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A New Approach to Solve Beam Deflection Problems using the 

Method of Segments  
 

 

Abstract 

 

This paper presents a new approach to solving beam deflection problems.  The approach 

involves the direct application of derived force-deformation formulas, a procedure commonly 

used with axial and torsion bar problems.  This direct application of derived force-deformation 

formulas, referred to by the authors as Method of Segments, is extended to beam deflection 

analysis in order to provide a solution procedure for beams that is consistent in philosophy and 

application with that presented in most mechanics of materials textbooks for axially loaded bars 

and torsionally loaded shafts.  The beam force-deformation formulas, involving slope and 

displacement, are derived by double integration for a beam of uniform cross-section, material 

and distributed loading with end shear forces and couples.  Application of the formulas is direct 

and requires no integration or continuity equations.  Furthermore, by identifying segments of 

uniform geometry, material and distributed loading, this approach can easily be applied to beams 

of discontinuous geometry and material that supports both concentrated and distributed loading.  
 

Introduction 

 

The great majority of undergraduate mechanics of materials textbooks
1-50

 directly apply 

previously derived force-deformation formulas to problems involving the straight bar subjected 

to centric axial loading and the straight circular cross-section bar (shaft) subjected to twisting 

couples.  In both cases, the bars are uniform in cross-section and material, and the concentrated 

loads are applied at the ends and distributed loads are continuous along the full length.  The 

force-deformation formulas are shown in Figures 1 and 2 for bars subjected to centric axial 

loading and twisting couples, respectively.  These formulas, referred to as Material Law 

Formulas by the authors, are commonly found in mechanics of materials textbooks
1-50

. 
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Figure 1.  Material Law Formulas for a uniform bar with end centric axial and 

centric uniform distributed loads plus temperature change. 
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Figure 2.  Material Law Formulas for a uniform shaft with end torsional couples and  

uniform distributed torsional couple. 

 

In a real application, an axially loaded bar, for example, the bar may have any 

combination of cross section size and shape, material and applied concentrated or distributed 

loadings.  Figure 3 illustrates a ‘complex’ bar which has two lengths of different, but 

individually continuous, cross-sections, loading and, perhaps, material.  This bar of 

discontinuous cross-section, load and material can be treated as an assemblage of two simpler 

bars, called segments, of uniform cross-section with continuous loading along each length of 

uniform material as shown in Figures 3b and 3c.  The effects of the loading on each segment can 

be combined to obtain the resultant effect on the total, more complex composite bar.  Solutions 

are obtained by application of point compatibility and a summation of the relative displacements 

of the simple bar segments.  The method to solve this type of problem is referred to by the 

authors as the Method of Segments.  In mechanics of materials textbooks, the method is applied 

to the axially loaded bar and torsionally loaded shaft, but not the beam.  The procedure is 

referred to as the discrete element method by Bauld
1
.  Other textbooks do not explicitly call it a 

method, but the segments are referred to as component parts or portions
2,3

, elements
9,20,27-29

, 

parts
14,15,16,22,33,47

, portion
6
, section

26
, section or segment

7
, segment

5,31,48
 and segment and 

region
17,18
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Figure 3. Two segment determinate bar problem with concentrated loads and distributed load. 
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The authors are not aware of any work that has used the Method of Segments to solve 

beam deflection problems and wish to show how this method may be used to solve beam 

bending problems.  The Material Law Formulas for a uniform beam supporting a uniformly 

distributed load and end shear forces and bending couples will first be developed.  The analysis 

process proposed by the authors to solve problems
51

 will be discussed and will be used to solve 

determinate and indeterminate beam problems.  A review of current beam deflection methods 

will be considered.  Finally, the advantages and disadvantages of this proposed Method of 

Segments will be presented.    

 

Development of Beam Material Law Formulas 

 

In this section the Material Law Formulas for a straight beam of uniform cross section 

and material with end and uniformly distributed transverse loading is developed using the double 

integration method.  The double integration method is found in nearly all mechanics of materials 

textbooks.   

