
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Session 2520

An Effective Approach for Teaching Computer Programming to
Freshman Engineering Students

Mohammad H.N. Naraghi and Bahman Litkouhi

Department of Mechanical Engineering

Manhattan College
Riverdale, NY 10471

I. Introduction

Computer programming is an essential and integral part of any engineering program.
Engineering students in their junior and senior years face the task of solving problems
using numerical approaches. Good programming skills will enable them to tackle those
problems easily. Furthermore, a good knowledge of computer programming makes an
engineering graduate more attractive to research oriented engineering employers as well
as graduate engineering programs. In order to enable students to use their programming
skills during the four years of engineering education, the best time for teaching
programming is freshman year.

In the past, Fortran was the engineering and scientific programming language. During
the1960’s, 70’s and, to some extend, the1980’s, Fortran was the only language with
scientific functions. With the emergence of object oriented programming languages
(C++, Java and Visual Basic) more attractive alternatives to Fortran became available.
All of the new object-oriented programming languages have a comprehensive scientific
function library. The question that every engineering program has to answer is “which
one of these languages is appropriate for a freshman engineering programming course?”
In order to use the object-oriented capabilities of Java and C++ and develop an
interesting project, students have to go through a long period of instructions, which often
cannot be done in one semester. In fact, we may end up losing students. Retention of
engineering freshman is a critical issue in most engineering programs.

Visual Basic (VB) is an attractive alternative to C++ or Java. VB, with its Control
Objects, makes computer programming a very interesting subject. In fact, it helps the
students like programming. With a few weeks of instruction, students can develop
sophisticated programs with a GUI (Graphic User Interface). Additionally, migrating to
other languages becomes easy. We, at Manhattan College, teach Visual Basic
programming in one of our introductory freshman engineering courses (Computer
Programming for Engineers) for eight weeks. The remaining part of this course is
devoted to teaching Spreadsheets and Mathcad. One interesting feature of this course that
makes it attractive for our freshmen is its semester long group projects. These projects

P
age 6.160.1

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

involve development of computer games, which require some engineering and scientific
knowledge. One of these projects is development of a pool game. In this project students
have to incorporate the friction and dynamics of bouncing balls when they hit each other
or the sides of the a pool table. Additionally, students have to develop programming skill
to determine the location of an array of balls (eight balls plus a cue ball) at various time
steps and show it in real time (animated mode) on the GUI screen.

II. Description of “Computer Programming for Engineers” Course

The Computer Programming for Engineers introduces freshman students to software and
computer skills that can be used in all engineering disciplines. The course is broken into
two major modules: computer programming (Visual Basic) and mathematics software
(MathCAD). In addition to these two modules, a brief overview of AutoCAD
(engineering drawing) and spreadsheets are presented for two weeks at the beginning of
the course. Students who are taking this course have already seen an extensive coverage
of AutoCAD and spreadsheets in a previous course. After the two weeks overview of
AutoCAD and Spreadsheets, the programming module is covered for eight weeks and
mathematics module is covered for four weeks. One week is devoted to project
presentation, bringing the total coverage of the course to fourteen weeks. The detailed
syllabus of the course is provided in its web site:
http://www.manhattan.edu/~mnaraghi/engs116/.

The programming module of the course, which is the focus of this paper, covers
introductory topics in Visual Basic. These topics are program development cycle,
programming tools, the programming environment, VB objects, VB events, numbers,
strings, input and output, built-in functions, subprograms, modular design, structured
programming, relational and logical operators, IF blocks, select case blocks, use of
looping, creating and using arrays, 2-D arrays and VB graphics. An interesting and
unique feature of this course is its semester long group project.

