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Abstract 

 

This paper discusses an approach to teaching Fast Fourier Transforms (FFTs) to engineering 

technology students using a set of graphics that not only illustrates how the FFT algorithm works 

but also gives students an idea of how an FFT algorithm might be programmed.   

 

Introduction 

 

One of the most difficult topics to teach in an introductory course in Digital Signal Processing is 

Fast Fourier Transforms (FFTs) which are simply efficient algorithms for computing Discrete 

Fourier Transforms (DFTs) in real-time.  Most textbooks
1-6
 begin with an explanation of how the 

data points are divided into specific pairs followed by a set of complicated “subscript heavy” re-

combining equations used to calculate larger FFTs from the smaller subset FFTs.  These 

equations are typically followed with a Butterfly diagram designed to help visualize an FFT 

algorithm.  The Butterfly diagram illustrates the progression of the re-ordered data through a 

series of interwoven multiply and add operations to reach the final FFT.  In this paper, a quick 

summary of the traditional textbook approach to FFTs will be presented followed by a handout 

developed by the author to make the process easier for students to visualize.   

 

Traditional Approach 

 

Most digital signal processing textbooks
2-6
 present some variation of the following set of 

equations.  An FFT algorithm simply breaks a DFT down into several 2-point DFTs by 

exploiting the symmetry properties of the twiddle factors:  WN = e
 – j2π / N =cos(2π/N) – j 

sin(2π/N). 

 

 

XDFT(k) =  Σ x(n) (WN)
nk 
 =  Σ x(2n) (WN)

2nk
  +  Σ x(2n+1) (WN)

(2n+1)k
 

  
 

           Even Indices              Odd Indices
 

 

 

XDFT(k) =  
 
   Σ x(2n) (WN/2)

nk
  +  (WN)

k Σ x(2n+1) (WN/2)
nk
  = Two N/2-point DFTs 

  

 

n=0  n=0 n=0 

N/2 − 1 N/2 − 1 

 n=0 n=0 

N/2 − 1 N/2 − 1 
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Using the even samples [x(0), x(2), … x(N-2)], compute an N/2-point DFT → X
even
(k) 

Using the odd samples [x(1), x(3), … x(N – 1)], compute an N/2-point DFT → X
odd
(k) 

 

For Recombining: 

 

      XDFT(k)      =  X
even
(k) + (WN)

k
 X

odd
(k)        k = 0, 1, … , N/2−1 

XDFT(k + N/2)  =  X
even
(k) − (WN)

k
 X

odd
(k)        k = 0, 1, … , N/2−1 

 

Use same procedure to break each N/2-point DFT in half  ⇒  Four N/4-point DFTs. 

Continue the procedure until problem has been reduced to a set of 2-point DFTs. 

 

These equations are accompanied by an explanation of how input data is broken down to allow 

pair by pair or 2-point DFTs which are recombined to form larger DFTs.  The most commonly 

used visual tool is the Butterfly Diagram shown below for a 4-point FFT.   

 
I have used this traditional explanation for several years in my digital signal processing courses 

for electrical engineering technology students.  Students were give an assignment or two which 

forced them to trace through the butterfly diagram and compute an 8-point DFT by hand.  Even 

with this assignment, it was clear that they were not getting a good grasp of the concept of an 

FFT as an efficient computing method for DFTs.  They were overwhelmed by the complicated 

mathematical equations and lost in the maze of the butterfly diagram. 

 

Illustrative Handout 

 

In spring 2005, I delivered my traditional lecture of FFTs and once again observed total 

confusion in the faces of my students.  The next lecture period, I distributed a handout which was 

developed to give the students a more visual explanation of the process.  The difference between 

this lecture and the previous one was amazing:  my students were totally engaged, asked lots of 

questions, and commented very positively on the handout.  They were easily able to visualize the 

extension to a 16-point or higher FFT.  I was really pleased when two students had enough 

confidence in their comprehension of the material to point out a couple of errors in my equation 

blocks (which by the way were corrected for this paper). Before presenting the handout, a few 

comments are in order.  Although the handout does give students a sense of memory allocation 

and computational requirements, it is not meant to be a flow chart for programming an FFT.  The 

sole purpose is to give students a visual picture of the break down and recombining process in an 

FFT along with an understanding of the weighting factors.     
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n=0 

  3 

n=0 

 3 

 

FFTs:  An Efficient Method for Computing DFTs 
(32-ELTN-487) 

 
 

4-PT DFT 
 

DFT     XDFT(k) = Σ x(n)e
−j2πnk/4

  =   Σ x(n) (WN)
nk             

k = 0,1,2,3 

 

 

 

