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Abstract 
 

Recent innovations in the animation of student developed, laboratory simulations have been 
found to significantly improve student understanding and enthusiasm.  This animation can 
be implemented using Matlab s-functions that are typically called from a Simulink 
simulation.  These rudimentary animations have been found to be relatively easy to 
construct and well received by students.  General observations and recommendations are 
developed from specific examples, hints, and experiences.  Runtime animation has been 
found to be a valuable complement to the existing capability to visually construct the 
simulation model.  S-function animations have been found to be composed of two primary 
elements: reusable interface/initialization Aboilerplate@ and animation specific graphics.  
To date, animations have been developed solely as part of faculty course preparation.  
These animations have been found to efficiently leverage Matlab=s high level programming 
features to provide an effective teaching tool. 
 
1. Introduction 
 
Animation has become a valuable visualization tool for teaching computer simulation of 
dynamic systems.  Engineering education literature is replete with animation examples 
utilizing various programming environments for a variety of physical systems1,2,3,4.  
Although numerous, most of these papers are very discipline-specific.  Equally 
bewildering is the choice of animation software which ranges from freely distributed 
packages such as Ansim5 to sophisticated commercial packages such as Altia Design6.  The 
authors have found that simple animations using Matlab s−functions are a very practical 
and effective method for assisting and motivating student Simulink laboratory projects.  
This paper provides a simplified procedure for constructing s−function animations and 
presents a number of examples. 

 
2. Background 
 
The s−function animations, described herein, were supplied to third year System 
Engineering students at the U.S. Naval Academy.  Each animation involves a single 
Simulink animation block that calls a single animation s−function.  The Simulink animation 
block serves as the interface between the student’s Simulink model and the animation.  The 
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animation s−functions are implemented as Matlab m−file scripts that follow examples 
produced by The Mathworks7.  S−function documentation8 and a template file, 
sfuntmpl.m, are included in the Simulink Version 3 software distribution. 
 
3. S-function Basics 
 
Matlab s−functions provide a standard way of creating specialized blocks for use in 
Simulink models.  Figure 1 provides a simplified animation s−function template.  Line 1 
defines the s−function with none of the customary outputs and the following inputs: 

t The current simulation time 
x The state vector – typically not used 
u The input vector – used to define position or state of the animated objects. 
flag An integer value that indicates the task to be performed by the s−function 
str Unused  
ts Unused   
 

1 function generic_anim(t,x,u,flag,ts); 
2 
3 %   Generic animation s-function template. 
4 % All output variables have been suppressed for brevity  
5 % Jenelle Piepmeier & Ed Zivi, December 2000 
6 
7 % Must declare variables that need to be remembered between calls ‘persistent’ 
8 persistent FigAnim 
9 
10 % Initialize, update, or terminate animation depending on value of ‘flag’ 
11 if flag==0,  % Initialize the figure for use with this simulation 
13     animinit('Animation Title'); 
14     [fflag FigAnim] = figflag('Animation Title'); 
15     hold on;  % make changes cumulative 
16  % Set position and size of figure and axes. 
17     %  If desired, add titles and labels. 
18     % Using 'patch' or 'line' commands, draw each object in initial position. 
19    %  Be sure to assign a persistent handle to each object you want to modify in  
20     %  subsequent function calls 
21     
22 elseif flag==2, % Update the properties of the graphics objects 
23    if any(get(0,'Children')==FigAnim),  % check that animation window exists 
24       if strcmp(get(FigAnim,'Name'),'Animation Title'), 
25          set(0,'currentfigure',FigAnim); % make animation window the current window 
26          % Define the position data (X & Y) for each object to be moved. 
27          % Use the 'set' commands to objects and change graphic attributes  
28          drawnow   % updates graphics 
29        end 
30     end 
31     
32 elseif flag==9, % Simulation has terminated  
33     % any final annotation can be added here  
34 end 

Figure 1 – Simplified Animation Template 
 
Animations are usually driven by the s−function inputs t, u, and flag.  Simulink 
automatically provides current simulation time and an initialize, update, or terminate flag.   
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The simulation is driven by the user input, u, defined in the calling Simulink block.  
Animation “memory” is achieved by defining variables to be persistent (see line 8).  
Initialization of the s−function template is accomplished in lines 11 through 20.  The 
animation figure, with a user specified title, is created with animinit.  The pointer to 
the animation figure object is stored in the persistent variable FigAnim in line 14.  
During initialization, polygons and lines can be created to represent the physical system 
that is being simulated by the student.  Every graphic object that will be modified in 
subsequent s−function calls should have a persistent handle.   
 
Lines 22-30 represent the working part of the s−function.  This is the code that animates the 
figure.  The animation is achieved by changing properties such as the ‘Xdata’ and 
‘Ydata’ position of the graphics objects using the set command.  Similarly, altering 
the ‘String’ property can be used to change animation text.  The‘color’ property is 
often used to display either continuous or discrete changes in a parameter.  The command 
drawnow flushes all pending graphics updates. 
 
Lines 32-34 allow for final changes to the animation figure at the end of the simulation. 
 