 

Free-Body Diagram I in Figure 4 is of a linearly elastic, homogeneous (constant elastic 

modulus E), beam of length L, uniform cross section (constant zI ), with positive internal shear 

forces 
AsF  and 

BsF  and positive internal bending couples MA and MB acting at the ends.  The 

beam supports a uniformly distributed downward load, w, force/length.  All points in the beam, 

including the end points ‘A’ and ‘B’, undergo positive transverse displacement, v(x), in the 

positive Y direction.  At all points in the beam, including the end points ‘A’ and ‘B’, the beam 

neutral surface undergoes rotation ( )xθ , with the positive sense as shown in Figure 4 at the end 

points ‘A’ and ‘B.’  Free-Body Diagram II in Figure 4 is of the partial length of the beam 

produced by cutting the beam at an arbitrary location x.  For this beam, the following will be 

derived:  

 

• Functions defining the internal shear force, Fs(x) = 
ABsF , the internal bending couple M(x) = 

MAB, the slope of the neutral surface (or axis), ABx θθ =)(  and transverse displacement of the 

neutral surface (or axis), v(x) = vAB, at any cross section location in the beam.   

 
• Functions relating the internal shear forces 

AsF  and 
BsF  and bending couples MA and MB at 

the ends to the rotational and transverse displacements ABA v,, θθ and Bv  at the ends. 

 

The derivations are based on principles of equilibrium, Hooke’s Law and the differential 

equation for beam elastic deflection 
2

2z z

d v
M EI

dx

 
= 

 
. 
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Figure 4.  Uniform beam with uniformly distributed load and end shear forces and couples 

(positive sign convention). 

 

• Equilibrium Equations.  In Figure 4, equilibrium equations for FBDs I and II yield the 

following relationships between the shear forces and bending couples: 
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• Differential Equation.  Substitute Equation 4 into the differential equation for the beam 

elastic deflection, and integrate twice to obtain equations valid for the full beam length: 
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Substitution of x = xB and L = xB - xA  into Equations 7 and 10 yields the following 

formulas for the end B slope and transverse displacement in terms of the distributed load, the 

shear force and couple at end A and the slope and transverse displacement at end A: 
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It is preferable to have formulas with the dependent displacements at one end as a function of 

forces at the same end.  In application, this would mean that the independent position variable 

would be the same for the displacements and forces.  Substitution of Equations 1 and 2 into 

Equations 11 and 12 yields formulas which define the end B slope and transverse displacement 

in terms of the distributed load, the shear force and couple at end B and the slope and transverse 

displacement at end A:  
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These two formulas will be referred to as the Material Law Formulas for  the end loaded beam 

and are presented in Figure 5 with general representative symbols ‘a’ and ‘b’.  In applying the 

Material Law Formulas, the symbols ‘a’ and ‘b’ are replaced by the letters assigned to the ends 

of each segment in the problem being analyzed.  It is important to appreciate that the Material 

Law algebraic equations have been derived by the double integration method.  Application of 

these formulas to any beam problem is done without the need for additional integration or 

solution for constants of integration.   

 

The Material Law Formulas shown in Figure 5 is limited to a beam which has end loads, 

a uniformly distributed loading, uniform geometry and material for the entire beam length.  We 

want to show how this special case can be used to solve beam problems which are complicated 

to the extent of having discontinuous loading functions, cross-sectional areas and materials, all in 

the same beam.  The analysis process that will be used to solve beam problems will first be 

discussed and then two example problems will illustrate the application of the Material Law 

Formulas. 

X, x

M M
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a b
a b

s sba

Y w, force/length

L

F

 
Figure 5.  Material Law Formulas for a uniform beam with end shear forces and bending couples 

and uniformly distributed load. 
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Analysis Process 

 

The authors use an approach to mechanics of materials that integrates theory, analysis, 

verification and design
51

.   The analysis component uses a non-traditional structured problem 

solving format containing eight steps.  The students are required to follow the appropriate steps 

listed below to solve any problem.  

