
Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

Session 1520

Interactive Java Applet for Equation Derivations

Kenneth S. Manning, Ph.D. and Luke B. Bellandi
Rensselaer Polytechnic Institute

Abstract

The Equation Activity applet, developed by Project Links at Rensselaer, is an engaging and
interactive tool that allows instructors to guide students through the steps in deriving a particular
equation. Project Links, an NSF-supported project at Rensselaer, is a cooperative effort by
faculty from several departments, schools, and institutions to develop materials linking
mathematical topics with their applications in engineering and science. The primary product of
this effort is a set of interactive, web-based learning modules that rely heavily on hypertext,
animations, and interactive Java applets.

Through the Equation Activity, the instructor gives students enough information to derive a
particular equation. The student’s response is then evaluated by use of a semi-intelligent
algorithm that recognizes association, commutativity, distribution, implicit multiplication, legal
re-ordering of terms (flipping about the equals signs), and unlimited legal use of parentheses.

The instructor specifies the particular terms, variables, operators, and constants for use by the
student on a customizable keypad. This keypad can vary as the derivation steps progress,
reflecting new information gained. The path to the desired equation is broken into several steps,
allowing the student to progressively work toward the final equation. For each step in the
activity, the instructor, using text and equations, specifies the steps to take to obtain the next
intermediary equation. Hints can be supplied to the student who enters a wrong or inappropriate
equation. Once the student has produced the proper equation for a step, that equation is saved
and can be reviewed by the students as they work on subsequent steps. This process iterates until
the final equation has been reached.

The applet is easily modified and added to existing courseware.

Background

Project Links1 is a five-year, NSF supported undertaking to develop web-based interactive
modules that integrate mathematical concepts with contemporary topics in science and
engineering. The project is based at Rensselaer Polytechnic Institute, with collaboration from P

age 6.635.1

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

the University of Delaware, Virginia Polytechnic Institute, Hudson Valley Community College,
and Siena College.

In the development of our learning modules we view interactivity and the continuing
engagement of the student in the discovery process as paramount to our success. Two of our
four formal main objectives2 expressly state interactivity must be at the forefront of all of our
work. In part, due to our ability to achieve and maintain this interactivity, we were awarded the
Premier Award for Excellence in Engineering Education Courseware Award 2000 by NEEDS:
The National Engineering Education Delivery System3.

One distinct area in which such true interactivity was highly desirable, but elusive in practice,
was when guiding students through the derivation of equations. Limited interactivity is
attainable by stepping through a question-and-answer process, where students are given much of
the information and then asked about certain parts of it before proceeding. But we wanted the
students to make the attempt at a step in the derivation and have that checked before the student
could proceed. The Equation Activity we discuss here is the outgrowth of this desire.

Previous attempts at this type of activity involved either of two common assessment methods.
The program could be pre-coded with as many possible correct answers as the developers could
anticipate, and the students’ answer was checked against this list for a match. Otherwise the
students’ equation and the correct equation could each be numerically evaluated, and those
values compared to within certain set tolerances. The latter is called the zero equivalence
problem4.

The mission of Project Links is to develop educational materials that link mathematical topics
with applications in engineering and science. We needed an activity in which module users
could derive a complex equation through a series of guided steps.

In the Equation Activity, the student is given a modified calculator interface, as shown in Figure
1. In addition to the standard numeric buttons and arithmetic operator keys, the interface
has buttons that make any variables available. These variables are specific to the equation the
student is deriving, and are specified by the activity developer. The student is also given a text
window called the “requirement window”, shown as (1) in Figure 1, where the professor
specifies the current equation to be built by the student. The student enters her answer in the
“build window” (2) by using any buttons from the “build console” (3). Correct answers are
available for reference in the “completed equations window” (4).

The Equation Activity can be seen in use at
http://links.math.rpi.edu/devmodules/mechanicalosc/springmass/, choose “Math Model”, then
“Derivation Activity” near the bottom of the page, once it has loaded.

