

confidence in their comprehension of the material to point out a couple of errors in my equation

blocks (which by the way were corrected for this paper). Before presenting the handout, a few

comments are in order. Although the handout does give students a sense of memory allocation

and computational requirements, it is not meant to be a flow chart for programming an FFT. The

sole purpose is to give students a visual picture of the break down and recombining process in an

FFT along with an understanding of the weighting factors.

x1

(W4)
0

x2

(W4)
0
 (W4)

0

(W4)
1

X[3]

X[1]

X[2]

X[0]

x3

x0

P
age 11.1365.3

n=0

 3

n=0

 3

FFTs: An Efficient Method for Computing DFTs
(32-ELTN-487)

4-PT DFT

DFT XDFT(k) = Σ x(n)e
−j2πnk/4

 = Σ x(n) (WN)
nk

k = 0,1,2,3

[XDFT(0) XDFT(1) XDFT(2) XDFT(3)] = [x(0) x(1) x(2) x(3)] (W4)
0
 (W4)

0
 (W4)

0
 (W4)

0

 (W4)
0
 (W4)

1
 (W4)

2
 (W4)

3

 (W4)
0
 (W4)

2
 (W4)

4
 (W4)

6

 (W4)
0
 (W4)

3
 (W4)

6
 (W4)

9

[XDFT(0) XDFT(1) XDFT(2) XDFT(3)] = [x(0) x(1) x(2) x(3)] 1 1 1 1

 1 -j -1

 j

 1 -1 1

 -1

 1 j -1 -j

Programming a direct 4-Point DFT

Memory Allocation:

• 1 4-element data buffer for input

• 1 4x4 Array of Weights

Processing:

XDFT(0) = Data Buffer times 1
st
 column of Weight Array (4 multiplies)

XDFT(1) = Data Buffer times 2
nd
 column of Weight Array (4 multiplies)

XDFT(2) = Data Buffer times 3
rd
 column of Weight Array (4 multiplies)

XDFT(3) = Data Buffer times 4
th
 column of Weight Array (4 multiplies)

Total Multiplies = N
2
 = 16

Comment: Obviously, some of the weights are 1 so with some creative programming the number

of multiplies could be reduced.

P
age 11.1365.4

4-PT FFT

Level 1: 2-pt FFTs

Level 2: 4-pt FFT

x(0) + x(2)

x(1) + x(3)

x(0) – x(2)

x(1) – x(3)

[x(0)+x(2)]−1[x(1)+ x(3)]

[x(0)-x(2)]−(-j)[x(1)− x(3)]

Pair 1

Pair 2

Weighted

Adds

Weighted

Subtracts

(W4)
0
= 1

 (W4)
1
 = −j

Weight for

Pair #1

Weight for

Pair #2

[x(0)+x(2)]+1[x(1)+ x(3)]

[x(0)-x(2)]+(-j)[x(1)− x(3)]

Algorithm for Pairs

Multiply 2
nd
 entry in Pair #1

by the weight for Pair #1 then

ADD and SUBTRACT this

product from the 1
st
 entry in

Pair #1.

Repeat for each pair

x(0)

x(2)

x(1)

x(3)

x(1) + x(3)

x(0) – x(2)

x(1) − x(3)

Pair 1

Pair 2

Weighted

Adds

Weighted

Subtracts

(W4)
0
= 1

 (W4)
1
 = −j

Use this

weight for

both pairs

Algorithm for Pairs

Multiply 2
nd
 entry in Pair #1

by the weight for Pair #1 then

ADD and SUBTRACT this

product from the 1
st
 entry in

Pair #1.

Repeat for each pair

x(0) + x(2)

P
age 11.1365.5

n=0

 7

n=0

 7

Programming a 4-Point FFT

Memory Allocation:

• 1 4-element data buffer for input (re-ordered)

• 1 4-element data buffer for intermediate results

• 1 2-element Array of Weights (Need only half due to 180
o
 symmetry)

Processing:

Level 1: Each pair (N/2 of them) requires one multiply (2 multiplies)

Level 2: Each pair (N/2 of them) requires one multiply (2 multiplies)

Total Multiplies = (N/2)*Number of Levels = (N/2)log2(N) = 4

8-PT DFT

DFT XDFT(k) = Σ x(n)e
−j2πnk/8

 = Σ x(n) (WN)
nk

k = 0,1, … 7

Programming a direct 8-Point DFT

Memory Allocation:

• 1 8-element data buffer for input

• 1 8x8 Array of Weights

Processing:

XDFT(0) = Data Buffer times 1
st
 column of Weight Array (8 multiplies)

XDFT(1) = Data Buffer times 2
nd
 column of Weight Array (8 multiplies)

XDFT(2) = Data Buffer times 3
rd
 column of Weight Array (8 multiplies)

XDFT(3) = Data Buffer times 4
th
 column of Weight Array (8 multiplies)

XDFT(4) = Data Buffer times 5
th
 column of Weight Array (8 multiplies)

XDFT(5) = Data Buffer times 6
th
 column of Weight Array (8 multiplies)

XDFT(6) = Data Buffer times 7
th
 column of Weight Array (8 multiplies)

XDFT(7) = Data Buffer times 8
th
 column of Weight Array (8 multiplies)

Total Multiplies = 8
2
 = 64

P
age 11.1365.6

8-PT FFT

Level 1: Four 2-pt FFTs

Use this

weight for all

four pairs

Pair 4

Pair 3

x(0)

x(4)

x(2)

x(6)

x(0) + x(4)

x(2) + x(6)

x(1) + x(5)

x(3) + x(7)

Pair 1

Pair 2

Weighted

Adds

Weighted

Subtracts

(W8)
0
= 1∠ 0ο

 (W8)
1
 = 1∠−45

ο

Algorithm for Pairs

Multiply 2
nd
 entry in Pair #1

by the weight for Pair #1 then

ADD and SUBTRACT this

product from the 1
st
 entry in

Pair #1.

Repeat for each pair

x(1)

x(5)

x(3)

x(7)

x(0) − x(4)

x(2) − x(6)

x(1) − x(5)

x(3) − x(7)

(W8)
2
= 1∠−90ο

(W8)

3
=1∠−135ο

P
age 11.1365.7

Weighted

Subtracts

Level 2: Two 4-pt FFTs

Weighted

Adds

Use this weight for

Pair #1 & #2

Pair 4

Pair 3

[x(0)+x(4)]+1[x(2)+ x(6)]

[x(1)+x(5)]+1[x(3)+ x(7)]

[x(0)-x(4)]+(W8)
2
[x(2)- x(6)]

[x(1)-x(5)]+(W8)
2
[x(3)- x(7)]

Pair 1

Pair 2

(W8)
0
= 1∠ 0ο

 (W8)
1
 = 1∠−45

ο

Algorithm for Pairs

Multiply 2
nd
 entry in Pair #1

by the weight for Pair #1 then

ADD and SUBTRACT this

product from the 1
st
 entry in

Pair #1.

Repeat for each pair

[x(0)+x(4)]−1[x(2)+ x(6)]

[x(1)+x(5)]−1[x(3)+ x(7)]

[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]

[x(1)-x(5)]-(W8)
2
[x(3)- x(7)]

(W8)
2
= 1∠−90ο

(W8)

3
=1∠−135ο

 x(0) + x(4)

x(2) + x(6)

x(1) + x(5)

x(3) + x(7)

x(0) − x(4)

x(2) − x(6)

x(1) − x(5)

x(3) − x(7)

Use this weight

for Pair #3 & #4

P
age 11.1365.8

Weighted

Subtracts

Weighted

Adds

Level 3: One 8-pt FFTs

Weight for Pair #1

Pair 4

Pair 3

{[x(0)+x(4)]+1[x(2)+ x(6)]}+

1{[x(1)+x(5)]+1[x(3)+ x(7)]}

{[x(0)-x(4)]+(W8)
2
[x(2)- x(6)]}+

(W8)
1
{[x(1)-x(5)]+(W8)

2
[x(3)- x(7)]}

{[x(0)+x(4)]−1[x(2)+ x(6)]}+

(W8)
2
{[x(1)+x(5)]−1[x(3)+ x(7)]}

{[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]}+

(W8)
3
{[x(1)-x(5)]-(W8)

2
[x(3)- x(7)]}

Pair 1

Pair 2

(W8)
0
= 1∠ 0ο

 (W8)
1
 = 1∠−45

ο

Algorithm for Pairs

Multiply 2
nd
 entry in Pair #1

by the weight for Pair #1 then

ADD and SUBTRACT this

product from the 1
st
 entry in

Pair #1.