 

1. Model. The success of any analysis is highly dependent on the validity and 

appropriateness of the model used to predict and analyze its behavior in a real system, 

whether centric axial loading, torsion, bending or a combination of the above.  

Assumptions and limitations need also be stated.  This step is not explicitly emphasized 

in any mechanics of materials textbook. 
 

2. Free-Body Diagrams.  This step is where all the free-body diagrams initially thought to 

be required for the solution are drawn.  The free-body diagrams include the complete 

structure and/or parts of the structure.  Very importantly, all dimensions and loads, even 

those which are known, are defined symbolically. 

 

3. Equilibrium Equations.  The equilibrium equations for each free-body diagram required 

for a solution are written.  All equations are formulated symbolically.  There is no 

attempt made at this point to isolate the unknown variables.  However, every term in each 

equation must be examined for dimensional homogeneity. 

 

4. Material Law Formulas.  The material law formulas are written for each part of a 

structure based on the Model in Step 1.  All equations are formulated symbolically and 

there is no algebraic manipulation.  Every term in each equation must be examined for 

dimensional homogeneity. 

 

5. Compatibility and Boundary Conditions. One or more compatibility equations are written 

in symbolic form to relate the displacements.  A compatibility diagram is used when 

appropriate to assist in developing the compatibility equations.  All equations are 

formulated symbolically and there is no algebraic manipulation.  Every term in each 

equation must be examined for dimensional homogeneity.  Although compatibility 

equations are commonly written for indeterminate problems, the authors emphasize their 

use for determinate problems just as is done in the textbooks by Craig
9
, Crandall

10
 et al., 

Shames
37

, and Shames & Pitarresi
38

. 

 

6. Complementary and Supporting Formulas.  Steps 1 through 5 are sufficient to solve for 

the (primary) variables for force and displacement in a structures problem.  Step 6 

includes complementary formulas for other (secondary) variables such as stress and 

strain, variables which may govern the maximum allowable in service values of force and 

displacement, but which do not affect the governing equilibrium or deformation 

equations.  Supporting formulas are those which might be required to supply variable 

values in the Material Law equations and complementary formulas; formulas such as 

area, moment of inertia, centroid location of a cross-section, volume, etc.  The 

complementary and supporting formulas are written symbolically and are necessary to 

develop a complete analysis.       

P
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7. Solve.  The independent equations developed in Steps 3 through 6 solve the problem.  

The students compare the number of independent equations and the number of 

unknowns.  The authors emphasize that the student should not proceed until the number 

of unknowns equals the number of independent equations.   

The solution may be obtained by hand, and this generally requires algebraic 

manipulation.  Alternatively, the solution of any number of equations, linear or non-

linear, can be obtained with a modern engineering tool.  With intelligent application of 

verification (Step 8), the computer program is a much more reliable calculation device 

than a calculator.  (ABET
52

 criterion 3(k) states that engineering programs must 

demonstrate that their students have the “ability to use the techniques, skills, and modern 

engineering tools necessary for engineering practice”.)  The students are allowed to select 

the modern engineering tool of their choice, and this might include Mathcad
53

, Matlab
54

 

and TKSolver
55

.  The authors have not seen this solution procedure in any mechanics of 

materials textbook. 

 

8. Verify.  One of our educational goals is to convince students of the wisdom to question 

and test solutions to verify their ‘answers’.  The verify Step 8 is carried out after solution 

Step 7 is performed once.  The power of our proposed use of the modern engineering tool 

rests in the ability to quickly and easily run many cases to verify the problem solution.  