[XDFT(0) XDFT(1) XDFT(2) XDFT(3)] =  [x(0) x(1) x(2) x(3)]     (W4)
0
      (W4)

0
     (W4)

0
     (W4)

0
  

                     (W4)
0
      (W4)

1
     (W4)

2    
   (W4)

3 

                       (W4)
0
      (W4)

2
     (W4)

4 
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                                                                                                  (W4)
0
      (W4)
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      (W4)
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[XDFT(0) XDFT(1) XDFT(2) XDFT(3)] =  [x(0) x(1) x(2) x(3)]     1       1      1      1  

                     1       -j     -1
    
   j

 

                       1      -1      1
 
    -1    

                                                                                                  1        j     -1     -j 
 

 

 

 

Programming a direct 4-Point DFT 

 

Memory Allocation:   

 

• 1 4-element data buffer for input 

• 1 4x4 Array of Weights 

 

Processing: 

 

XDFT(0) = Data Buffer times 1
st
 column of Weight Array    (4 multiplies) 

XDFT(1) = Data Buffer times 2
nd
 column of Weight Array    (4 multiplies) 

XDFT(2) = Data Buffer times 3
rd
 column of Weight Array    (4 multiplies) 

XDFT(3) = Data Buffer times 4
th
 column of Weight Array    (4 multiplies) 

 

 

Total Multiplies = N
2
 = 16 

 

Comment:  Obviously, some of the weights are 1 so with some creative programming the number 

of multiplies could be reduced. 
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4-PT FFT 
 

 

Level 1:  2-pt FFTs 

 

Level 2:  4-pt FFT 

 

x(0) + x(2) 

x(1) + x(3) 

x(0) – x(2) 

x(1) – x(3) 

[x(0)+x(2)]−1[x(1)+ x(3)] 

 

[x(0)-x(2)]−(-j)[x(1)− x(3)] 

 

Pair 1 

Pair 2 

Weighted 

Adds 

Weighted 

Subtracts 

(W4)
0 
= 1      

 (W4)
1
 = −j     

Weight for 

Pair #1  

Weight for 

Pair #2 

[x(0)+x(2)]+1[x(1)+ x(3)] 

[x(0)-x(2)]+(-j)[x(1)− x(3)] 

 

Algorithm for Pairs 

 

Multiply 2
nd
 entry in Pair #1 

by the weight for Pair #1 then 

ADD and SUBTRACT this 

product from the 1
st
 entry in 

Pair #1.  

 

Repeat for each pair 

 

x(0) 

x(2) 

x(1) 

x(3) 

x(1) + x(3)  

x(0) – x(2) 

x(1) − x(3) 

Pair 1 

Pair 2 

Weighted 

Adds 

Weighted 

Subtracts 

(W4)
0 
= 1      

 (W4)
1
 = −j     

Use this 

weight for 

both pairs 

Algorithm for Pairs 

 

Multiply 2
nd
 entry in Pair #1 

by the weight for Pair #1 then 

ADD and SUBTRACT this 

product from the 1
st
 entry in 

Pair #1.  

 

Repeat for each pair 

x(0) + x(2) 
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n=0 

  7 

n=0 

 7 

Programming a 4-Point FFT 

 

Memory Allocation:   

 

• 1 4-element data buffer for input (re-ordered) 

• 1 4-element data buffer for intermediate results  

• 1 2-element Array of Weights (Need only half due to 180
o
 symmetry) 

 

Processing: 

 

Level 1:  Each pair (N/2 of them) requires one multiply (2 multiplies) 

Level 2:  Each pair (N/2 of them) requires one multiply (2 multiplies) 

 

Total Multiplies = (N/2)*Number of Levels = (N/2)log2(N) = 4 

 

 

 

 

8-PT DFT 
 

 

DFT     XDFT(k) = Σ x(n)e
−j2πnk/8

  =   Σ x(n) (WN)
nk             

k = 0,1, … 7 

 

 

Programming a direct 8-Point DFT 

 

Memory Allocation:   

 

• 1 8-element data buffer for input 

• 1 8x8 Array of Weights 

 

Processing: 

 

XDFT(0) = Data Buffer times 1
st
 column of Weight Array    (8 multiplies) 

XDFT(1) = Data Buffer times 2
nd
 column of Weight Array    (8 multiplies) 

XDFT(2) = Data Buffer times 3
rd
 column of Weight Array    (8 multiplies) 

XDFT(3) = Data Buffer times 4
th
 column of Weight Array    (8 multiplies) 

XDFT(4) = Data Buffer times 5
th
 column of Weight Array    (8 multiplies) 

XDFT(5) = Data Buffer times 6
th
 column of Weight Array    (8 multiplies) 