As a simple example, consider an activity whose goal is to derive the equation of motion for a
given set-up as shown in Figure 2. Any necessary background and discussion can precede the
Activity to prepare the student. The requirement window might instruct the student to “State the
general form of Newton’s Second Law” to which the student would (hopefully) respond

F ma=∑
� �

. The appropriate buttons for each of the five terms would be made available for

P
age 6.635.2

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

this step by the professor. When the student has correctly entered the answer, the interface
changes to one with a new question and buttons necessary for answering that question.

1

2

3

4

Figure 1. The Equation Activity Interface.

The Activity might now ask “Apply Newton’s Second Law in the x-direction.” The student might

respond with F f mx− = �� which would be acceptable. Other forms that are algebraically
equivalent would also be considered correct. Once the student’s answer has been judged as
correct, the Activity changes yet again for the third (if desired) step in the process.

Figure 2. A simple example to illustrate the use of the
Equation Activity.

F

vi

m

µΚ

x

P
age 6.635.3

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

Implementation

Initial implementation of the Equation Activity was done using HTML and JavaScript. As a
prototype, it enabled us to review the design and make rapid changes. However, as a final
product it was impractical. Using this method, new activities had to be custom built, in each case
requiring a few dozen specialized graphics as well as a redefined interface. Also, this
implementation could not handle basic rules of arithmetic such as associativity, commutativity
that modify the arrangement of an equation, but not its value.

The final implementation was to incorporate all elements of the prototype with four additional or
corrective changes.

First, the activity must provide a more robust comparison engine for the equation. Surely it is

unfair to tell a student she is wrong for entering the answer ma F=
��

 simply because the

answer in the key is stored as F ma=
� �

. The system should be able to take into account
principles of commutativity, associativity, distribution, appropriate arbitrary use of parentheses,
arbitrary term placement about the equals sign, and implicit multiplication (adjacent terms). The
implementation of this engine is discussed in the following section “Algorithm”.

Second, the activity development process should be streamlined. It should be as simple and
consume as little time as possible for professors to create a new activity. The model we used is
the video-game system model of “console” and “cartridge”. Project Links created the activity
console incorporating as many standardized features as possible, and have professors create the
cartridge input data file with information pertinent to the particular activity. There will be one
cartridge for every equation that professors wish to take students through, all of which will use
the same console.

Third, the equations should be rendered for a more normal appearance. Using JavaScript, we

had been forced to use textual approximations of terms such as “pi*r^2” rather than the
2rπ that

is preferable. In the final implementation of this activity, we have all equations rendered
correctly.

Fourth, we designed a consistent graphical-user-interface. The goal in doing this was to allow
students, once accustomed to using any one of the derivation exercises to immediately be able to
navigate any of the other derivation exercises.

Java was chosen as the development medium because of the requirements listed above and
because Project Links materials are delivered via the Internet. Because of the complexity of
graphically rendering arbitrary equations, the Java API WebEQ5 was incorporated to render the
equations graphically.

The system interface was designed with the following components: requirement window, build
window, build console, and completed equations (refer again to Figure 1). The requirement
window is constructed to house text and equations as specified by the professor, to guide the P

age 6.635.4

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

student to construct the current equation. The build window is constructed much like a
calculator screen. Its purpose is to display the equation (the student’s answer) as she builds it.

The build console contains the buttons the student uses to construct the equation described in the
requirement window. It contains both static and dynamic elements. The dynamic section of the
console consists of a 248×121 pixel area allocated for professor-specified buttons. Professors
specify the color, size, location, and equation for each button. Professors may have buttons
appear and/or disappear between any steps in the equation derivation. For example, if one step
in the equation derivation requires x��, that button can be removed from the console if it is no
longer needed for subsequent steps.

The static section of the console consists of three separate blocks. These blocks exist in all
activities, and are not modifiable by the professor. The first block contains the arithmetic
operators for addition, subtraction, multiplication and division, as well as the left and right
parentheses, the square root sign and the ± operator. The second block contains a numeric
keypad with numbers zero through nine as well as a decimal point and equals sign. The third
block contains control buttons for the equation. Delete deletes the last term appended to the
equation in the build window. Clear clears the build window. Test compares the student’s
answer to the key for that equation and, if the two equations are equivalent, moves the student
onto the next step.