How does one test the problem solution?  Some suggested questions that students may 

apply for the purpose of verification of their ‘answers’ are as follows: a. A hand 

calculation?; b. Comparison with a known problem solution?; c. Examination of limiting 

cases with known solutions?; d. Examination of the obvious solution?; e. Your best 

judgment?; f. Comparison with experimentation (not considered)?.  As indicated, 

attempts at solution verification may take many forms, and, although in some cases it 

may not yield absolute proof, it does improve the level of confidence.  This step is 

considered only in the mechanics of materials textbook by Craig
9
.    

 

Problems in statics require only Steps 1, 2, 3, 6 and 7.  These five steps have not been employed 

in the treatment of statics problems in any statics or mechanics of materials textbook.  

Furthermore, Steps 1 through 8 have not been suggested in any mechanics of materials textbook. 

 

Example 1: Statically Determinate Problem 

 

A uniform simply supported circular stepped shaft of different diameters carries a 

uniformly distributed load over a portion of the beam span as shown in Figure 6.  Using the 

Material Law Formulas in Figure 5, derive symbolic relationships for the internal shear force and 

bending couple and for the slope and displacement of the neutral surface for the full length of the 

beam.  Solve for and plot the diagrams for the shear force, bending couple, slope and 

displacement using the following load and beam specifications. 

 

  
= = =

= = =

1 2

6

1 2

lb
w 16 , L 50 in, L 150 in

in

d 4.0 in, d 3.75 in, E 29(10 ) psi
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Figure 6. Simply supported stepped shaft with partial distributed load. 

 

SOLUTION: 

 

The analysis process is based on the eight steps discussed in the previous section. 

  

1. Model.  The simply supported beam carries a distributed transverse load over a portion of 

the span.  In order to use the Material Law in Figure 5, the beam must be divided into 

segments, each having uniform cross-section inertia and material properties and loading 

consisting of end shear forces, end bending couples and a uniformly distributed load.  This 

segment division is shown in Figure 7.  With the exception of FBD I, all diagrams satisfy 

these segment requirements. 

 

2. Free-Body Diagrams. The free-body diagrams are shown in Figure 7.  The partial segment 

FBDs II and III are drawn because we wish to derive the solution for shear force, bending 

couple and neutral surface slope and displacement for the entire length of the beam. These 

diagrams will provide expressions at the arbitrary x locations.  Free-body diagrams IV and 

V are necessary to define the solution at the specific boundary supports and segment 

junctures.   

 

Note that the applied beam load, w, is carried on segment (1), the distributed  load on 

segment (2) is zero.  Also note, the internal shear force 
)1(

BsF  and bending couple, )1(

BM , 

although labeled to be considered in the segment (1) side of the slice at location B, are single 

valued at B, there is no applied force or couple at B to produce a discontinuity in either the 

internal force or couple. 
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Figure 7. Free-body diagrams of the simply supported stepped shaft. 

 

3. Equilibrium Equations.  The FBDs in Figure 7 involves 8 unknowns.  There are 5 free-body 

diagrams shown, but only 4 are independent.  Free-body diagrams I, IV and V are 

dependent, because FBD IV and V sum to FBD I.   

 

This problem is statically determinate. We will solve for the reaction forces first.  From 

equilibrium of FBD I, the entire beam: 

  

   1: :Y A CFBD I F R R wL+ =∑    (1.1) 

            
2

1:
2

A C

wL
M R L =∑     (1.2) 

 

Free-body diagram II will provide relationships for the internal shear force,
ABsF , and 

bending couple, MAB, for values of x between xA = 0 and xB = L1. 

 

   : :
ABY s AFBD II F F wx R+ =∑    (1.3) 

                
2

:
2

cut AB A

wx
M M R x+ =∑    (1.4) 
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Free-body diagram III will provide relationships for the internal shear force, 
BCsF , and 

bending couple, MBC, for values of x between xB = L1 and xC = L. 

 

   (1): :
BCY s sBFBD III F F F=∑     (1.5) 

      (1) (1)

1: ( )
Bcut BC s BM M F x L M= − +∑   (1.6) 

 

Free-body diagram IV will provide relationships for the internal shear force,
)1(

BsF , and 

bending couple, )1(

BM , at x = xB = L1. 

