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Abstract 
 
The Equation Activity applet, developed by Project Links at Rensselaer, is an engaging and 
interactive tool that allows instructors to guide students through the steps in deriving a particular 
equation.  Project Links, an NSF-supported project at Rensselaer, is a cooperative effort by 
faculty from several departments, schools, and institutions to develop materials linking 
mathematical topics with their applications in engineering and science. The primary product of 
this effort is a set of interactive, web-based learning modules that rely heavily on hypertext, 
animations, and interactive Java applets. 
 
Through the Equation Activity, the instructor gives students enough information to derive a 
particular equation.  The student’s response is then evaluated by use of a semi-intelligent 
algorithm that recognizes association, commutativity, distribution, implicit multiplication, legal 
re-ordering of terms (flipping about the equals signs), and unlimited legal use of parentheses. 
 
The instructor specifies the particular terms, variables, operators, and constants for use by the 
student on a customizable keypad. This keypad can vary as the derivation steps progress, 
reflecting new information gained.  The path to the desired equation is broken into several steps, 
allowing the student to progressively work toward the final equation.   For each step in the 
activity, the instructor, using text and equations, specifies the steps to take to obtain the next 
intermediary equation.  Hints can be supplied to the student who enters a wrong or inappropriate 
equation.  Once the student has produced the proper equation for a step, that equation is saved 
and can be reviewed by the students as they work on subsequent steps.  This process iterates until 
the final equation has been reached. 
 
The applet is easily modified and added to existing courseware. 
 
 
Background 
 
Project Links1 is a five-year, NSF supported undertaking to develop web-based interactive 
modules that integrate mathematical concepts with contemporary topics in science and 
engineering.  The project is based at Rensselaer Polytechnic Institute, with collaboration from P
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the University of Delaware, Virginia Polytechnic Institute, Hudson Valley Community College, 
and Siena College. 
 
In the development of our learning modules we view interactivity and the continuing 
engagement of the student in the discovery process as paramount to our success.  Two of our 
four formal main objectives2 expressly state interactivity must be at the forefront of all of our 
work.  In part, due to our ability to achieve and maintain this interactivity, we were awarded the 
Premier Award for Excellence in Engineering Education Courseware Award 2000 by NEEDS: 
The National Engineering Education Delivery System3. 
 
One distinct area in which such true interactivity was highly desirable, but elusive in practice, 
was when guiding students through the derivation of equations.  Limited interactivity is 
attainable by stepping through a question-and-answer process, where students are given much of 
the information and then asked about certain parts of it before proceeding.  But we wanted the 
students to make the attempt at a step in the derivation and have that checked before the student 
could proceed.  The Equation Activity we discuss here is the outgrowth of this desire. 
 
Previous attempts at this type of activity involved either of two common assessment methods.  
The program could be pre-coded with as many possible correct answers as the developers could 
anticipate, and the students’ answer was checked against this list for a match.  Otherwise the 
students’ equation and the correct equation could each be numerically evaluated, and those 
values compared to within certain set tolerances.  The latter is called the zero equivalence 
problem4. 
 
The mission of Project Links is to develop educational materials that link mathematical topics 
with applications in engineering and science.  We needed an activity in which module users 
could derive a complex equation through a series of guided steps. 
 
In the Equation Activity, the student is given a modified calculator interface, as shown in Figure 
1.  In addition to the standard numeric buttons and arithmetic operator keys, the interface  
has buttons that make any variables available.  These variables are specific to the equation the 
student is deriving, and are specified by the activity developer.  The student is also given a text 
window called the “requirement window”, shown as (1) in Figure 1, where the professor 
specifies the current equation to be built by the student.  The student enters her answer in the 
“build window” (2) by using any buttons from the “build console” (3).  Correct answers are 
available for reference in the “completed equations window” (4). 
 
The Equation Activity can be seen in use at 
http://links.math.rpi.edu/devmodules/mechanicalosc/springmass/, choose “Math Model”, then 
“Derivation Activity” near the bottom of the page, once it has loaded. 
 
As a simple example, consider an activity whose goal is to derive the equation of motion for a 
given set-up as shown in Figure 2.  Any necessary background and discussion can precede the 
Activity to prepare the student.  The requirement window might instruct the student to “State the 
general form of Newton’s Second Law” to which the student would (hopefully) respond 

F ma=∑
� �

.  The appropriate buttons for each of the five terms would be made available for 
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this step by the professor.  When the student has correctly entered the answer, the interface 
changes to one with a new question and buttons necessary for answering that question.  
 
 

1
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3

4
 

 
Figure 1.  The Equation Activity Interface. 

 
 
The Activity might now ask “Apply Newton’s Second Law in the x-direction.”  The student might 

respond with F f mx− = �� which would be acceptable.  Other forms that are algebraically 
equivalent would also be considered correct.  Once the student’s answer has been judged as 
correct, the Activity changes yet again for the third (if desired) step in the process. 