Provisions are also included for supplemental help. Dialogue boxes appear when the student
presses the Test button. For each step in the derivation (each intermediate equation) the
professor may specify two messages for the student: one for if she is correct (drawing parallels,
making observations), and one for if she is incorrect (a hint on how to go about solving the
particular intermediate equation).

Development of the cartridge files has been made as simple as possible. A six-step equation
derivation activity required only a 5.5KB text file cartridge. If a professor is familiar with the
construction of these activity files (for which there is full documentation) and has an activity
storyboarded, it will take him about an hour to code the cartridge file.

Algorithm

To make this system viable, it was necessary to have an extremely robust comparison engine.
Previous equation comparison mechanisms were literal, meaning that the student’s equation
would have to look exactly like the key for it to be marked as correct.

In order to make implementation of the Equation Activity simple for the professors it is desirable
for the Activity to need only one equation key in arbitrary form for each step in the derivation
process. Furthermore, the system can not issue either false positives (indicating the student’s
answer is correct when it is not) nor false negatives (indicating the student’s answer is incorrect
when it is in fact correct).
 P

age 6.635.5

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

After analysis of the problem we decided that an organizational comparison engine would be
used rather than a numerical comparison engine. Unlike a mathematical tool such as Maple or
Matlab, this engine does not evaluate the expression, it standardizes the order of terms in an
equation based on certain properties (listed in the following paragraph). The comparison process
consists of passing both the key and the student’s equation through this standardization process
and then performing a literal comparison on the standardized versions of both equations. If that
comparison shows both equations to be literally equal (equivalent to a string comparison), then
the student’s equation matches the key, and the student is correct and may move on to the next
step in the derivation.

Equation Breakdown

Step 1: Check to make sure there are as many opening parentheses as there are closing
parentheses. If not the equation is invalid.

Step 2: Insert a multiplication sign between each set of adjacent terms if this module
specifies those signs to be assumed. The developer controls this flag, which is specified
in the cartridge file. It is generally desirable to assume adjacent multiplication unless
working with terms for which this does not make sense, such as terms with summation
symbols.

Step 3: Recursively break up the equation into a tree structure. We break up the tree with
operators as parent nodes, and the terms on which they operate as their children. For
example, the equation “4 + 5” would be encoded as parent node “+” with children “4”
and “5”. Encoding is done in the reverse of the standard order of operations. In the case
of the Project Links Equation Activity, we consider four strata of operators (listed in
order of precedence): [=], [+, -, ±], [×, ÷], and [√].

The equation string output by step 2 is taken and broken at the equal sign (if one exists,
otherwise it iterates to the next stratum of operators to check for), making its children the
terms on either side of the equals sign. The stratum of operators to check for is
incremented by one (and rolled over if necessary) and the process is executed on the
children of the “=” node. This process is repeated until the entire equation is broken up
into its hierarchical organization. Parentheses are taken into account, and dictate the
ordering of operations, but are not themselves stored, as their purpose is to dictate order
of operations, which is now done by the data structure in which the equation is stored.

Standardizing the Equation

Step 4: Distribute out all terms. For example, transform 4 × (5 + 6) into (4 × 5) + (4 × 6)
(although this transformation is done to the tree structure). This process is executed until
no more terms can be distributed.

Step 5: Distribution of negative signs. Any “-“ node with a “+” child will be switched to
a “+” node with a “-“ child, and signs reversed as appropriate. Any “-“ node with a “-“ P

age 6.635.6

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

child will be converted to a “+” node, having its children negated, and its grandchildren
upgraded to children. This process is recursive.

Step 6: Percolate out negative signs. For a “×” node, count how many of its children are
negative, make all children positive, and if the count (of children which are negative) is
an odd number negate the “×” node, otherwise leave it alone. (Changes (-3 × -4 × -5)
into -(3 × 4 × 5): again, in tree structure.)

Step 7: Coalesce branches in the tree. For “+” with a “+” child, upgrade all
grandchildren of the top “+” node to children, and remove its child “+” node. Execute
the exact same process for “×” nodes as well. This transforms structures such as (1 + (2
+ 3)) into (1 + 2 + 3).