 

   (1)

1: :
BY s AFBD IV F F wL R+ =∑    (1.7) 

      
2

(1) 1
1:

2
cut B A

wL
M M R L+ =∑   (1.8) 

  

There are 8 unknowns 

 

RA, RC, 
ABsF , MAB, 

BCsF , 
)1(

BsF , MBC and )1(

BM  

 

that may be solved with the 8 equilibrium equations, Equations 1.1 through 1.8. 

 

4. Material Law Formulas. The Material Law Formulas in Figure 5 will be applied to each of 

the partial and full segments. 

 

  

2 3

32 4

, 5
2 6

, 5
2 3 8

b

b

sb
b a

z z z

sb
b a a

z z z

F LM L wL
from Figure

EI EI EI

F LM L wL
v v L from Figure

EI EI EI

θ θ

θ

= + − −

= + + − −

 

 

Pay careful attention to notation as you substitute the problem variables for the general 

symbols in the Material Law Formulas.  Note that segments (1) and (2) have different values 

of moment of inertia.  The Young’s modulus for segment (1) is different from that of segment 

(2) in writing the Material Law Formulas for each segment.  For this problem, however, data 

input would have E1 = E2. 

 

(a)  Partial Segment (1), FBD II, 10 x L≤ ≤ : 

 

   

1 1 1

2 2

1 1 12 6

ABsAB
AB A

z z z

F xM x wx

E I E I E I
θ θ= + − −     (1.9) 

   

1 1 1

32 4

1 1 12 3 8

ABsAB
AB A A

z z z

F xM x wx
v v x

E I E I E I
θ= + + − −    (1.10) 
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(b)  Partial Segment (2), FBD III, 1L x L≤ ≤ : 

 

  

2 2

2

11

2 2

( )( )

2

BCsBC
BC B

z z

F x LM x L

E I E I
θ θ

−−
= + −     (1.11) 

  

2 2

32
11

1

2 2

( )( )
( )

2 3

BCsBC
BC B B

z z

F x LM x L
v v x L

E I E I
θ

−−
= + − + −   (1.12) 

 

(c)  Full Segment (1), FBD IV: 

   

1 1 1

(1) 2(1) 3
11 1

1 1 12 6

BsB
B A

z z z

F LM L wL

E I E I E I
θ θ= + − −     (1.13) 

   

1 1 1

(1) 3(1) 2 4
11 1

1 1 12 3 8

BsB
B A A B

z z z

F LM L wL
v v x

E I E I E I
θ= + + − −    (1.14) 

 

(d) Full Segment (2), FBD V: Note that the right end couple and the distributed load are 

zero, and the support reaction RC results in a negative internal shear force at end C: 

 

    
Css

Cb

RFF

MM

Cb
−=⇒

=⇒ 0
 

    

2

2

2

2

( )

2

C
C B

z

R L

E I
θ θ

−
= −      (1.15) 

    

2

3

2
2

2

( )

3

C
C B B

z

R L
v v L

E I
θ

−
= + −     (1.16) 

 

5. Compatibility and Boundary Conditions.  The beam has been separated into two segments 

for analysis, and the segments must be rejoined.  The fact that the right end of segment (1) 

and the left end of segment (2) are attached is assured by providing the same slope and 

displacement symbol designation for each segment at the juncture. 

 

The boundary conditions for this beam are established by the rigid pin and roller supports at 

A and C. 

    
0

0

=

=

C

A

v

v
 

 

6. Complementary and Supporting Formulas.  In general, formulas would be applied here to 

calculate stress and the area moment of inertia.  In this example, we require the area moment 

of inertia for segments (1) and (2). 

