, specifically within the elementary school context. Tyrine hopes to explore how Transformative SEL can be implemented to cultivate socially responsible engineers.Brianna D. Starling, Tufts University ©American Society for Engineering Education, 2023 Cellular Agriculture: An activity guideto support an engineering ethics impacts discussion in high school settings Overview Cellular agriculture is the emerging field of producing animal products from cell culture, rather than directly from animals. A multidisciplinary field, cellular agriculture
understand how the secondary experienceand knowledge modulated their ability to adapt, cultivate purpose, understand engineeringconcepts, and academic goals.This paper presents a study investigating the effectiveness of an innovative Holistic Engineeringpedagogy for secondary and postsecondary engineering students that includes a novel HolisticDesign Thinking methodology. The approach emphasizes a holistic and transdisciplinaryphilosophy to engineering education, beginning with a foundation of knowledge on love,empathy, and ethics, and with a focus on engaging students’ emotions in the learning process.The paper reports eight years of qualitative results in teaching this experiential pedagogy tosecondary and postsecondary engineering students, with
. Engineering solutions candisproportionately impact—benefit or harm—certain populations. This differential impact cutsalong class and race lines, raising important ethical questions for engineers as they address thecriteria and constraints of stakeholders. As youth engage with engineering activities andcurricula, it is important that they consider these elements. The emergent field of engineering forsocial justice urges that decision-making related to engineering designs and solutions considertechnical, social, environmental, and ethical contexts (Claris & Riley, 2003; Leydens & Lucena,2018; Lucena, 2013; Nieusma & Riley, 2010; Riley, 2008). Situating engineering in suchcontexts can motivate learners and provide perspectives on the nature
1 2 Manufacturing Fabrication 1 2 3 4 5 Material Classification Joining 1 Casting/Molding/Forming Separating/Machining 1 2 Conditioning/Finishing Safety 1 2 3 Quantitative Analysis Computational Thinking Computational Tools 3 Data Collection, Analysis, & Communication 1 2 3 4 System Analytics 1 2 Modeling & Simulation Professionalism Professional Ethics Workplace Behavior/Operations Honoring Intellectual Property Technological Impacts
practice areas in the engineering discipline Week 7 Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental, and sustainability Week 8 Engagement with selected knowledge in the research literature of the disciplineCurrent Engineering Education-Related Studies in SingaporeTo date, there are efforts to explore the different influences, levels of awareness, and learningstandards relevant to engineering education in Singapore. In research investigating the funds ofknowledge for first
and/or improving things [6]-[7]. In particular, wedraw upon Lucas and Hanson’s [7] habits of mind framework that identifies and describes sixengineering habits of mind and seven learning habits of mind for their potential to informinstructional practices and learning cultures across pre-kindergarten to post-secondary contexts.We used both habits of mind – engineering and learning – for what they both afforded. Forexample, learning habits of mind include Ethical Consideration, the concern for the impact ofengineering on people and the environment, which is not captured by engineering habits of mindbut remains a value important to the field of engineering [8-9].ASEE [10] has described HoM as one component that leads to the development of
review of existing engineering curriculum options, the authors selectedrelevant modules from the Engineering is Elementary (EiE) [1] program. Modules were selectedbased on alignment with CS&E, math, science, and literacy learning objectives and with theschool’s mission to cultivate confident, intellectual, and ethical girls who advance the world.This paper will report on one particular unit on chemical engineering that was used with the 2ndgrade class.In particular, we were interested in assessing the feasibility of adapting the EiE curricularresources to meet CS&E learning objectives, understanding the impact this type of lesson wouldhave on our students, and identifying connections with math, science, and literacy. The
, Think Like an Adversary, and Keep it Simple. The six cybersecurity concepts and topicsabout online safety, cyber ethics, and digital ethics were reinforced in the curriculum activities, as shownin Table 1. 5 Common Sense, https://www.commonsensemedia.org 6 CYBER.ORG, https://cyber.org6 Table I Camp curriculum overview incorporating the GenCyber Concepts and additional related cyber topicsCATEGOR TOPICS EXAMPLE ACTIVITIESYC1: Defense T1: IoT Network Security: What are the varying levels of - Instructor Presentationin Depth security? How are firewalls, antivirus software, VPNs used to - PBS game
