Session 2220

Dynamic System Animation Within a Simulink Laboratory
Environment

Edwin Zivi, Jenelle Armstrong Piepmeier
U.S. Nava Academy

Abstract

Recent innovations in the animation of student devel oped, laboratory s mulations have been
found to significantly improve student understanding and enthusiasm. This animation can
be implemented using Matlab s-functions that are typically called from a Simulink
simulation. These rudimentary animations have been found to be relatively easy to
construct and well received by students. General observations and recommendations are
developed from specific examples, hints, and experiences. Runtime animation has been
found to be a valuable complement to the existing capability to visually construct the
simulation model. S-function animations have been found to be composed of two primary
elements: reusable interface/initialization Aboilerplatel and animation specific graphics.
To date, animations have been developed solely as part of faculty course preparation.
These animations have been found to efficiently leverage Matlabr-s high level programming
features to provide an effective teaching tool.

1. Introduction

Animation has become a valuable visuaization tool for teaching computer ssimulation of
dynamic systems. Engineering education literature is replete with animation examples
utilizing various programming environments for avariety of physical systems™#>*.
Although numerous, most of these papers are very discipline-specific. Equally
bewildering is the choice of animation software which ranges from freely distributed
packages such as AnsinT to sophisticated commercial packages such as Altia Design®. The
authors have found that simple animations using Matlab s- functions are avery practical
and effective method for assisting and motivating student Simulink laboratory projects.
This paper provides a ssimplified procedure for constructing s- function animations and
presents a number of examples.

2. Background

The s- function animations, described herein, were supplied to third year System
Engineering students at the U.S. Naval Academy. Each animation involvesasingle
Simulink animation block that calls a single animation s- function. The Simulink animation
block serves as the interface between the student’ s Simulink model and the animation. The

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

T°/,6€'9 abed

animation s- functions are implemented as Matlab m- file scripts that follow examples
produced by The Mathworks’. S- function documentation® and atemplatefile,
sfunt npl . m areincluded in the Simulink Version 3 software distribution.

3. S-function Basics

Matlab s- functions provide a standard way of creating specialized blocks for usein
Simulink models. Figure 1 provides a simplified animation s- function template. Line 1

defines the s- function with none of the customary outputs and the following inputs:
t The current smulation time
X The state vector — typically not used

u The input vector — used to define position or state of the animated objects.

flag Aninteger value that indicates the task to be performed by the s- function

str Unusd
ts Unusd
1 function generic_aninmt,x,u,flag,ts);
2
3 % Ceneric animation s-function tenplate.
4 % Al output variables have been suppressed for brevity
5 % Jenelle Piepneier & Ed Zivi, Decenber 2000
6
7 % Must declare variables that need to be renenbered between calls ‘persistent’
8 persistent FigAnim
9
10 % lInitialize, update, or term nate ani mati on dependi ng on value of ‘flag’
11 if flag==0, % lnitialize the figure for use with this sinulation
13 animnit(' Animation Title');
14 [fflag FigAnim = figflag(' Animation Title');
15 hol d on; % make changes cunul ative
16 % Set position and size of figure and axes.
17 % If desired, add titles and | abels.
18 % Using 'patch' or 'line' commands, draw each object in initial position.
19 % Be sure to assign a persistent handle to each object you want to modify in
20 % subsequent function calls
21
22 elseif flag==2, % Update the properties of the graphics objects
23 if any(get(0,"' Children')==Fi gAninm, % check that animation w ndow exists
24 if strcrp(get (FigAnim ' Nane'),' Animation Title'),
25 set (0, ' currentfigure',FigAnim,; % nake ani mati on wi ndow the current w ndow
26 % Define the position data (X & Y) for each object to be npved.
27 % Use the 'set' commands to objects and change graphic attributes
28 drawnow % updat es graphics
29 end
30 end
31
32 elseif flag==9, % Si nul ati on has term nated
33 % any final annotation can be added here
34 end

Figure 1 — Simplified Animation Template

Animations are usualy driven by the s- functioninputst, u, andfl ag. Smulink

automatically provides current ssmulation time and an initialize, update, or terminate flag.