 

1

4

1

64
z

d
I

π
=          (i) 
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2

4

2

64
z

d
I

π
=         (ii) 

 

7. Solve.  Some things should be apparent in this solution formulation; integration is not 

required, it has already been done, and there are no constants of integration to be 

determined.   

 

Considering the boundary values as known, there are an additional 8 unknowns generated in 

writing the Material Law equations 

 

θAB, θA, vAB, θBC, θB, vBC, vB and θC 

 

Thus, in summary, we have a total of the following 16 unknowns 

 

   RA, RC, 
ABsF , MAB, 

BCsF , 
)1(

BsF , MBC and )1(

BM  

         θAB, θA, vAB, θBC, θB, vBC, vB and θC 

 

which can be solved with the 8 equilibrium equations, Equations 1.1 through 1.8, and the 

additional 8 Material Law Formulas, Equations 1.9 through 1.16.  The equations will be 

solved with an equation solver, e.g., MathCad
53

, MatLab
54

 or TKSolver
55

. 

 

The following results are presented for forces and displacements at locations A, B and C.  

 

 RA  =  700 lb,     RC   = 100 lb 

 
)1(

BsF   =  −100 lb,    )1(

BM  = 15000 lb · in 

 θA = −3.26 (10
-3

) rad,    θB = −1.77 (10
-3

)  rad,    θC = 2.23 (10
-3

)  rad 

 vB = −1.34 (10
−1

)  in 

 

The diagrams in Figure 8 are plots of the dependent variables over the full length of the 

beam. 

 

8. Verify.  Test the solution. 

• Setting the distributed load w = 0 will yield the obvious solution of a zero response. 

• Changing the sign of the distributed load will result in reactions of the same magnitude 

but opposite direction.  

• Run a solution with a distributed load, constant material and constant moment of inertia 

over the full span and check for symmetry and compare the value of maximum 

displacement and end rotations with other sources found in a handbook (v(L/2) =            

-5wL
4
/384EIz and θ(0) = - θ(L) = -  wL

3
/24EIz).  The reaction forces will also be RA = RB 

= wL/2. 

• The best approach to the solution of a problem like this is to plot all of the dependent 

variables as has been done in Figure 8.  Gaps in the diagrams, discontinuities which 

should not exist, failure to match boundary values, etc., can flash a warning that 

something is not right. 

• Calculate and check intermediate values by hand. 
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Two other checks the authors have found to be helpful for all problems are: 

• Double check the input. 

• Go back and check the solution after a few days. 

(a) Internal Shear Force
               vs
           Position

(b) Internal Couple
             vs
        Position

(c) Neutral Axis Slope
               vs
          Position

(d) Neutral Axis Displacement
                     vs
                Position

 
Figure 8.  Shear, bending couple, slope and displacement diagrams for simply 

supported beam. 

 

Example 2: Statically Indeterminate Problem 

  

Consider the beam shown in Figure 9.  It is solidly built into the wall at the left end, and 

supported on the roller at the right end. A couple, CB, of known magnitude is applied to the right 

end.  Solve, using the Material Law Formulas in Figure 5, for the symbolic relationships for the 

reaction forces exerted by the wall, end A, and the roller at end B.   

(a) Internal Shear Force 
vs 

Position 

(b) Internal Couple 
vs 

Position 

(c) Neutral Axis Slope 
vs 

Position 

(d) Neutral Axis Displacement 
vs 

Position 
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B

B

xA

C

Y

L

 
Figure 9. Propped cantilever beam with concentrated couple. 

 

SOLUTION: 

 

1. Model. The full beam satisfies the requirements of the Material Law beam model; one length 

with continuous material, geometry, distributed load (zero) and end loads.  Therefore, the 

full beam may be used, there is no need to establish smaller segments. 

 

2. Free-Body Diagrams. The free-body diagram of the full beam is shown in Figure 10.  

R
B

BM A FBD I

C

R
A

x

Y

 
Figure 10. Free-body diagram of the propped cantilever beam. 