teaming; Engineering in Society, exploring the implication of engineeringsolutions on environmental, ethical, and social aspects of society; and Engineering Design,featuring an engineering design process. Each engineering design follows an engineering designprocess, including evaluation based on stakeholder analysis. The curriculum is designed to beoffered as a yearlong high school course. It consists of eight units, designed with the idea ofspiraling complexity. Concepts are introduced and are reinforced through later lessons andactivities, allowing increasing autonomy and creativity throughout the course. The first two unitsfocus on a true introduction to engineering, including social, ethical, and environmentalramifications of engineering
intelligence (AI) and Machine Learning (ML) are rapidly changing our civilization andwill be critical tools in many future careers. AI/ML can analyze large amounts of data sets in ashort time; it will support a lot of fields to solve problems in a highly efficient way. It isincreasingly important to introduce basic AI/ML concepts to students to build familiarity withthe technologies they will interact with and make decisions about. Ideally, all students graduatingfrom high school should have some understanding of AI, the ethical issues associated with AI,and the potential strengths and weaknesses of a society built on top of computer intelligence [3].Although AI is increasingly used to power instructional tools for K-12 education, AI conceptsare not
design to the client Got GMOs? Evaluate the • Cells contain • Ethical and • Population from (Grades 6-8) efficacy of a DNA. practices uses a sample barrier that • Genes are of technology • Draw inferences reduces cross- located in • Technology about a contamination DNA. used in population from of non-GMO • Genes carry science and the data corn fields from information engineering. • Variation in GMO
. Avery and K. A. Kassam, “Phronesis: Children's local rural knowledge of science and engineering.” Journal of Research in Rural Education, vol. 26, no. 2, p. 1, 2011.[10] P. W. U. Chinn, “Developing a Sense of Place and an environmental ethic: A transformative role for Hawaiian/Indigenous Science in teacher education?,” in Honoring Our Heritage: Culturally Appropriate Approaches for Teaching Indigenous Students, J. Reyhner and W. S. G. L. Lockard (Eds.), 2011, pp. 75–95.[11] T. Kelley and J.G. Knowles, “A conceptual framework for integrated STEM education.” International Journal of STEM Education, vol. 3, no. 11, p. 1-11, 2016.[12] K. Kricorian, M. Seu, D. Lopez, E. Ureta, and O. Equils, “Factors influencing
Knowledge 3 EIPCK affects four types of teacher knowledge (domains) which were described asfollows: A. Engineering Content Knowledge refers to teachers’ knowledge of engineeringconcepts, engineering skills/practices, and engineering knowledge. The engineering conceptsinclude concepts such as constraints, systems, optimization, trade-offs, engineering analysis,functionality, and efficiency (Hynes, 2009; NRC, 2012; NGSS Lead States, 2013). engineeringskills/practices include systems thinking, creativity, optimism, collaboration, communication,persistence, and ethical consideration/conscientiousness (NAE, 2010, 2019), skills in specifyingrequirements, decomposing systems, generating
accident litigation across the U.S. He can be contacted at safesci@sbcglobal.net. ©American Society for Engineering Education, 2023Safety Issues and Accidents Associated with P-12 Pre-Engineering and Engineering Design Courses: Results from a National Study (Fundamental) AbstractDeveloping and constructing solutions for engineering design challenges can pose inherent legaland ethical safety responsibilities that school systems and educators cannot ignore. While safetyconcepts are emphasized throughout P-12 engineering education standards [1,2], studies havedocumented a continued lack of safety in regard to awareness, training, supervision
breadth and depth of engineering-related topics. These content areas were offered by the faculty mentor’s ability to provide bothacademic and financial support for the project. Collaborations with local universities/partners arealso evident. While BR can support research projects in house, collaborations for clinical trials(e.g., the virtual reality calm/sensory room) were instrumental to test new technologies inmeaningful and ethical way.Discussion and Future WorkBaylor Research consists of three modules designed to train students in all facets of scientificresearch. Starting in Engineering Design, allowing students to engage in project-based skillbuilding in a hybrid flipped classroom has shown a perceived growth in several key areas (Table2