4. Simple Graphic Objects  
 
This section discusses the specifics of animating graphic objects in a MATLAB figure. The 
objects must first be created during initialization when flag==0.  Changing the attributes 
of these objects during each update (flag==2) creates the animation effect.  The three 
most commonly used Matlab commands are plot, patch,  and  set. 
 
Figure 2 contains a code fragment to draw a simple pendulum with a lumped mass using a 
line and a circular patch object.  This code would be used to initialize the figure and 
pendulum objects.  Lines 1 through 3 define the initial orientation and the geometry of the 
pendulum.  Note that the variables R and massradius should be persistent variables 
since they will be referenced during subsequent s−function calls.  Line 4 positions and 
sizes the figure window while line 5 establishes an engineering coordinate system slightly 
larger than the pendulum.  The set command is used to change the attributes of a graphics 
object pointed to by the first parameter.  The standard format is 
set(H,'PropertyName',PropertyValue)where H is the appropriate graphics 
object handle.  In lines 4 and 5, the function gcf  (get current figure) and gca (get current 
axis) return the desired object handles.  To obtain a uncluttered figure, line 5 sets the axes 
visibility off.  Line 6 uses the plot command to draw a solid blue line from (0,0) to the 
point (R*sin(theta),-R*cos(theta)) and returns the persistent graphics object 
handle, hbar.  Lines 9 through 10 create a small polygon with 13 vertices to represent a 
circular lumped mass at the end of the pendulum.  The patch command accepts x and y 
data for the vertices and returns the persistent handle hmass.  
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1 theta=0; 
2 R=1; 
3   massradius=.12; 
4   set(gcf,'Position',[120,120,350,350]); 
5 set(gca,'visible','off','xlim',[-1.1*R,1.1*R],'ylim',[-1.1*R,1.1*R]) 
6 hbar=plot([0,R*sin(theta)],[0,-R*cos(theta)],'b-'); 
7   hold on 
8   r=0:pi/6:2*pi; 
9   hmass=patch(R*sin(theta)*ones(size(r))+massradius*sin(r),-... 
10  R*cos(theta)*ones(size(r))+massradius*cos(r),'r'); 

Figure 2 – Creating a Graphic Object 
 
In this example, animation is achieved by changing the pendulum’s ‘Xdata’ and ‘Ydata’ 
properties, avoiding the need to redraw the pendulum arm or mass.   Passing the pendulum 
angle, theta, as the user defined input u allows the s−function to compute new hbar and 
hmass positions using the persistent geometry variables R, r, and massradius.  Figure 
3 provides an example code fragment, punctuated by a drawnow command to update the 
display. 
 
theta=u; 
massX=R*sin(theta)*ones(size(r))+massradius*sin(r); 
massY=-R*cos(theta)*ones(size(r))+massradius*cos(r); 
barY = [0 -R*cos(theta)]; 
barX = [0 R*sin(theta)]; 
set(hbar,'Xdata',barX,'Ydata',barY,'linewidth',2); 
set(hmass,'Xdata',massX,'Ydata',massY); 
drawnow; 

Figure 3 – Changing Graphic Object Position 
 
Changing the color of the graphic objects can be used to identify an event or condition.  For 
an animation of a radar antenna servomechanism, the target was defined using a patch 
command.  The target color changed from black to red if the antenna was pointing at the 
target to within 2O± .  This color change indicated when the student’s radar illuminated a 
weaving target.  Figure 4 provides a sample code fragment where the pertinent patch color 
properties are ‘edgecolor’ and ‘facecolor’. 
 
if(abs(error)<2*pi/180) % error less than 2 degrees 
 set(htarget,'edgecolor','k','facecolor','r');  % red 
else 
 set(htarget,'edgecolor','k','facecolor','k');  % black 
end 

Figure 4 – Discrete Graphic Object Color Change 
 
In a missile animation, color was used to indicate proximity.  In Figure 5, the missile 
object gradually changes from green to red as the missile approaches its target.  
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if range > 500,   % faraway => “cold”  (green) 
    colorv = [0 1 0];  % [red green blue] 
else 
    green = range/500;  % close => “hot” (red) 
    red   = 1-green; 
    colorv = [red green 0]; 
end 
set(hmissile,'Color',colorv); % change color 

Figure 5 – Continuous Graphic Object Color Change 
 
Changing its ‘string’ property provides a convenient method to modify displayed text.  In 
Figure 6, missile flight time and range to target is updated each time the s−function is 
called. 
 
range_str = sprintf('Flight time = %6.2f, range = %6.2f', t, new_range); 
set(htext,'string',range_str) 

Figure 6 – Text Annotation Change 
 
In creating an animation, it is often difficult to determine the specific MATLAB property 
name or exact parameter value.  Often, the Matlab Graphics Properties Editor is very 
useful for browsing for the correct property name or value. 
 
5. Missile Example 
 

 
 
          
         Figure – 7  
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Missile Intercept Plots 
6. Conclusion 
 
Of the many different methods to implement simulation animation, basic s−function 
programming has been found to be simple and effective.  Satisfactory animations can be 
achieved as part of a weekly laboratory assignment preparation.  The students have 
become quite fond of these rudimentary animations.  Simulation time visualization 
improves the student’s appreciation of system dynamics and can be a valuable 
troubleshooting tool.   
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