 

3. Equilibrium Equations. The force and moment equilibrium equations for the beam            

reaction forces in Figure 10 are as follows: 

      

     RA+RB = 0      (2.1) 

            

             MA+RAL = CB      (2.2) 

 

Given the couple CB, there are three unknowns, RA, RB and MA.  Since there are only two 

independent equilibrium equations, these equations alone are insufficient to solve for the 

unknowns; the problem is statically indeterminate.  Therefore, the deformation properties of 

the beam must be introduced. 

 

4. Material Law Formulas. The Material Law Formulas will be applied to the full beam: 

 
2 3

, 5
2 6

bsb
b a

z z z

F LM L wL
from Figure

EI EI EI
θ θ= + − −  
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32 4

, 5
2 3 8

bsb
b a a

z z z

F LM L wL
v v L from Figure

EI EI EI
θ= + + − −  

 

Relating the problem variables and values to the symbols in the formulas, we have:  

 

   
0w,RFF,CMM

vv,,

BssBBb

BbAaBb

Bb
=−=⇒=⇒

⇒⇒⇒ θθθθ
 

   

Substituting into the Material Law Formulas yields 

    
z

2

B

z

B
AB

EI2

L)R(

EI

LC −
−+= θθ       (2.3) 

 

  
z

B

z

B
AAB

EI

L)R(

EI

LC
Lvv

32

32 −
−++= θ      (2.4) 

 

5. Boundary Conditions. The boundary conditions for this beam are: 

 

vA  =  0 

θA  =  0 

vB  =  0 

 

6. Complementary and Supporting Formulas.  In general, formulas would be applied here to 

calculate the area moment of inertia. 

 

7. Solve.  There are four unknowns as follows: 

 

RA, RB, MA and θA 

 

which can be solved using Equations 2.1 through 2.4.  As an alternative to using an equation 

solver, the problem will be solved by hand to obtain symbolic formulas for the solution.  

Substituting the boundary conditions into Equations 2.3 and 2.4 yields the following: 

 

(i) 

2

2 3

( )
0

2

( )
0 0 0

2 3

B B
B

z z

B B

z z

C L R L

EI EI

C L R L

EI EI

θ
−

= + −

−
= + + −

 

(ii) 

 

Solving Equation ii for the reaction force RB  yields: 

 

L

C
R B

B
2

3
−=  
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Substitution into Equations 2.1 and 2.2 yields the force and couple at end A. 

3

2

B
A

C
R

L
=  

2

B
A

C
M = −  

The rotation at end B was not requested, but from Equation i yields: 

 

z

2

B

z

B
B

EI2

L)]L2/C3([

EI

LC
0

−−
−+=θ  

z

B
B

EI4

LC
=θ  

8. Verify.  Verify the solution with the following tests: 

• Setting the couple CB = 0 will yield a zero response. 

• Changing the sign of couple CB will results in reactions of the same magnitude but 

opposite direction.  

• The direction of applied couple CB is consistent with the directions of rotation Bθ  and 

neutral axis displacement. 

• Place the unknown reactions on the free-body diagram in Figure 10 and check 

equilibrium. 

• Compare the solution with a handbook. 

• Check solution though a hand calculation if an engineering tool was used. 

 

Beam Deflection Methods Commonly Found in Mechanics of Materials Textbooks 

 

A review of mechanics of materials textbooks
1-50

 was carried out by the authors to 

determine the most commonly used methods to solve beam deflection problems.  The review 

revealed that the five most popular methods
1-50

 include double integration, superposition, 

singularity (discontinuity or step) functions, moment area and Castigliano’s.  Other less popular 

methods include fourth-order
5,6,9,15,16,26-29,48

 and the unit (dummy) load
9,15,16,22,27-30,33,41,42,47

 

methods.  A very limited number of authors use conjugate beam
30,41,42,44

, finite-difference 

method
24,47

, finite element
20,38

, moment distribution
24,30,41,42

 and the three-moment 

equation
12,25,30,34,41-46

.  The authors are not aware of any mechanics of materials textbook that has 

used the Method of Segments to solve beam deflection problems. 