XDFT(6) = Data Buffer times 7
th
 column of Weight Array    (8 multiplies) 

XDFT(7) = Data Buffer times 8
th
 column of Weight Array    (8 multiplies) 

 

 

Total Multiplies = 8
2
 = 64 
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8-PT FFT 
 

 

 

Level 1:  Four 2-pt FFTs 

 

 

 
 

 

Use this 

weight for all 

four pairs 

Pair 4 

Pair 3 

x(0) 

x(4) 

x(2) 

x(6) 

x(0) + x(4) 

x(2) + x(6)  

x(1) + x(5) 

x(3) + x(7) 

Pair 1 

Pair 2 

Weighted 

Adds 

Weighted 

Subtracts 

(W8)
0 
= 1∠ 0ο      

 (W8)
1
 = 1∠−45

ο
     

Algorithm for Pairs 

 

Multiply 2
nd
 entry in Pair #1 

by the weight for Pair #1 then 

ADD and SUBTRACT this 

product from the 1
st
 entry in 

Pair #1.  

 

Repeat for each pair 

x(1) 

 
x(5) 

 
x(3) 

 
x(7) 

 

x(0) − x(4) 

 
x(2) − x(6) 

 
x(1) − x(5) 

 
x(3) − x(7) 

 

(W8)
2
= 1∠−90ο    

 
(W8)

3
=1∠−135ο   
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Weighted  

Subtracts 

Level 2:  Two 4-pt FFTs 

 

 

 

 
 
 
 
 

Weighted 

Adds 

Use this weight for 

Pair #1 & #2 

Pair 4 

Pair 3 

[x(0)+x(4)]+1[x(2)+ x(6)] 

 

[x(1)+x(5)]+1[x(3)+ x(7)] 

 

[x(0)-x(4)]+(W8)
2
[x(2)- x(6)] 

 

[x(1)-x(5)]+(W8)
2
[x(3)- x(7)] 

 

Pair 1 

Pair 2 

(W8)
0 
= 1∠ 0ο      

 (W8)
1
 = 1∠−45

ο
     

Algorithm for Pairs 

 

Multiply 2
nd
 entry in Pair #1 

by the weight for Pair #1 then 

ADD and SUBTRACT this 

product from the 1
st
 entry in 

Pair #1.  

 

Repeat for each pair 

[x(0)+x(4)]−1[x(2)+ x(6)] 

 

[x(1)+x(5)]−1[x(3)+ x(7)] 

 
[x(0)-x(4)]-(W8)

2
[x(2)- x(6)] 

 

[x(1)-x(5)]-(W8)
2
[x(3)- x(7)] 

 

(W8)
2
= 1∠−90ο    

 
(W8)

3
=1∠−135ο   

 x(0) + x(4) 

x(2) + x(6)  

x(1) + x(5) 

x(3) + x(7) 

x(0) − x(4) 

 
x(2) − x(6) 

 
x(1) − x(5) 

 
x(3) − x(7) 

 

Use this weight 

for Pair #3 & #4 
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Weighted  

Subtracts 

Weighted 

Adds 

Level 3:  One 8-pt FFTs 

 

 

 

 
 
 
 

Weight for Pair #1 

Pair 4 

Pair 3 

{[x(0)+x(4)]+1[x(2)+ x(6)]}+ 

1{[x(1)+x(5)]+1[x(3)+ x(7)]} 
 

{[x(0)-x(4)]+(W8)
2
[x(2)- x(6)]}+ 

(W8)
1
{[x(1)-x(5)]+(W8)

2
[x(3)- x(7)]} 

 

{[x(0)+x(4)]−1[x(2)+ x(6)]}+ 

(W8)
2
{[x(1)+x(5)]−1[x(3)+ x(7)]} 

 
{[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]}+ 

(W8)
3
{[x(1)-x(5)]-(W8)

2
[x(3)- x(7)]} 

 

Pair 1 

Pair 2 

(W8)
0 
= 1∠ 0ο      

 (W8)
1
 = 1∠−45

ο
     

Algorithm for Pairs 

 

Multiply 2
nd
 entry in Pair #1 

by the weight for Pair #1 then 

ADD and SUBTRACT this 

product from the 1
st
 entry in 

Pair #1.  