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

2'16€'9 abed

The simulation is driven by the user input, u, defined in the calling Simulink block.
Animation “memory” is achieved by defining variables to be persistent (see line 8).
Initialization of the s- function template is accomplished in lines 11 through 20. The
animation figure, with auser specified title, is created with ani mi ni t . The pointer to
the animation figure object is stored in the persistent variable Fi gAni m inline 14.
During initialization, polygons and lines can be created to represent the physical system
that is being simulated by the student. Every graphic object that will be modified in
subsequent s- function calls should have a persistent handle.

Lines 22-30 represent the working part of the s- function. Thisis the code that animates the
figure. The animation is achieved by changing properties such asthe* Xdat a’ and
‘Ydat a’ position of the graphics objects using theset command. Similarly, atering
the* String’ property can be used to change animation text. The' col or’ property is
often used to display either continuous or discrete changes in a parameter. The command
dr awnow flushes all pending graphics updates.

Lines 32-34 alow for fina changes to the animation figure at the end of the simulation.
4. Simple Graphic Objects

This section discusses the specifics of animating graphic objectsinaMATLAB figure. The
objects must first be created during initiaization when f | ag==0. Changing the attributes
of these objects during each update (f | ag==2) creates the animation effect. The three
most commonly used Matlab commandsare pl ot, patch, and set.

Figure 2 contains a code fragment to draw a smple pendulum with alumped massusing a
line and a circular patch object. This code would be used to initialize the figure and
pendulum objects. Lines 1 through 3 define theinitial orientation and the geometry of the
pendulum. Note that the variables Rand massr adi us should be persistent variables
since they will be referenced during subsequent s- function calls. Line 4 positions and
sizes the figure window while line 5 establishes an engineering coordinate system dightly
larger than the pendulum. Theset command is used to change the attributes of a graphics
object pointed to by the first parameter. The standard format is

set (H, ' PropertyNane', PropertyVal ue) where Histhe appropriate graphics
object handle. Inlines4 and 5, the function gcf (get current figure) and gca (get current
axis) return the desired object handles. To obtain auncluttered figure, line 5 sets the axes
visibility off. Line 6 usesthe pl ot command to draw a solid blue line from (0,0) to the
point (R*si n(t heta), - R*cos(t het a)) and returns the persistent graphics object
handle, hbar . Lines9 through 10 create a small polygon with 13 vertices to represent a
circular lumped mass at the end of the pendulum. The pat ch command acceptsx andy
data for the vertices and returns the persistent handle hnmass.

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

£/6£'9 abed

1 theta=0;

2 R=1;

3 massradius=.12;

4 set(gcf,'Position',[120, 120, 350, 350]);

5 set(gca,'visible ,"off',"xlinm,[-1.1*R 1. 1*R],"ylinm,[-1.1*R 1. 1*R])
6 hbar=plot([0,R*sin(theta)],[0,-R*cos(theta)],"'b-");

7 hol d on

8 r=0:pi/6:2*%pi;

9 hmass=pat ch(R*si n(theta)*ones(size(r))+massradi us*sin(r),-...

10 R*cos(theta)*ones(size(r))+massradi us*cos(r),'r");

Figure 2 — Creating a Graphic Object

In thisexample, animation is achieved by changing the pendulum’s ‘ Xdata’ and 'Y data
properties, avoiding the need to redraw the pendulum arm or mass. Passing the pendulum
angle, theta, asthe user defined input u allows the s- function to compute new hbar and
hmass positions using the persistent geometry variablesR, r , and massr adi us. Figure
3 provides an example code fragment, punctuated by a dr awnow command to update the
display.

t het a=u;

massX=R*si n(t heta) *ones(si ze(r))+massradi us*sin(r);
massY=- R*cos(theta)*ones(size(r))+massradi us*cos(r);
barY = [0 -R*cos(theta)];

barX = [0 Rfsin(theta)];

set (hbar,' Xdata', barX, ' Ydata',barY,'linew dth', 2);
set (hmass, ' Xdata', massX, ' Ydata', massY);

dr awnow;

Figure 3 — Changing Graphic Object Position

Changing the color of the graphic objects can be used to identify an event or condition. For
an animation of aradar antenna servomechanism, the target was defined using a patch
command. The target color changed from black to red if the antenna was pointing at the
target to within +2° . This color change indicated when the student’s radar illuminated a

weaving target. Figure 4 provides a sample code fragment where the pertinent patch color
propertiesare‘ edgecol or’ and‘ f acecol or’ .

if(abs(error)<2*pi/180) % error less than 2 degrees

set (htarget, ' edgecolor','k','facecolor','r'); %red
el se

set (htarget, ' edgecolor','k','facecolor',"k'); % bl ack
end

Figure 4 — Discrete Graphic Object Color Change

In amissile animation, color was used to indicate proximity. In Figure 5, the missile
object gradually changes from green to red as the missile approaches its target.