At the beginning of the semester students are asked to form their project groups. Students
are given the freedom to form groups based on their preference (choosing classmates that
they can work with comfortably). By the third week of the course, each group submit a
proposal. Each team can select from a list of projects, or in some cases propose their own
project. Students taking this course have little or no background in engineering.
Therefore, it is impossible to make these projects challenging and interesting hardcore
engineering programming projects. The graphic user interface and control objects makes
Visual Basic a powerful and easy to use language for developing interesting animated
projects or games. We therefore decided to have student groups to develop animated
games that have some engineering and scientific implications. Two typical projects
developed by students during the last two years are described below:

A. Pool Game Project

In this project students developed a pool game consisting of a white cue ball and eight
colored balls. The final graphic user interface of this project is shown in Figure 1. The

P
age 6.160.2

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

user can specify the initial velocity and angle of the cue ball, and then by pressing the
“Hit That Ball” button the cue ball will move along the specified direction, hitting other
balls. Ball movements are shown in real time on the computer screen. If any of these
balls enter one the six holes, ten points are given to the scores and that ball is shown in
the box corresponding to the balls that are in the pockets.

Figure 1: GUI of pool game project

This project involved extensive programming efforts. Each ball is represented by a
control array. The motion of each ball is shown in real time using an animation scheme
that will be described later. Additionally, it introduced students to the concept of friction,
impact of two balls and reflection off from the side-wall of the pool table. The friction
factor that results in slowing the ball is taken to be 0.1. Upon impact, the reflection
direction follows the impact laws as discussed in the standard dynamics textbook [1]. The
pool table is a picture box with a green background. Each ball is a circular shape object of
a different color. All nine balls form a control array with a dimension of 9 (representing
all nine balls). Six pockets are represented by four quarter circles at four corners and two
half circles in the middle of long sides, as depicted in Figure 1.

The time interval for the real time animation is 0.02 seconds and the position of each ball
is revised at each time step. Additionally, at each time step, through some IF statements,
the program checks whether any of the balls hit the side-walls, other balls, or enter the
pockets. If any ball enters a pocket, a positive score of 10 is granted, and if no ball enters

P
age 6.160.3

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

any pocket, 5 points are subtracted from the scores. If the cue ball enters a pocket, the
game is lost.

This project involved some engineering concepts, primarily dynamics of motion, impact
of objects, and reflection after impact. Additionally, it involved complicated
programming. This project was originally developed by a two-member group of students
in the spring of 1998. It has been one of inspiring projects for both our freshman as well
as the high school students in our outreach programs.

B. Tank Killer Project

This project involves projectile motion of a canon fired from the gun of a tank. Two tanks
and three cows are involved (see Figure 2 for GUI of the project). The user specifies the
initial velocity of the cannon and its angle, and by pressing the fire button, the cannon
fires at the specified direction. The motion of the cannon is shown in real time using an
animation scheme. If the cannon hits the other tank, a positive score of ten is given. No
score is given if the cannon misses target. If the cannon hits any of three cows, five
points are deducted. Each time the game starts, the tanks and cows are positioned
randomly. Additionally, the wind direction and magnitude are randomly assigned. This
randomness makes the game more challenging.

The scientific and engineering concepts used in this project involve time dependent
projectile motion, i.e., x and y coordinates of an object as functions of time, and initial
velocity and angle, given by:

The programming challenge in this project involves real time animation of the projectile
motion of the cannon and uses logical statements (IF statements) to determine the
location of cannon (whether it hits the other tank or the cows).

Program listing and details of these two projects and other projects are given in the
course web site (http://www.manhattan.edu/~mnaraghi/engs116/engs116.html). All of
these projects involve animation. In the following section we will discuss simple
approaches for creating real time animation. This topic is missing from standard Visual
Basic programming textbooks (such as, [2] and [3]).

III. Animation Using Visual Basic

The speed of plotting a graph or moving an object in Visual Basic is controlled by the
speed of the computer that the program is executed on. Many modern computers are so
fast that plotting is almost done instantaneously. Therefore, it is impossible for a

tvx)cos(θ= tvt
g

y)sin(
2

2 θ+−=

P
age 6.160.4

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Figure 2: GUI of Tank Killer project

programmer to see the real-time motion of an object. A time delay routine can be used to
postpone plotting the new position of the object.