 

Figure 2.  A simple example to illustrate the use of the 
Equation Activity. 
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Implementation 
 
Initial implementation of the Equation Activity was done using HTML and JavaScript.  As a 
prototype, it enabled us to review the design and make rapid changes.  However, as a final 
product it was impractical.  Using this method, new activities had to be custom built, in each case 
requiring a few dozen specialized graphics as well as a redefined interface.  Also, this 
implementation could not handle basic rules of arithmetic such as associativity, commutativity 
that modify the arrangement of an equation, but not its value.   
 
The final implementation was to incorporate all elements of the prototype with four additional or 
corrective changes. 
 
First, the activity must provide a more robust comparison engine for the equation.  Surely it is 

unfair to tell a student she is wrong for entering the answer ma F=
��

 simply because the 

answer in the key is stored as F ma=
� �

.  The system should be able to take into account 
principles of commutativity, associativity, distribution, appropriate arbitrary use of parentheses, 
arbitrary term placement about the equals sign, and implicit multiplication (adjacent terms).  The 
implementation of this engine is discussed in the following section “Algorithm”. 
 
Second, the activity development process should be streamlined.  It should be as simple and 
consume as little time as possible for professors to create a new activity.  The model we used is 
the video-game system model of “console” and “cartridge”.  Project Links created the activity 
console incorporating as many standardized features as possible, and have professors create the 
cartridge input data file with information pertinent to the particular activity.  There will be one 
cartridge for every equation that professors wish to take students through, all of which will use 
the same console. 
 
Third, the equations should be rendered for a more normal appearance.  Using JavaScript, we 

had been forced to use textual approximations of terms such as “pi*r^2” rather than the 
2rπ  that 

is preferable.  In the final implementation of this activity, we have all equations rendered 
correctly. 
 
Fourth, we designed a consistent graphical-user-interface.  The goal in doing this was to allow 
students, once accustomed to using any one of the derivation exercises to immediately be able to 
navigate any of the other derivation exercises. 
 
Java was chosen as the development medium because of the requirements listed above and 
because Project Links materials are delivered via the Internet.  Because of the complexity of 
graphically rendering arbitrary equations, the Java API WebEQ5 was incorporated to render the 
equations graphically. 
 
The system interface was designed with the following components: requirement window, build 
window, build console, and completed equations (refer again to Figure 1).  The requirement 
window is constructed to house text and equations as specified by the professor, to guide the P
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student to construct the current equation.  The build window is constructed much like a 
calculator screen.  Its purpose is to display the equation (the student’s answer) as she builds it. 
 
The build console contains the buttons the student uses to construct the equation described in the 
requirement window.  It contains both static and dynamic elements.  The dynamic section of the 
console consists of a 248×121 pixel area allocated for professor-specified buttons.  Professors 
specify the color, size, location, and equation for each button.  Professors may have buttons 
appear and/or disappear between any steps in the equation derivation.  For example, if one step 
in the equation derivation requires x��, that button can be removed from the console if it is no 
longer needed for subsequent steps. 
 
The static section of the console consists of three separate blocks.  These blocks exist in all 
activities, and are not modifiable by the professor.  The first block contains the arithmetic 
operators for addition, subtraction, multiplication and division, as well as the left and right 
parentheses, the square root sign and the ± operator.  The second block contains a numeric 
keypad with numbers zero through nine as well as a decimal point and equals sign.  The third 
block contains control buttons for the equation. Delete deletes the last term appended to the 
equation in the build window.  Clear clears the build window.  Test compares the student’s 
answer to the key for that equation and, if the two equations are equivalent, moves the student 
onto the next step. 
 
Provisions are also included for supplemental help.  Dialogue boxes appear when the student 
presses the Test button.  For each step in the derivation (each intermediate equation) the 
professor may specify two messages for the student: one for if she is correct (drawing parallels, 
making observations), and one for if she is incorrect (a hint on how to go about solving the 
particular intermediate equation). 
 
Development of the cartridge files has been made as simple as possible.  A six-step equation 
derivation activity required only a 5.5KB text file cartridge.  If a professor is familiar with the 
construction of these activity files (for which there is full documentation) and has an activity 
storyboarded, it will take him about an hour to code the cartridge file. 
 
 
Algorithm 
 
To make this system viable, it was necessary to have an extremely robust comparison engine.  
Previous equation comparison mechanisms were literal, meaning that the student’s equation 
would have to look exactly like the key for it to be marked as correct. 
 
In order to make implementation of the Equation Activity simple for the professors it is desirable 
for the Activity to need only one equation key in arbitrary form for each step in the derivation 
process.  Furthermore, the system can not issue either false positives (indicating the student’s 
answer is correct when it is not) nor false negatives (indicating the student’s answer is incorrect 
when it is in fact correct). 
 P
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After analysis of the problem we decided that an organizational comparison engine would be 
used rather than a numerical comparison engine.  Unlike a mathematical tool such as Maple or 
Matlab, this engine does not evaluate the expression, it standardizes the order of terms in an 
equation based on certain properties (listed in the following paragraph).  The comparison process 
consists of passing both the key and the student’s equation through this standardization process 
and then performing a literal comparison on the standardized versions of both equations.  If that 
comparison shows both equations to be literally equal (equivalent to a string comparison), then 
the student’s equation matches the key, and the student is correct and may move on to the next 
step in the derivation. 
 