Step 8: Zero the equation. Add the negative of the right-hand-side of the equation to the
left-hand-side, and set the right-hand-side of the equation to zero. This ensures we catch
different encodings such as (a + b = c) being the same as (a – c = -b) by moving all terms
to one side of the equation.

Step 9: Coalesce branches in the tree. Same as step 7. This must be done again because
of new terms introduced into the structure on the left-hand-side of the equation.

Step 10: Recursively sort all nodes. Since the equations will be compared literally, it
must be ensured that when we compare “2 + 7 + 3” to “3 + 2 + 7” that they compare
exactly. Accordingly, the nodes are sorted (in ascending alphanumeric order.) The way
in which they are sorted is irrelevant as long as they are sorted consistently in the same
manner.

Step 11: Make negative sign uniform. If the first term on the left-hand-side is negative,
all terms on the left-hand-side are negated. If not, then the left-hand-side is left alone.
This is done to ensure the first term (after having been sorted) is always positive. For
example, equations (4 + x = 0) and (-4 - x = 0) are both correct, but encoded differently.
This step forces encoding in the manner of the first (4 + x = 0).

This encoding was incorporated into the (custom-built) Equation object in Java. The encoding
of the equation takes place automatically in the object’s constructor. When it comes time to
compare the student’s equation against the key, the student’s equation is translated (by creating a
new Equation object with the user’s equation as the input argument), and then compared using
the .equals(Equation) method (of object Equation) which compares one equation against another
(in our case comparing the student’s equation against the previously-stored equation keys) and
returns true or false, indicating a successful comparison. Both equation trees are read through,
and must now (being in the standardized form) be of exactly equal size and content in exactly the
same order. If this is true then the equations are equivalent and the student is correct.

 P

age 6.635.7

Proceedings of the 2001 American Society for Engineering Education Annual Conference & Exposition Copyright
© 2001, American Society for Engineering Education

Summary

It can prove helpful in teaching mathematical concepts to make students aware of the derivation
or solution of an equation, and of the sequence of steps taken to attain that final equation. This
equation activity (functionally a Java applet) provides a method to implement that teaching
strategy. It is generalizable such that it may be used for any mathematical concept, limited only
by the fixed size real-estate of the equation containers.

Acknowledgements

Project Links gratefully acknowledges the support of Rensselaer and of the National Science
foundation under grant #DUE-9552465.

The Equation Activity was first conceived by Billie J. Rinaldi, a graduate student in Mathematics
at Rensselaer, and a key developer of the Mechanical Oscillations series of modules.

The talents of Daniel M. Manthey, a Rensselaer graduate student in Computer Science, were
instrumental in the successful coding of the Equation Activity.

KENNETH S. MANNING, PhD
Ken Manning is the Technical Manager for Project Links, and an Adjunct Associate Professor for the Core
Engineering Program at Rensselaer Polytechnic Institute in Troy, New York. He has also worked as a thermal-
hydraulic design engineer for General Electric, first at the Knolls Atomic Power Laboratory, and then at the
Corporate Research & Development Center. His B.S. is in Physics from the University of Oregon, received in 1976,
his M.S. is in Mechanical Engineering from the University of Illinois at Chicago in 1984, and his Ph.D., also in
Mechanical Engineering, is from Rensselaer in 1992.

LUKE B. BELLANDI
Luke Bellandi is a recent graduate from Rensselaer majoring in Electrical & Systems Engineering. He has been a
programmer with Project Links for three years, and has also contributed to the work of the Academy of Electronic
Media at Rensselaer. He has self-published a CD of original music. He has accepted a position with Apple in
Cupertino, California.

Bibliography

1 The Project Links Web site, http://links.math.rpi.edu/

2 Manning, K., “Project Links: Interactive Web-Based Modules for Teaching Engineering”, ASEE Annual
Conference and Exposition, St. Louis, Missouri, Session 2620, 2000.

3 NEEDS: The National Engineering Education Delivery System, http://www.needs.org/

4 Fisher, T., Orr, J., & Scott S., “Randomized Interval Analysis Checks for the Equivalence of Mathematical
Expressions”, preprint received directly from J. Orr, 2000.

5 WebEQ by Design Science, Inc. is available at http://www.mathtype.com/webmath/.

P
age 6.635.8