A. Time Delay Routine

Delaying any action (plotting, moving an object, making an object visible or invisible), in
Visual Basic, can be achieved by a simple dummy loop. The function of this dummy loop
is to kill time until computer time (computational time) becomes the same as real time (or
time that an action happens in the real world). The computation time can be evaluated
using the Visual Basic Timer. The value returned by the function Timer is the number of
seconds from midnight to the time currently stored in the computer’s internal clock. The
Timer function often is used in comparing computation times of various algorithms.
Here, it will be used in a time delay routine. A typical delay routine can be written in the
following format:

 Tstart = Timer
 t = 0
 Do While t < 20
 t = t + 0.02
 Rem Start dummy loop to kill time
 Do While (Timer - Tstart < t)
 Loop
 Rem code for real-time animation
 .
 .
 .
 .
 Loop

P
age 6.160.5

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Note that Tstart in the above routine is set equal to the beginning of the computation
(value of Timer at the beginning of the computation). Also, t (time in equations) is set
to zero. The maximum allowable value of t is 20S and it is incremented by 0.02
seconds. Note that most personal computers have a time resolution of 20ms (0.02 s). The
loop after time increment statement (t=t+0.02) is a dummy loop (does nothing other
than kill the time) which keeps looping until the difference between the current
computational time and starting time becomes equal or more than the time in the code for
real-time animation. The following example illustrates the application of this time routine
in Visual Basic programs.

The application of the time delay routine is demonstrated via a Visual Basic program that
shows real-time locations of a circular object being thrown from the center of the
coordinates at an initial velocity and angle. Initial velocity and angles are input via text
boxes. The axes of coordinates, as well as, the initial location of the object are shown by
clicking on the start button. The object moves by clicking on the “throw the object”
button.

The coordinates of an object in a Cartesian coordinate system x and y are given by
equations of projectile motion. The properties of objects involved in this example are
given in the following table and layouts of objects are shown in Figure 3.

Object Property Setting
Form Name frmTraj

Caption Trajectory of a circular object
Label Name lblVelocity

Caption Initial Velocity
Label Name lblAngle

Caption Initial Angle
TextBox Name txtVelocity

Caption blank
TextBox Name txtVelocity

Caption blank
TextBox Name txtVelocity

Caption blank
CommandButton Name cmdStart

Caption Start
CommandButton Name cmdThrow

Caption Throw the object
CommandButton Name cmdQuit

Caption Quit

P
age 6.160.6

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Figure 3: Layout of Objects for Trajectory of an object example

The Visual Basic code for this problem is given below:

Private Sub cmdQuit_Click()
 End
End Sub

Private Sub cmdStart_Click()
 frmTraj.Cls
 frmTraj.Scale (-2, 15)-(15, -2)
 frmTraj.Line (-2, 0)-(15, 0)
 frmTraj.Line (0, -2)-(0, 15)
 frmTraj.Circle (0, 0), 0.25
End Sub

Private Sub cmdThrow_Click()
 Dim x, y, pi, Tstart, t, v0, theta As Single
 x = 0
 y = 0
 pi = 4 * Atn(1)
 Tstart = Timer
 t = 0
 v0 = Val(txtVelocity)
 theta = Val(txtAngle) * pi / 180
 Do While (y >= 0)
 Let t = t + 0.02
 Do While (Timer - Tstart < t)

 Loop
 x = v0 * Cos(theta) * t
 y = -4.905 * t ^ 2 + v0 * Sin(theta) * t
 frmTraj.Cls
 frmTraj.Line (-2, 0)-(15, 0)

P
age 6.160.7

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

 frmTraj.Line (0, -2)-(0, 15)
 frmTraj.Circle (x, y), 0.25
 Loop
End Sub

Note that in the above program the time increment is set to 0.02 s since the timer
resolution in most is 0.02 s. In this program, first, the initial velocity and angle with
respect to the x-axis must be specified. Then, by clicking on the start button, axes of
coordinates, along with a circle at the origin appear. Finally, by clicking on the throw the
object button, the real-time trajectory of the circle will be shown while, it stays above the
x-axis. By trying various angles, one notice that the maximum horizontal distance that the
circle travels can be achieved when the angle is 45o (known from physics and dynamics).