Repeat for each pair

{[x(0)+x(4)]+1[x(2)+ x(6)]}−

1{[x(1)+x(5)]+1[x(3)+ x(7)]}

{[x(0)-x(4)]+(W8)

2
[x(2)- x(6)]}−

(W8)
1
{[x(1)-x(5)]+(W8)

2
[x(3)- x(7)]}

{[x(0)+x(4)]−1[x(2)+ x(6)]}−

(W8)
2
{[x(1)+x(5)]−1[x(3)+ x(7)]}

{[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]}−

(W8)
3
{[x(1)-x(5)]-(W8)

2
[x(3)- x(7)]}

(W8)
2
= 1∠−90ο

(W8)

3
=1∠−135ο

Weight for Pair #3

Weight for Pair #2

Weight for Pair #4

[x(0)+x(4)]+1[x(2)+ x(6)]

[x(1)+x(5)]+1[x(3)+ x(7)]

[x(0)-x(4)]+(W8)
2
[x(2)- x(6)]

[x(1)-x(5)]+(W8)
2
[x(3)- x(7)]

[x(0)+x(4)]−1[x(2)+ x(6)]

[x(1)+x(5)]−1[x(3)+ x(7)]

[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]

[x(1)-x(5)]-(W8)
2
[x(3)- x(7)]

P
age 11.1365.9

Programming an 8-Point FFT

Memory Allocation:

• 1 8-element data buffer for input (re-ordered)

• 1 8-element data buffer for intermediate results

• 1 4-element Array of Weights (Need only half due to 180
o
 symmetry)

Processing:

Level 1: Each pair (N/2 of them) requires one multiply (4 multiplies)

Level 2: Each pair (N/2 of them) requires one multiply (4 multiplies)

Level 3: Each pair (N/2 of them) requires one multiply (4 multiplies)

Total Multiplies = (N/2)*Number of Levels = (N/2)log2(N) = 12

Comments

• This handout is a generic illustration of an FFT algorithm. Actual programming depends

on a number of issues including the type of DSP processor used. For example, the 6711

DSK can do 8 multiplications in a single clock cycle so several pairs of data could be

processed simultaneously.

• Remember that an FFT is simply a computationally efficient method of computing a

Discrete Fourier Transform. An FFT will give the same results as a straight DFT with

significantly fewer multiplications!

Number of Multiplications
N

DFT = N
2
 FFT = (N/2)log2(N)

8 64 12

32 1024 80

256 65,536 1024

512 262,144 2304

Conclusion

Digital signal processing is a challenging course to teach to engineering technology students due

to the level of mathematics involved. Students have access to FFT functions and blocks through

MATLAB and SIMULINK as well as FFT algorithms already developed for the TI DSK

evaluation boards used in lab. They could easily use these tools with little or no understanding

of the FFT algorithm. However, I feel it is important for them to understand the tools they are

using to develop a real appreciation for what DSP is all about: processing signals quickly and

efficiently to achieve some practical objective(s).

P
age 11.1365.10

The traditional textbook approach to teaching FFTs is to present students with a complicated set

of equations showing how data is separated into pairs, processed using a 2-pt FFT, then

recombined with another 2-pt FFT. The pairs of 2-pt FFTs are then processed to create a set of

4-pt FFTs and the process is repeated until one single N-pt FFT has been computed. The

equations are typically followed with a Butterfly diagram used to illustrate the flow of data.

While the idea is easy to convey to engineering technology students, the equations tend to be

overwhelming for most of my students. The handout described in this paper was presented to

my DSP students last year following a lecture using the traditional approach. My students felt

that they understood how an FFT algorithm works much better after seeing the handout. In fact,

I had a couple of typos in the equations on the handout which they were able to catch and correct

convincing me that they were indeed getting it. Using the handout made it much easier to teach

FFT concepts and applications to my engineering technology students.

Bibliography

[1] Digital Signal Processing: A Practical Guide for Engineers and Scientist, by Steven W. Smith, Newnes, 2002.

[2] Signal Processing First, by James McClellan, Ronald Schafer, and Mark Yoder, Prentice Hall, 2003.

[3] Digital Signal Processing: A Practical Approach, by Emmanuel Ifeachor and Barrie Jervis, Prentice Hall, 2002.

[4] Discrete-Time Signal Processing, by Alan V. Oppenheim, Ronald Schafer, John R. Buck, Prentice Hall, 1999.

[5] Analog and Digital Signal Processing, by Ashok Ambardar, Brooks/Cole Publishing Co., 1999.

[6] Digital Signal Processing, by Jack Cartinhour, Prentice Hall, 2000.

P
age 11.1365.11