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

v 16€'9 abed

if range > 500, % faraway => “cold” (green)

colorv = [0 1 0]; % [red green blue]
el se
green = range/ 500; % close => “hot” (red)
red = 1-green;
colorv = [red green 0];

end
set (hm ssile,' Color',colorv); % change col or

Figure 5 — Continuous Graphic Object Color Change

Changing its ‘string’ property provides a convenient method to modify displayed text. In

Figure 6, missile flight time and range to target is updated each time the s- function is
caled.

range_str = sprintf('Flight tine = %.2f, range = %6.2f', t, new_range);
set (htext,'string' ,range_str)

Figure 6 — Text Annotation Change

In creating an animation, it is often difficult to determine the specific MATLAB property
name or exact parameter value. Often, the Matlab Graphics Properties Editor is very
useful for browsing for the correct property name or value.

5. Missile Example

4 | Missile Animation
File Edit Toolz “Window Help

Flight time = 4.B5, range = 24510 -

4 | Mizsile Animation
Eile Edit Tools “Window Help

Flight time = 11.30, range = 2.40

3

bang

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

G'/6£'9 abed

Missile Intercept Plots
6. Conclusion

Of the many different methods to implement simulation animation, basic s- function
programming has been found to be smple and effective. Satisfactory animations can be
achieved as part of aweekly laboratory assignment preparation. The students have
become quite fond of these rudimentary animations. Simulation time visualization
improves the student’ s appreciation of system dynamics and can be avaluable
troubleshooting tool.

Bibliography

1. J Watkins, G. Piper, K. Wedeward, and E. E. Mitchell, Computer Animation: A Visualization tool for
Dynamic System Smulations. Proceedings ASEE, June 15-18, 1997.

2. G.P.Adamsand|.C. Jong, Using Matlab to Animate the Generation of a Space Centrode in Kinematics,
Proceedings ASEE, June 15-18, 1997.

3. G.G. Kaady D. Tylavsky, Use of Animation for Improvement of Student Under standing of Energy

Conversion, Proceedings ASEE, June 28-July 1, 1998.

B. Jenkins, Smulation in Optical Fiber Communication, Proceedings ASEE, June 28-July 1, 1998.

5. L. Dean, Anam: The Smulation Animation Block, The Mathworks Inc,
ftp://fftp.mathworks.com/pub/tech- support/sol utions/s3399/ans m/vs/, January 2000.

6. Why Smulation Graphics, Altia Corp., http:/mww.dtia.com/whitepaper/sae.html

7. N. Gulley, PNDANIM2 Sfunction for animating the motion of a double pendulum,
The MathwWorks Inc., June 1993.

8. Writing S functions, Supplied with Smulink Version 3 as sfunctions.pdf, The Mathworks, 1998.

e

EDWIN L. ZIVI

Edwin L. Zivi recelved the B.S. degree in Engineering Science & Mechanics at Virginia Tech. in 1975 and the MS and PhD
degressin Mechanica Engineering a the University of Maryland in 1983 and 1989 respectively. Heisan Assistant
Professor of Systems Engineering a the U. S. Naval Academy. Research interests include fault tolerant distributed control
and communication networks, electromechanical system dynamics, and shipboard applications of integrated power and
machinery control systems. Prior to 1998, Ed was a Senior Research Engineer and Technical Advisor at the Naval
Surface Warfare Center (NSWC), Annapolis, Maryland.

JENELLE ARMSTRONG PIEPMEIER

Jendle Armstrong Piepmeier received a Bachelor of Science in Engineering from LeTourneau University in 1993,
Master of Sciencein Mechanica Engineering and Doctor of Philosophy in Mechanicad Engineering from Georgia
Ingtitute of Technology in 1993 and 1999, respectively. Since 1999, she has been on the faculty of the Systems
Engineering Department of The United States Nava Academy as an Assistant Professor. Her primary research interest
isvisortguided robotics.

1.1.1.1 Proceedings of the 2001 American Society for Engineering Education Annual Conference &
Exposition
Copyright O 2001, American Society for Engineering Education

9°/6£'9 abed