An alternative way is to introduce the circle as an object. This can be done by adding a
shape to the list of objects with the following properties:

Object Property Setting
Shape Name shpCircle

Shape Circle
Visible False

Then statement frmTraj.Circle (0, 0), 0.25 in subroutine
cmdStart_Click is replaced by:

 shpCircle.Visible=True
 shpCircle.Move 0,0

Also, in cmdThrow_Click() subprogram, statement frmTraj.Cls is removed and
frmTraj.Circle (x, y), 0.25 is replaced by shpCircle.Move x,y. Since
frmTraj.Cls is removed, no blinking will occur in this procedure. Note that with this
procedure the position of the circle, at the beginning and end of the throwing process,
slightly below the x-axis. This is due to the fact that coordinates x and y in Shapes are
coordinates of the upper-left-hand-side of the object.

One can make this object throwing program more sophisticated by introducing real
images of, for example, basketball and basketball players. This can be accomplished by
using Image from the object toolbar. The image of a ball can be downloaded from the
Web (from basketball game pictures) and the ball image can be isolated using a graphics
program. A good graphics program for this purpose is Paint Shop Pro (can be
downloaded from www.shareware.com). In the next section the use of Timer Control
(Object) in animation will be demonstrated.

B. Timer Control

The Timer control, which appears as an alarm clock in the toolbox, can be use in
animation and simulation. The timer control appears as a small alarm clock at design time
but is invisible during run time, so it does not matter where it is located. An important

P
age 6.160.8

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

property of the timer control is the interval, which is measured in milliseconds. In order
to begin a timer event, it must first be turned on by setting its Enabled property to True. It
can be turned off by setting Enabled Property to False or Interval to 0. A digital clock is a
very simple but very useful application involving a timer control. Once the application of
the timer control as a digital clock is understood, a more complicated application
involving animation will be discussed. The Digital Clock application includes a timer and
a label with a border.

Example, Digital Stopwatch: This program creates a digital stopwatch that shows the
elapse time in seconds.

Object Property Setting
frmDSW Name Digital Stopwatch
cmdStart Caption Start Watch
cmdStop Caption Stop Watch
tmrWatch Interval 100
 Enabled False
LblSeconds Caption Seconds
LblTime Caption (blank)

Figure 4: Layout of objects for digital stop watch example

Private Sub cmdStart_Click()
 lblTime.Caption = 0 ’Reset the Watch
 tmrWatch.Enabled = True
End Sub

Private Sub cmdStop_Click()
 tmrWatch.Enabled = False
End Sub

Private Sub tmrWatch_Timer()
 lblTime.Caption = Val(lblTime.Caption) + 1
End Sub

Now by running this program the elapsed time can be measured. An interesting
application of the timer control is animation. The following example demonstrates the
application of Timer control in animation.
 P

age 6.160.9

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

Example, Runner: In this example the timer control is used to make various frames of a
runner visible and invisible, and by doing so, show a running animation. Twelve frames
of a runner are available (these frames are taken from a sample case in Paint Shop Pro,
Version 5). These pictures (frames) are named according to the following figure:

Figure 5: Images of a runner at different time frames (ImgRunner1.gif through
ImgRunner12.gif, from the upper-left-hand-side to the lower-right-hand-side).