Equation Breakdown 
 

Step 1: Check to make sure there are as many opening parentheses as there are closing 
parentheses.  If not the equation is invalid. 
  
Step 2: Insert a multiplication sign between each set of adjacent terms if this module 
specifies those signs to be assumed.  The developer controls this flag, which is specified 
in the cartridge file.  It is generally desirable to assume adjacent multiplication unless 
working with terms for which this does not make sense, such as terms with summation 
symbols. 

 
Step 3: Recursively break up the equation into a tree structure.  We break up the tree with 
operators as parent nodes, and the terms on which they operate as their children.  For 
example, the equation “4 + 5” would be encoded as parent node “+” with children “4” 
and “5”.  Encoding is done in the reverse of the standard order of operations.  In the case 
of the Project Links Equation Activity, we consider four strata of operators (listed in 
order of precedence): [=],  [+, -, ±], [×, ÷], and [√]. 
 
The equation string output by step 2 is taken and broken at the equal sign (if one exists, 
otherwise it iterates to the next stratum of operators to check for), making its children the 
terms on either side of the equals sign.  The stratum of operators to check for is 
incremented by one (and rolled over if necessary) and the process is executed on the 
children of the “=” node.  This process is repeated until the entire equation is broken up 
into its hierarchical organization.  Parentheses are taken into account, and dictate the 
ordering of operations, but are not themselves stored, as their purpose is to dictate order 
of operations, which is now done by the data structure in which the equation is stored. 
 
Standardizing the Equation 
 
Step 4: Distribute out all terms.  For example, transform 4 × (5 + 6) into (4 × 5) + (4 × 6) 
(although this transformation is done to the tree structure).  This process is executed until 
no more terms can be distributed. 
 
Step 5: Distribution of negative signs.  Any “-“ node with a “+” child will be switched to 
a “+” node with a “-“ child, and signs reversed as appropriate.  Any “-“ node with a “-“ P
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child will be converted to a “+” node, having its children negated, and its grandchildren 
upgraded to children. This process is recursive. 
 
Step 6: Percolate out negative signs.   For a “×” node, count how many of its children are 
negative, make all children positive, and if the count (of children which are negative) is 
an odd number negate the “×” node, otherwise leave it alone.  (Changes (-3 × -4 × -5) 
into -(3 × 4 × 5): again, in tree structure.) 
 
Step 7: Coalesce branches in the tree.  For “+” with a “+” child, upgrade all 
grandchildren of the top “+” node to children, and remove its child “+” node.  Execute 
the exact same process for “×” nodes as well.  This transforms structures such as (1 + (2 
+ 3)) into (1 + 2 + 3). 
 
Step 8: Zero the equation.  Add the negative of the right-hand-side of the equation to the 
left-hand-side, and set the right-hand-side of the equation to zero.  This ensures we catch 
different encodings such as (a + b = c) being the same as (a – c = -b) by moving all terms 
to one side of the equation. 
 
Step 9: Coalesce branches in the tree.  Same as step 7.  This must be done again because 
of new terms introduced into the structure on the left-hand-side of the equation. 
 
Step 10: Recursively sort all nodes.  Since the equations will be compared literally, it 
must be ensured that when we compare “2 + 7 + 3” to “3 + 2 + 7” that they compare 
exactly.  Accordingly, the nodes are sorted (in ascending alphanumeric order.)  The way 
in which they are sorted is irrelevant as long as they are sorted consistently in the same 
manner. 
 
Step 11: Make negative sign uniform.  If the first term on the left-hand-side is negative, 
all terms on the left-hand-side are negated.  If not, then the left-hand-side is left alone.  
This is done to ensure the first term (after having been sorted) is always positive.  For 
example, equations (4 + x = 0) and (-4 - x = 0) are both correct, but encoded differently.  
This step forces encoding in the manner of the first (4 + x = 0). 

 
This encoding was incorporated into the (custom-built) Equation object in Java.  The encoding 
of the equation takes place automatically in the object’s constructor.  When it comes time to 
compare the student’s equation against the key, the student’s equation is translated (by creating a 
new Equation object with the user’s equation as the input argument), and then compared using 
the .equals(Equation) method (of object Equation) which compares one equation against another 
(in our case comparing the student’s equation against the previously-stored equation keys) and 
returns true or false, indicating a successful comparison.  Both equation trees are read through, 
and must now (being in the standardized form) be of exactly equal size and content in exactly the 
same order.  If this is true then the equations are equivalent and the student is correct. 
 
 
 P
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Summary 
 
It can prove helpful in teaching mathematical concepts to make students aware of the derivation 
or solution of an equation, and of the sequence of steps taken to attain that final equation. This 
equation activity (functionally a Java applet) provides a method to implement that teaching 
strategy. It is generalizable such that it may be used for any mathematical concept, limited only 
by the fixed size real-estate of the equation containers. 
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