 

Repeat for each pair 

{[x(0)+x(4)]+1[x(2)+ x(6)]}− 

1{[x(1)+x(5)]+1[x(3)+ x(7)]} 

 
{[x(0)-x(4)]+(W8)

2
[x(2)- x(6)]}− 

(W8)
1
{[x(1)-x(5)]+(W8)

2
[x(3)- x(7)]} 

 
{[x(0)+x(4)]−1[x(2)+ x(6)]}− 

(W8)
2
{[x(1)+x(5)]−1[x(3)+ x(7)]} 

 
{[x(0)-x(4)]-(W8)

2
[x(2)- x(6)]}− 

(W8)
3
{[x(1)-x(5)]-(W8)

2
[x(3)- x(7)]} 

 

(W8)
2
= 1∠−90ο    

 
(W8)

3
=1∠−135ο   

 

Weight for Pair #3 
 

Weight for Pair #2 

Weight for Pair #4 

[x(0)+x(4)]+1[x(2)+ x(6)] 

 

[x(1)+x(5)]+1[x(3)+ x(7)] 

 

[x(0)-x(4)]+(W8)
2
[x(2)- x(6)] 

 

[x(1)-x(5)]+(W8)
2
[x(3)- x(7)] 

 

[x(0)+x(4)]−1[x(2)+ x(6)] 

 

[x(1)+x(5)]−1[x(3)+ x(7)] 

 
[x(0)-x(4)]-(W8)

2
[x(2)- x(6)] 

 

[x(1)-x(5)]-(W8)
2
[x(3)- x(7)] 
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Programming an 8-Point FFT 

 

Memory Allocation:   

 

• 1 8-element data buffer for input (re-ordered) 

• 1 8-element data buffer for intermediate results  

• 1 4-element Array of Weights (Need only half due to 180
o
 symmetry) 

 

Processing: 

 

Level 1:  Each pair (N/2 of them) requires one multiply (4 multiplies) 

Level 2:  Each pair (N/2 of them) requires one multiply (4 multiplies) 

Level 3:  Each pair (N/2 of them) requires one multiply (4 multiplies) 

 

Total Multiplies = (N/2)*Number of Levels = (N/2)log2(N) = 12 

 

Comments 

 

• This handout is a generic illustration of an FFT algorithm.  Actual programming depends 

on a number of issues including the type of DSP processor used.  For example, the 6711 

DSK can do 8 multiplications in a single clock cycle so several pairs of data could be 

processed simultaneously. 

 

• Remember that an FFT is simply a computationally efficient method of computing a 

Discrete Fourier Transform.  An FFT will give the same results as a straight DFT with 

significantly fewer multiplications! 

 

Number of Multiplications 
N 

DFT = N
2
 FFT = (N/2)log2(N) 

8 64 12 

32 1024 80 

256 65,536 1024 

512 262,144 2304 

 

 

 

Conclusion 

 

Digital signal processing is a challenging course to teach to engineering technology students due 

to the level of mathematics involved.  Students have access to FFT functions and blocks through 

MATLAB and SIMULINK as well as FFT algorithms already developed for the TI DSK 

evaluation boards used in lab.  They could easily use these tools with little or no understanding 

of the FFT algorithm.  However, I feel it is important for them to understand the tools they are 

using to develop a real appreciation for what DSP is all about: processing signals quickly and 

efficiently to achieve some practical objective(s).  
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The traditional textbook approach to teaching FFTs is to present students with a complicated set 

of equations showing how data is separated into pairs, processed using a 2-pt FFT, then 

recombined with another 2-pt FFT.  The pairs of 2-pt FFTs are then processed to create a set of 

4-pt FFTs and the process is repeated until one single N-pt FFT has been computed.  The 

equations are typically followed with a Butterfly diagram used to illustrate the flow of data.  

While the idea is easy to convey to engineering technology students, the equations tend to be 

overwhelming for most of my students.  The handout described in this paper was presented to 

my DSP students last year following a lecture using the traditional approach.  My students felt 

that they understood how an FFT algorithm works much better after seeing the handout.  In fact, 

I had a couple of typos in the equations on the handout which they were able to catch and correct 

convincing me that they were indeed getting it.  Using the handout made it much easier to teach 

FFT concepts and applications to my engineering technology students.         

 

 

 

 

Bibliography 

 
[1]  Digital Signal Processing: A Practical Guide for Engineers and Scientist, by Steven W. Smith, Newnes, 2002. 

 

[2]  Signal Processing First, by James McClellan, Ronald Schafer, and Mark Yoder, Prentice Hall, 2003. 
 

[3]  Digital Signal Processing: A Practical Approach, by Emmanuel Ifeachor and Barrie Jervis, Prentice Hall, 2002. 

 

[4]  Discrete-Time Signal Processing, by Alan V. Oppenheim, Ronald Schafer, John R. Buck, Prentice Hall, 1999. 

 

[5]  Analog and Digital Signal Processing, by Ashok Ambardar, Brooks/Cole Publishing Co., 1999. 

 

[6]  Digital Signal Processing, by Jack Cartinhour, Prentice Hall, 2000. 
 

 

 

 

 

P
age 11.1365.11