The object properties for this example are as follows:

Object Property Setting
frmRunner Caption Runner
cmdRun Caption Run
cmdStop Caption Stop
tmrTimer Enable False
 Interval 100
LblTimer Caption (blank)
imgRunner Picture Runner1.gif
 Index 0
 Visible False
imgRunner Picture Runner2.gif
 Index 1
 Visible False

P
age 6.160.10

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

 . . .
 . . .
 . . .
 . . .
imgRunner Picture Runner12.gif
 Index 11
 Visible False

Note that the location of images (imgRunner1 through imgRunner12) is not important.
They are initially invisible. The object layout can be similar to that shown in Figure 5.

Figure 6: Layout of objects for the runner problem

The code listing for this problem is as follows:

Private Sub cmdRun_Click()
 For i = 0 To 11
 imgRunner(i).Top = 800
 imgRunner(i).Left = 800
 Next i

 lblTime.Caption = 0
 tmrTimer.Enabled = True
End Sub

Private Sub cmdStop_Click()
 tmrTimer.Enabled = False
 End

P
age 6.160.11

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

End Sub

Private Sub tmrTimer_Timer()
 lblTime.Caption = lblTime.Caption + 0.1
 For t = 0 To 12 Step 1.2
 For i = 0 To 11
 If (lblTime.Caption = t + (i + 1) * 0.1) Then
 imgRunner(i).Visible = False
 If i = 11 Then
 imgRunner(0).Visible = True
 Else
 imgRunner(i + 1).Visible = True
 End If
 End If
 Next i
 Next t
End Sub

Note that in this code, initially after the run button is clicked the same coordinates
(locations) are assigned to all twelve images. In other words, they are put on top of each
other. Then when the Timer is Enabled, images are made visible in there order with a
time delay of 0.1 s. The whole sequence of twelve images is put in a loop to make the
animation process continuous. The user can click on the stop button to terminate the
program. Figure 7 shows the final results during a run.

Figure 7: A typical run for runner example problem

IV. Conclusions

Since we started this practice four years ago, our students have developed a number of
interesting projects such as, basketball, war game, etc.. Additionally, a number of our
students who decided to learn other languages, such as Fortran and C++, were able to
learn them quickly and easily, mostly via self-study. The programming skills that some P

age 6.160.12

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition
Copyright  2001, American Society for Engineering Education

of these students gained from this course resulted in getting summer internships at
prestigious laboratories, such as, NASA.

Bibliography
1. Beer, F.P. & Johnston, E.R, Vector Mechanics for Engineers, Statics and Dynamics, 6th Ed., McGraw-
Hill, 2000.
2. Schneider, D.I., An Introduction to Programming Using Visual Basic 6.0, 4th Ed., Prentice Hall, 1999.
3. Coburn, E.J., Visual Basic 5 Made Easy, 2nd Ed., PWS, 1999.

MOHAMMAD H.N. NARAGHI
Dr. Mohammad H.N. Naraghi is a Professor of Mechanical Engineering at Manhattan College. He received
his M.S. and Ph.D. in Mechanical Engineering from University of Akron. Dr. Naraghi worked closely with
NASA Lewis Research Center, through research grants and a number of fellowships, to develop a
comprehensive Rocket Thermal Evaluation code (RTE). He received a certificate of recognition from
NASA for the creative development of technically significant software. Dr. Naraghi worked closely with
NASA as well as a number of Aerospace companies to expand capabilities of the code. Dr. Naraghi’s
research is in Thermal/Fluids area and he has published more than fifty articles in ASME, AIAA and
international journals and conferences. He is recipient of a number of research grants from NASA and Air
Force.

BAHMAN LITKOUHI
Dr. Bahman Litkouhi is a Professor and the Chair of Mechanical Engineering Department at Manhattan
College. He also served as the Director of Freshman Engineering Program in the School of Engineering for
four years (1996-2000). Dr. Litkouhi received his M.S. and Ph.D. degrees in Mechanical Engineering from
Michigan State University. His interests include analysis and design of thermal/fluid systems,
bioengineering modeling, and computational heat transfer. Dr. Litkouhi is a registered Professional
Engineer in New York State and is actively involved in joint research with industry.

P
age 6.160.13