 

The authors want to point out that such methods as double integration, singularity and 

fourth-order require identification of the regions of continuous geometry, material and loading.  

However, the direct integration methods yield constants of integration which must be defined in 

terms of boundary conditions and continuity relationships.  The proposed Method of Segments 

involves no integration, no solution of integration constants and requires no separate equations of 

continuity. 

 

Why introduce another beam deflection method in the introductory mechanics of 

materials course?  The primary answers are as follows: 
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• The proposed Method of Segments is an approach which is consistent with the commonly 

adopted solution methods of direct integration applied to the axial bar and torsional shaft 

problems. 

 

• Application of the derived Material Law simplifies the algebraic development of the 

equations, and reduces the potential for error. 

 

With an understanding of the theory of the Material Law Formula development and application 

of Method of Segments, only one method is needed to solve determinate and indeterminate beam 

deflection problems.   

  

Advantages and Disadvantages of the Method of Segments 

 

The four advantages of the proposed Method of Segments include the following: 

 

• Consistent Solution Approach.  The Method of Segments for beams is consistent with the 

method commonly found in mechanics of materials textbooks to solve axially loaded bars and 

torsionally loaded shafts.  The Material Law of each problem type is derived from basic 

principles using single integration for axially and torsionally loaded bars and double 

integration for transversely loaded bars.  No additional solution approach, such as moment 

area, singularity functions, superposition and Castigliano’s theorem, is required to solve beam 

deflection problems. 

 

• Non-uniform Beams.  The Method of Segments can easily be applied to beams with uniform 

step changes in geometry and material.  A literature review by the authors determined that the 

most commonly used methods in mechanics of materials textbooks
1-50

 to analyze non-

uniform beams include double integration
7,20,26-29,31,33,36-39,43,44,48

 and moment area
1-3,5,6,14-

16,22,24,25,27-31,33,34,42-47
.  All textbooks do emphasize non-uniform bar and shaft problems.  

However, not as much emphasis is placed on non-uniform beams.  

 

• No Integration Required.  Application of the Material Law Formulas can be applied to any 

beam problem without the need for integration since the Material Law Formulas were 

developed using double integration.  This eliminates the need to solve for integration 

constants and, overall, reduces the potential for algebraic error. 

 

• No Continuity Equations Required.  Since a beam must be separated into segments for 

analysis, the segments must be rejoined.  The fact that the right end of one segment and the 

left end of the adjacent segment are attached is assured by providing the same symbol 

designation for each segment at the juncture.  Therefore, this satisfies point compatibility and 

continuity equations are not required. 

 

The two disadvantages of the proposed Method of Segments include the following: 

 

• Complex Equations.  Compared to the axially loaded bar in Figure 1 and torsionally loaded 

bars in Figure 2, the basic Material Law for a transversely loaded bar (beam) in Figure 5 is 

more difficult to remember since there are two formulas and more terms in each formula.  
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However, if a person is solving beams problems frequently, remembering the Material Law 

formulas is not an issue. 

 

• Simple Beams.  The method discussed in this paper is limited to a uniform beam supporting a 

uniformly distributed load with end shear forces and bending couples.  However, these cases 

are commonly found in practice for beams just like axially loaded and torsionally loaded bars.  

Moreover, a Material Law could be developed for other beam loadings and geometries. 

 

Conclusion 

 

A new approach has been developed to solve beam deflections problems that are 

consistent with solving axially loaded bars and torsionally loaded shafts.  Two examples were 

presented that demonstrated the method applied to statically determinate and indeterminate 

problems.  With an understanding of the theory of the Material Law development and application 

of Method of Segments, this method alone could suffice in an introductory mechanics of 

materials course to solve determinate and indeterminate beam deflection problems. 
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